From: Claudio Sacerdoti Coen Date: Thu, 6 Aug 2009 14:36:16 +0000 (+0000) Subject: The first omomorphism theorem for whole sets (i.e. setoids + morphisms, not X-Git-Tag: make_still_working~3559 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=dc6723959a8e035e2935ca66bd3043de8eb11b42;p=helm.git The first omomorphism theorem for whole sets (i.e. setoids + morphisms, not sets + morphisms). --- diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index 5ec6f42a8..a7e033c15 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -145,3 +145,59 @@ ndefinition image: ∀A,B. (carr A → carr B) → Ω \sup A → Ω \sup B ≝ ndefinition counter_image: ∀A,B. (A → B) → Ω \sup B → Ω \sup A ≝ λA,B,f,Sb. {x | ∃y. y ∈ Sb ∧ f x = y}. *) + +(******************* compatible equivalence relations **********************) + +nrecord compatible_equivalence_relation (A: setoid) : Type[1] ≝ + { rel:> equivalence_relation A; + compatibility: ∀x,x':A. x=x' → eq_rel ? rel x x' (* coercion qui non va *) + }. + +ndefinition quotient: ∀A. compatible_equivalence_relation A → setoid. + #A; #R; napply mk_setoid + [ napply A + | napply R] +nqed. + +(******************* first omomorphism theorem for sets **********************) + +ndefinition eqrel_of_morphism: + ∀A,B. unary_morphism A B → compatible_equivalence_relation A. + #A; #B; #f; napply mk_compatible_equivalence_relation + [ napply mk_equivalence_relation + [ napply (λx,y. f x = f y) + | #x; napply refl | #x; #y; napply sym | #x; #y; #z; napply trans] +##| #x; #x'; #H; nwhd; napply (.= (†H)); napply refl ] +nqed. + +ndefinition canonical_proj: ∀A,R. unary_morphism A (quotient A R). + #A; #R; napply mk_unary_morphism + [ napply (λx.x) | #a; #a'; #H; napply (compatibility ? R … H) ] +nqed. + +ndefinition quotiented_mor: + ∀A,B.∀f:unary_morphism A B. + unary_morphism (quotient ? (eqrel_of_morphism ?? f)) B. + #A; #B; #f; napply mk_unary_morphism + [ napply f | #a; #a'; #H; nassumption] +nqed. + +nlemma first_omomorphism_theorem_functions1: + ∀A,B.∀f: unary_morphism A B. + ∀x. f x = quotiented_mor ??? (canonical_proj ? (eqrel_of_morphism ?? f) x). + #A; #B; #f; #x; napply refl; +nqed. + +ndefinition surjective ≝ λA,B.λf:unary_morphism A B. ∀y.∃x. f x = y. + +ndefinition injective ≝ λA,B.λf:unary_morphism A B. ∀x,x'. f x = f x' → x = x'. + +nlemma first_omomorphism_theorem_functions2: + ∀A,B.∀f: unary_morphism A B. surjective ?? (canonical_proj ? (eqrel_of_morphism ?? f)). + #A; #B; #f; nwhd; #y; napply (ex_intro … y); napply refl. +nqed. + +nlemma first_omomorphism_theorem_functions3: + ∀A,B.∀f: unary_morphism A B. injective ?? (quotiented_mor ?? f). + #A; #B; #f; nwhd; #x; #x'; #H; nassumption. +nqed. \ No newline at end of file