From: Ferruccio Guidi Date: Sat, 19 Nov 2005 18:01:48 +0000 (+0000) Subject: theorems about equality in classes X-Git-Tag: V_0_7_2_3~23 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=e3ba094ac1ba1f73fbb558944715cfa6707da868;p=helm.git theorems about equality in classes --- diff --git a/helm/matita/contribs/PREDICATIVE-TOPOLOGY/class_eq.ma b/helm/matita/contribs/PREDICATIVE-TOPOLOGY/class_eq.ma new file mode 100644 index 000000000..5c53b9459 --- /dev/null +++ b/helm/matita/contribs/PREDICATIVE-TOPOLOGY/class_eq.ma @@ -0,0 +1,55 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/PREDICATIVE-TOPOLOGY/class_eq". + +include "class_defs.ma". + +theorem ceq_cl: \forall C,c1,c2. ceq ? c1 c2 \to cin C c1 \land cin C c2. +intros; elim H; clear H; clear c2; + [ auto | decompose H2; auto | decompose H2; auto ]. +qed. + +theorem ceq_trans: \forall C,c2,c1,c3. + ceq C c2 c3 \to ceq ? c1 c2 \to ceq ? c1 c3. +intros 5; elim H; clear H; clear c3; + [ auto + | apply ceq_sing_r; [||| apply H4 ]; auto + | apply ceq_sing_l; [||| apply H4 ]; auto + ]. +qed. + +theorem ceq_conf_rev: \forall C,c2,c1,c3. + ceq C c3 c2 \to ceq ? c1 c2 \to ceq ? c1 c3. +intros 5; elim H; clear H; clear c2; + [ auto + | lapply ceq_cl; [ decompose Hletin |||| apply H1 ]. + apply H2; apply ceq_sing_l; [||| apply H4 ]; auto + | lapply ceq_cl; [ decompose Hletin |||| apply H1 ]. + apply H2; apply ceq_sing_r; [||| apply H4 ]; auto + ]. +qed. + +theorem ceq_sym: \forall C,c1,c2. ceq C c1 c2 \to ceq C c2 c1. +intros; +lapply ceq_cl; [ decompose Hletin |||| apply H ]. +auto. +qed. + +theorem ceq_conf: \forall C,c2,c1,c3. + ceq C c1 c2 \to ceq ? c1 c3 \to ceq ? c2 c3. +intros. +lapply ceq_sym; [|||| apply H ]. +apply ceq_trans; [| auto | auto ]. +qed.