From: Andrea Asperti Date: Mon, 4 Jun 2012 08:31:30 +0000 (+0000) Subject: notation X-Git-Tag: make_still_working~1663 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=dd882e640319d8117644986cc0e824d1d3156c5e;p=helm.git notation --- diff --git a/matita/matita/lib/turing/mono.ma b/matita/matita/lib/turing/mono.ma index 8b3450b3c..88ec04e1c 100644 --- a/matita/matita/lib/turing/mono.ma +++ b/matita/matita/lib/turing/mono.ma @@ -189,15 +189,23 @@ definition WRealize ≝ λsig.λM:TM sig.λR:relation (tape sig). definition Terminate ≝ λsig.λM:TM sig.λt. ∃i,outc. loopM sig M i (initc sig M t) = Some ? outc. + +notation "M \vDash R" non associative with precedence 45 for @{ 'models $M $R}. +interpretation "realizability" 'models M R = (Realize ? M R). + +notation "M \VDash R" non associative with precedence 45 for @{ 'wmodels $M $R}. +interpretation "weak realizability" 'wmodels M R = (WRealize ? M R). + +interpretation "termination" 'fintersects M t = (Terminate ? M t). lemma WRealize_to_Realize : ∀sig.∀M: TM sig.∀R. - (∀t.Terminate sig M t) → WRealize sig M R → Realize sig M R. + (∀t.M ↓ t) → M ⊫ R → M ⊨ R. #sig #M #R #HT #HW #t cases (HT … t) #i * #outc #Hloop @(ex_intro … i) @(ex_intro … outc) % // @(HW … i) // qed. -theorem Realize_to_WRealize : ∀sig,M,R. - Realize sig M R → WRealize sig M R. +theorem Realize_to_WRealize : ∀sig.∀M:TM sig.∀R. + M ⊨ R → M ⊫ R. #sig #M #R #H1 #inc #i #outc #Hloop cases (H1 inc) #k * #outc1 * #Hloop1 #HR >(loop_eq … Hloop Hloop1) // qed. @@ -224,7 +232,7 @@ definition nop ≝ definition R_nop ≝ λalpha.λt1,t2:tape alpha.t2 = t1. lemma sem_nop : - ∀alpha.Realize alpha (nop alpha) (R_nop alpha). + ∀alpha.nop alpha ⊨ R_nop alpha. #alpha #intape @(ex_intro ?? 1) @(ex_intro … (mk_config ?? start_nop intape)) % % qed. @@ -236,12 +244,8 @@ definition seq_trans ≝ λsig. λM1,M2 : TM sig. match s with [ inl s1 ⇒ if halt sig M1 s1 then 〈inr … (start sig M2), None ?〉 - else - let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in - 〈inl … news1,m〉 - | inr s2 ⇒ - let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in - 〈inr … news2,m〉 + else let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in 〈inl … news1,m〉 + | inr s2 ⇒ let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in 〈inr … news2,m〉 ]. definition seq ≝ λsig. λM1,M2 : TM sig. @@ -249,9 +253,12 @@ definition seq ≝ λsig. λM1,M2 : TM sig. (FinSum (states sig M1) (states sig M2)) (seq_trans sig M1 M2) (inl … (start sig M1)) - (λs.match s with + (λs.match s with [ inl _ ⇒ false | inr s2 ⇒ halt sig M2 s2]). +notation "a · b" non associative with precedence 65 for @{ 'middot $a $b}. +interpretation "sequential composition" 'middot a b = (seq ? a b). + definition Rcomp ≝ λA.λR1,R2:relation A.λa1,a2. ∃am.R1 a1 am ∧ R2 am a2. @@ -317,10 +324,8 @@ lemma step_lift_confR : ∀sig,M1,M2,c0. [ #Heq #Hhalt | 2,3: #s1 #l1 #Heq #Hhalt |#ls #s1 #rs #Heq #Hhalt ] - whd in ⊢ (???(????%)); >Heq - whd in ⊢ (???%); - whd in ⊢ (??(???%)?); whd in ⊢ (??%?); - >(trans_liftR … Heq) // + whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_liftR … Heq) // qed. lemma step_lift_confL : ∀sig,M1,M2,c0. @@ -334,10 +339,8 @@ lemma step_lift_confL : ∀sig,M1,M2,c0. [ #Heq #Hhalt | 2,3: #s1 #l1 #Heq #Hhalt |#ls #s1 #rs #Heq #Hhalt ] - whd in ⊢ (???(????%)); >Heq - whd in ⊢ (???%); - whd in ⊢ (??(???%)?); whd in ⊢ (??%?); - >(trans_liftL … Heq) // + whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); + whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_liftL … Heq) // qed. lemma loop_lift : ∀A,B,k,lift,f,g,h,hlift,c1,c2. @@ -349,69 +352,23 @@ lemma loop_lift : ∀A,B,k,lift,f,g,h,hlift,c1,c2. generalize in match c1; elim k [#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) |#k0 #IH #c0 whd in ⊢ (??%? → ??%?); - cases (true_or_false (h c0)) #Hc0 >Hfg >Hc0 - [ normalize #Heq destruct (Heq) % - | normalize Hc0 - [ >(?: halt_liftL ?? (halt sig M1) (cstate sig ? (lift_confL … c0)) = true) - [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % - | (?: halt_liftL ?? (halt sig M1) (cstate ?? (lift_confL … c0)) = false) - [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f - @step_lift_confL // - | Hfg >Hc0 normalize + [ #Heq destruct (Heq) % | Hc0 - [ >(?: halt ? (seq sig M1 M2) (cstate sig ? (lift_confR … c0)) = true) - [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % - | (?: halt ? (seq sig M1 M2) (cstate sig ? (lift_confR … c0)) = false) - [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f - @step_lift_confR // - | Hpa normalize #H1 destruct // - | >Hpa normalize @IH - ] -] + [#a #b normalize #Hfalse destruct + |#k0 #IH #a #b whd in ⊢ (??%? → ?); cases (true_or_false (p a)) #Hpa + [ >Hpa normalize #H1 destruct // | >Hpa normalize @IH ] + ] qed. lemma trans_liftL_true : ∀sig,M1,M2,s,a. halt ? M1 s = true → trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inr … (start ? M2),None ?〉. -#sig #M1 #M2 #s #a -#Hhalt whd in ⊢ (??%?); >Hhalt % +#sig #M1 #M2 #s #a #Hhalt whd in ⊢ (??%?); >Hhalt % qed. lemma eq_ctape_lift_conf_L : ∀sig,S1,S2,outc. @@ -424,9 +381,8 @@ lemma eq_ctape_lift_conf_R : ∀sig,S1,S2,outc. #sig #S1 #S2 #outc cases outc #s #t % qed. -theorem sem_seq: ∀sig,M1,M2,R1,R2. - Realize sig M1 R1 → Realize sig M2 R2 → - Realize sig (seq sig M1 M2) (R1 ∘ R2). +theorem sem_seq: ∀sig.∀M1,M2:TM sig.∀R1,R2. + M1 ⊨ R1 → M2 ⊨ R2 → M1 · M2 ⊨ R1 ∘ R2. #sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2