From: Enrico Tassi Date: Thu, 6 Dec 2007 09:57:03 +0000 (+0000) Subject: weight -> value X-Git-Tag: make_still_working~5724 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=e57099824bce7206a8d60c2b05ced28f4e90933a;p=helm.git weight -> value --- diff --git a/helm/software/matita/dama/prevalued_lattice.ma b/helm/software/matita/dama/prevalued_lattice.ma new file mode 100644 index 000000000..5f1a062e0 --- /dev/null +++ b/helm/software/matita/dama/prevalued_lattice.ma @@ -0,0 +1,243 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/prevalued_lattice/". + +include "ordered_group.ma". + +record vlattice (R : togroup) : Type ≝ { + wl_carr:> Type; + value: wl_carr → R; + join: wl_carr → wl_carr → wl_carr; + meet: wl_carr → wl_carr → wl_carr; + meet_refl: ∀x. value (meet x x) ≈ value x; + join_refl: ∀x. value (join x x) ≈ value x; + meet_comm: ∀x,y. value (meet x y) ≈ value (meet y x); + join_comm: ∀x,y. value (join x y) ≈ value (join y x); + join_assoc: ∀x,y,z. value (join x (join y z)) ≈ value (join (join x y) z); + meet_assoc: ∀x,y,z. value (meet x (meet y z)) ≈ value (meet (meet x y) z); + meet_wins1: ∀x,y. value (join x (meet x y)) ≈ value x; + meet_wins2: ∀x,y. value (meet x (join x y)) ≈ value x; + modular_mjp: ∀x,y. value (join x y) + value (meet x y) ≈ value x + value y; + join_meet_le: ∀x,y,z. value (join x (meet y z)) ≤ value (join x y); + meet_join_le: ∀x,y,z. value (meet x y) ≤ value (meet x (join y z)) +}. + +interpretation "valued lattice meet" 'and a b = + (cic:/matita/prevalued_lattice/meet.con _ _ a b). + +interpretation "valued lattice join" 'or a b = + (cic:/matita/prevalued_lattice/join.con _ _ a b). + +notation < "\nbsp \mu a" non associative with precedence 80 for @{ 'value2 $a}. +interpretation "lattice value" 'value2 a = (cic:/matita/prevalued_lattice/value.con _ _ a). + +notation "\mu" non associative with precedence 80 for @{ 'value }. +interpretation "lattice value" 'value = (cic:/matita/prevalued_lattice/value.con _ _). + +lemma feq_joinr: ∀R.∀L:vlattice R.∀x,y,z:L. + μ x ≈ μ y → μ (z ∧ x) ≈ μ (z ∧ y) → μ (z ∨ x) ≈ μ (z ∨ y). +intros (R L x y z H H1); +apply (plus_cancr ??? (μ(z∧x))); +apply (Eq≈ (μz + μx) (modular_mjp ????)); +apply (Eq≈ (μz + μy) H); clear H; +apply (Eq≈ (μ(z∨y) + μ(z∧y)) (modular_mjp ??z y)); +apply (plus_cancl ??? (- μ (z ∨ y))); +apply (Eq≈ ? (plus_assoc ????)); +apply (Eq≈ (0+ μ(z∧y)) (opp_inverse ??)); +apply (Eq≈ ? (zero_neutral ??)); +apply (Eq≈ (- μ(z∨y)+ μ(z∨y)+ μ(z∧x)) ? (plus_assoc ????)); +apply (Eq≈ (0+ μ(z∧x)) ? (opp_inverse ??)); +apply (Eq≈ (μ (z ∧ x)) H1 (zero_neutral ??)); +qed. + +lemma modularj: ∀R.∀L:vlattice R.∀y,z:L. μ(y∨z) ≈ μy + μz + -μ (y ∧ z). +intros (R L y z); +lapply (modular_mjp ?? y z) as H1; +apply (plus_cancr ??? (μ(y ∧ z))); +apply (Eq≈ ? H1); clear H1; +apply (Eq≈ ?? (plus_assoc ????)); +apply (Eq≈ (μy+ μz + 0) ? (opp_inverse ??)); +apply (Eq≈ ?? (plus_comm ???)); +apply (Eq≈ (μy + μz) ? (eq_sym ??? (zero_neutral ??))); +apply eq_reflexive. +qed. + +lemma modularm: ∀R.∀L:vlattice R.∀y,z:L. μ(y∧z) ≈ μy + μz + -μ (y ∨ z). +(* CSC: questa è la causa per cui la hint per cercare i duplicati ci sta 1 mese *) +(* exact modularj; *) +intros (R L y z); +lapply (modular_mjp ?? y z) as H1; +apply (plus_cancl ??? (μ(y ∨ z))); +apply (Eq≈ ? H1); clear H1; +apply (Eq≈ ?? (plus_comm ???)); +apply (Eq≈ ?? (plus_assoc ????)); +apply (Eq≈ (μy+ μz + 0) ? (opp_inverse ??)); +apply (Eq≈ ?? (plus_comm ???)); +apply (Eq≈ (μy + μz) ? (eq_sym ??? (zero_neutral ??))); +apply eq_reflexive. +qed. + +lemma modularmj: ∀R.∀L:vlattice R.∀x,y,z:L.μ(x∧(y∨z))≈(μx + μ(y ∨ z) + - μ(x∨(y∨z))). +intros (R L x y z); +lapply (modular_mjp ?? x (y ∨ z)) as H1; +apply (Eq≈ (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ? (feq_plusr ???? H1)); clear H1; +apply (Eq≈ ? ? (plus_comm ???)); +apply (Eq≈ (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z))) ? (plus_assoc ????)); +apply (Eq≈ (0+μ(x∧(y∨z))) ? (opp_inverse ??)); +apply (Eq≈ (μ(x∧(y∨z))) ? (zero_neutral ??)); +apply eq_reflexive. +qed. + +lemma modularjm: ∀R.∀L:vlattice R.∀x,y,z:L.μ(x∨(y∧z))≈(μx + μ(y ∧ z) + - μ(x∧(y∧z))). +intros (R L x y z); +lapply (modular_mjp ?? x (y ∧ z)) as H1; +apply (Eq≈ (μ(x∧(y∧z))+ μ(x∨(y∧z)) +-μ(x∧(y∧z)))); [2: apply feq_plusr; apply (eq_trans ???? (plus_comm ???)); apply H1] clear H1; +apply (Eq≈ ? ? (plus_comm ???)); +apply (Eq≈ (- μ(x∧(y∧z))+ μ(x∧(y∧z))+ μ(x∨y∧z)) ? (plus_assoc ????)); +apply (Eq≈ (0+ μ(x∨y∧z)) ? (opp_inverse ??)); +apply eq_sym; apply zero_neutral; +qed. + +lemma step1_3_57': ∀R.∀L:vlattice R.∀x,y,z:L. + μ(x ∨ (y ∧ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∨ z) + -μ (z ∧ (x ∧ y)). +intros (R L x y z); +apply (Eq≈ ? (modularjm ?? x y z)); +apply (Eq≈ ( μx+ (μy+ μz+- μ(y∨z)) +- μ(x∧(y∧z)))); [ + apply feq_plusr; apply feq_plusl; apply (modularm ?? y z);] +apply (Eq≈ (μx+ μy+ μz+- μ(y∨z)+- μ(x∧(y∧z)))); [2: + apply feq_plusl; apply feq_opp; + apply (Eq≈ ? (meet_assoc ?????)); + apply (Eq≈ ? (meet_comm ????)); + apply eq_reflexive;] +apply feq_plusr; apply (Eq≈ ? (plus_assoc ????)); +apply feq_plusr; apply plus_assoc; +qed. + +lemma step1_3_57: ∀R.∀L:vlattice R.∀x,y,z:L. + μ(x ∧ (y ∨ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∧ z) + -μ (z ∨ (x ∨ y)). +intros (R L x y z); +apply (Eq≈ ? (modularmj ?? x y z)); +apply (Eq≈ ( μx+ (μy+ μz+- μ(y∧z)) +- μ(x∨(y∨z)))); [ + apply feq_plusr; apply feq_plusl; apply (modularj ?? y z);] +apply (Eq≈ (μx+ μy+ μz+- μ(y∧z)+- μ(x∨(y∨z)))); [2: + apply feq_plusl; apply feq_opp; + apply (Eq≈ ? (join_assoc ?????)); + apply (Eq≈ ? (join_comm ????)); + apply eq_reflexive;] +apply feq_plusr; apply (Eq≈ ? (plus_assoc ????)); +apply feq_plusr; apply plus_assoc; +qed. + +(* LEMMA 3.57 *) + +lemma join_meet_le_join: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∨ (y ∧ z)) ≤ μ (x ∨ z). +intros (R L x y z); +apply (le_rewl ??? ? (eq_sym ??? (step1_3_57' ?????))); +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ -μ(z∧x∧y))); [ + apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (meet_assoc ?????))); apply eq_reflexive;] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- ( μ(z∧x)+ μy+- μ((z∧x)∨y))))); [ + apply feq_plusl; apply feq_opp; apply eq_sym; apply modularm] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- μ(z∧x)+ -μy+-- μ((z∧x)∨y)))); [ + apply feq_plusl; apply (Eq≈ (- (μ(z∧x)+ μy) + -- μ((z∧x)∨y))); [ + apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] + apply eq_sym; apply eq_opp_plus_plus_opp_opp;] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy+ μ(y∨(z∧x))))); [ + repeat apply feq_plusl; apply eq_sym; apply (Eq≈ (μ((z∧x)∨y)) (eq_opp_opp_x_x ??)); + apply join_comm;] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy)+ μ(y∨(z∧x)))); [ + apply eq_sym; apply plus_assoc;] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μy + - μ(z∧x))+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;] +apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+- μy + - μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] +apply (le_rewl ??? (μx+ μy+ μz+- μy + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply (Eq≈ ( μx+ μy+ μz+(- μy+- μ(y∨z))) (eq_sym ??? (plus_assoc ????))); + apply feq_plusl; apply plus_comm;] +apply (le_rewl ??? (μx+ μy+ -μy+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply (Eq≈ (μx+ μy+( -μy+ μz)) (eq_sym ??? (plus_assoc ????))); + apply feq_plusl; apply plus_comm;] +apply (le_rewl ??? (μx+ 0 + μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???)); + apply opp_inverse; apply eq_reflexive;] +apply (le_rewl ??? (μx+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???)); + apply eq_sym; apply zero_neutral;] +apply (le_rewl ??? (μz+ μx + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply plus_comm;] +apply (le_rewl ??? (μz+ μx +- μ(z∧x)+ - μ(y∨z)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl; + apply plus_comm;] +apply (le_rewl ??? (μ(z∨x)+ - μ(y∨z)+ μ(y∨(z∧x)))); [ + repeat apply feq_plusr; apply modularj;] +apply (le_rewl ??? (μ(z∨x)+ (- μ(y∨z)+ μ(y∨(z∧x)))) (plus_assoc ????)); +apply (le_rewr ??? (μ(x∨z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral] +apply (le_rewr ??? (μ(x∨z) + (-μ(y∨z) + μ(y∨z)))); [ apply feq_plusl; apply opp_inverse] +apply (le_rewr ??? (μ(z∨x) + (-μ(y∨z) + μ(y∨z)))); [ apply feq_plusr; apply join_comm;] +repeat apply fle_plusl; apply join_meet_le; +qed. + +lemma meet_le_meet_join: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∧ z) ≤ μ (x ∧ (y ∨ z)). +intros (R L x y z); +apply (le_rewr ??? ? (eq_sym ??? (step1_3_57 ?????))); +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ -μ(z∨x∨y))); [ + apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (join_assoc ?????))); apply eq_reflexive;] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- ( μ(z∨x)+ μy+- μ((z∨x)∧y))))); [ + apply feq_plusl; apply feq_opp; apply eq_sym; apply modularj] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- μ(z∨x)+ -μy+-- μ((z∨x)∧y)))); [ + apply feq_plusl; apply (Eq≈ (- (μ(z∨x)+ μy) + -- μ((z∨x)∧y))); [ + apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] + apply eq_sym; apply eq_opp_plus_plus_opp_opp;] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy+ μ(y∧(z∨x))))); [ + repeat apply feq_plusl; apply eq_sym; apply (Eq≈ (μ((z∨x)∧y)) (eq_opp_opp_x_x ??)); + apply meet_comm;] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy)+ μ(y∧(z∨x)))); [ + apply eq_sym; apply plus_assoc;] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μy + - μ(z∨x))+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;] +apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+- μy + - μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] +apply (le_rewr ??? (μx+ μy+ μz+- μy + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply (Eq≈ ( μx+ μy+ μz+(- μy+- μ(y∧z))) (eq_sym ??? (plus_assoc ????))); + apply feq_plusl; apply plus_comm;] +apply (le_rewr ??? (μx+ μy+ -μy+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply (Eq≈ ?? (plus_assoc ????)); + apply (Eq≈ (μx+ μy+( -μy+ μz)) (eq_sym ??? (plus_assoc ????))); + apply feq_plusl; apply plus_comm;] +apply (le_rewr ??? (μx+ 0 + μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???)); + apply opp_inverse; apply eq_reflexive;] +apply (le_rewr ??? (μx+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???)); + apply eq_sym; apply zero_neutral;] +apply (le_rewr ??? (μz+ μx + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply plus_comm;] +apply (le_rewr ??? (μz+ μx +- μ(z∨x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); + apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl; + apply plus_comm;] +apply (le_rewr ??? (μ(z∧x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [ + repeat apply feq_plusr; apply modularm;] +apply (le_rewr ??? (μ(z∧x)+ (- μ(y∧z)+ μ(y∧(z∨x)))) (plus_assoc ????)); +apply (le_rewl ??? (μ(x∧z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral] +apply (le_rewl ??? (μ(x∧z) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusl; apply opp_inverse] +apply (le_rewl ??? (μ(z∧x) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusr; apply meet_comm;] +repeat apply fle_plusl; apply meet_join_le; +qed. diff --git a/helm/software/matita/dama/preweighted_lattice.ma b/helm/software/matita/dama/preweighted_lattice.ma deleted file mode 100644 index 5dbaf51ec..000000000 --- a/helm/software/matita/dama/preweighted_lattice.ma +++ /dev/null @@ -1,243 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -set "baseuri" "cic:/matita/preweighted_lattice/". - -include "ordered_group.ma". - -record wlattice (R : ogroup) : Type ≝ { - wl_carr:> Type; - value: wl_carr → R; - join: wl_carr → wl_carr → wl_carr; - meet: wl_carr → wl_carr → wl_carr; - meet_refl: ∀x. value (meet x x) ≈ value x; - join_refl: ∀x. value (join x x) ≈ value x; - meet_comm: ∀x,y. value (meet x y) ≈ value (meet y x); - join_comm: ∀x,y. value (join x y) ≈ value (join y x); - join_assoc: ∀x,y,z. value (join x (join y z)) ≈ value (join (join x y) z); - meet_assoc: ∀x,y,z. value (meet x (meet y z)) ≈ value (meet (meet x y) z); - meet_wins1: ∀x,y. value (join x (meet x y)) ≈ value x; - meet_wins2: ∀x,y. value (meet x (join x y)) ≈ value x; - modular_mjp: ∀x,y. value (join x y) + value (meet x y) ≈ value x + value y; - join_meet_le: ∀x,y,z. value (join x (meet y z)) ≤ value (join x y); - meet_join_le: ∀x,y,z. value (meet x y) ≤ value (meet x (join y z)) -}. - -interpretation "valued lattice meet" 'and a b = - (cic:/matita/preweighted_lattice/meet.con _ _ a b). - -interpretation "valued lattice join" 'or a b = - (cic:/matita/preweighted_lattice/join.con _ _ a b). - -notation < "\nbsp \mu a" non associative with precedence 80 for @{ 'value2 $a}. -interpretation "lattice value" 'value2 a = (cic:/matita/preweighted_lattice/value.con _ _ a). - -notation "\mu" non associative with precedence 80 for @{ 'value }. -interpretation "lattice value" 'value = (cic:/matita/preweighted_lattice/value.con _ _). - -lemma feq_joinr: ∀R.∀L:wlattice R.∀x,y,z:L. - μ x ≈ μ y → μ (z ∧ x) ≈ μ (z ∧ y) → μ (z ∨ x) ≈ μ (z ∨ y). -intros (R L x y z H H1); -apply (plus_cancr ??? (μ(z∧x))); -apply (Eq≈ (μz + μx) (modular_mjp ????)); -apply (Eq≈ (μz + μy) H); clear H; -apply (Eq≈ (μ(z∨y) + μ(z∧y)) (modular_mjp ??z y)); -apply (plus_cancl ??? (- μ (z ∨ y))); -apply (Eq≈ ? (plus_assoc ????)); -apply (Eq≈ (0+ μ(z∧y)) (opp_inverse ??)); -apply (Eq≈ ? (zero_neutral ??)); -apply (Eq≈ (- μ(z∨y)+ μ(z∨y)+ μ(z∧x)) ? (plus_assoc ????)); -apply (Eq≈ (0+ μ(z∧x)) ? (opp_inverse ??)); -apply (Eq≈ (μ (z ∧ x)) H1 (zero_neutral ??)); -qed. - -lemma modularj: ∀R.∀L:wlattice R.∀y,z:L. μ(y∨z) ≈ μy + μz + -μ (y ∧ z). -intros (R L y z); -lapply (modular_mjp ?? y z) as H1; -apply (plus_cancr ??? (μ(y ∧ z))); -apply (Eq≈ ? H1); clear H1; -apply (Eq≈ ?? (plus_assoc ????)); -apply (Eq≈ (μy+ μz + 0) ? (opp_inverse ??)); -apply (Eq≈ ?? (plus_comm ???)); -apply (Eq≈ (μy + μz) ? (eq_sym ??? (zero_neutral ??))); -apply eq_reflexive. -qed. - -lemma modularm: ∀R.∀L:wlattice R.∀y,z:L. μ(y∧z) ≈ μy + μz + -μ (y ∨ z). -(* CSC: questa è la causa per cui la hint per cercare i duplicati ci sta 1 mese *) -(* exact modularj; *) -intros (R L y z); -lapply (modular_mjp ?? y z) as H1; -apply (plus_cancl ??? (μ(y ∨ z))); -apply (Eq≈ ? H1); clear H1; -apply (Eq≈ ?? (plus_comm ???)); -apply (Eq≈ ?? (plus_assoc ????)); -apply (Eq≈ (μy+ μz + 0) ? (opp_inverse ??)); -apply (Eq≈ ?? (plus_comm ???)); -apply (Eq≈ (μy + μz) ? (eq_sym ??? (zero_neutral ??))); -apply eq_reflexive. -qed. - -lemma modularmj: ∀R.∀L:wlattice R.∀x,y,z:L.μ(x∧(y∨z))≈(μx + μ(y ∨ z) + - μ(x∨(y∨z))). -intros (R L x y z); -lapply (modular_mjp ?? x (y ∨ z)) as H1; -apply (Eq≈ (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ? (feq_plusr ???? H1)); clear H1; -apply (Eq≈ ? ? (plus_comm ???)); -apply (Eq≈ (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z))) ? (plus_assoc ????)); -apply (Eq≈ (0+μ(x∧(y∨z))) ? (opp_inverse ??)); -apply (Eq≈ (μ(x∧(y∨z))) ? (zero_neutral ??)); -apply eq_reflexive. -qed. - -lemma modularjm: ∀R.∀L:wlattice R.∀x,y,z:L.μ(x∨(y∧z))≈(μx + μ(y ∧ z) + - μ(x∧(y∧z))). -intros (R L x y z); -lapply (modular_mjp ?? x (y ∧ z)) as H1; -apply (Eq≈ (μ(x∧(y∧z))+ μ(x∨(y∧z)) +-μ(x∧(y∧z)))); [2: apply feq_plusr; apply (eq_trans ???? (plus_comm ???)); apply H1] clear H1; -apply (Eq≈ ? ? (plus_comm ???)); -apply (Eq≈ (- μ(x∧(y∧z))+ μ(x∧(y∧z))+ μ(x∨y∧z)) ? (plus_assoc ????)); -apply (Eq≈ (0+ μ(x∨y∧z)) ? (opp_inverse ??)); -apply eq_sym; apply zero_neutral; -qed. - -lemma step1_3_57': ∀R.∀L:wlattice R.∀x,y,z:L. - μ(x ∨ (y ∧ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∨ z) + -μ (z ∧ (x ∧ y)). -intros (R L x y z); -apply (Eq≈ ? (modularjm ?? x y z)); -apply (Eq≈ ( μx+ (μy+ μz+- μ(y∨z)) +- μ(x∧(y∧z)))); [ - apply feq_plusr; apply feq_plusl; apply (modularm ?? y z);] -apply (Eq≈ (μx+ μy+ μz+- μ(y∨z)+- μ(x∧(y∧z)))); [2: - apply feq_plusl; apply feq_opp; - apply (Eq≈ ? (meet_assoc ?????)); - apply (Eq≈ ? (meet_comm ????)); - apply eq_reflexive;] -apply feq_plusr; apply (Eq≈ ? (plus_assoc ????)); -apply feq_plusr; apply plus_assoc; -qed. - -lemma step1_3_57: ∀R.∀L:wlattice R.∀x,y,z:L. - μ(x ∧ (y ∨ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∧ z) + -μ (z ∨ (x ∨ y)). -intros (R L x y z); -apply (Eq≈ ? (modularmj ?? x y z)); -apply (Eq≈ ( μx+ (μy+ μz+- μ(y∧z)) +- μ(x∨(y∨z)))); [ - apply feq_plusr; apply feq_plusl; apply (modularj ?? y z);] -apply (Eq≈ (μx+ μy+ μz+- μ(y∧z)+- μ(x∨(y∨z)))); [2: - apply feq_plusl; apply feq_opp; - apply (Eq≈ ? (join_assoc ?????)); - apply (Eq≈ ? (join_comm ????)); - apply eq_reflexive;] -apply feq_plusr; apply (Eq≈ ? (plus_assoc ????)); -apply feq_plusr; apply plus_assoc; -qed. - -(* LEMMA 3.57 *) - -lemma join_meet_le_join: ∀R.∀L:wlattice R.∀x,y,z:L.μ (x ∨ (y ∧ z)) ≤ μ (x ∨ z). -intros (R L x y z); -apply (le_rewl ??? ? (eq_sym ??? (step1_3_57' ?????))); -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ -μ(z∧x∧y))); [ - apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (meet_assoc ?????))); apply eq_reflexive;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- ( μ(z∧x)+ μy+- μ((z∧x)∨y))))); [ - apply feq_plusl; apply feq_opp; apply eq_sym; apply modularm] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- μ(z∧x)+ -μy+-- μ((z∧x)∨y)))); [ - apply feq_plusl; apply (Eq≈ (- (μ(z∧x)+ μy) + -- μ((z∧x)∨y))); [ - apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] - apply eq_sym; apply eq_opp_plus_plus_opp_opp;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy+ μ(y∨(z∧x))))); [ - repeat apply feq_plusl; apply eq_sym; apply (Eq≈ (μ((z∧x)∨y)) (eq_opp_opp_x_x ??)); - apply join_comm;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy)+ μ(y∨(z∧x)))); [ - apply eq_sym; apply plus_assoc;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μy + - μ(z∧x))+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;] -apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+- μy + - μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] -apply (le_rewl ??? (μx+ μy+ μz+- μy + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (Eq≈ ( μx+ μy+ μz+(- μy+- μ(y∨z))) (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewl ??? (μx+ μy+ -μy+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (Eq≈ (μx+ μy+( -μy+ μz)) (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewl ??? (μx+ 0 + μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???)); - apply opp_inverse; apply eq_reflexive;] -apply (le_rewl ??? (μx+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???)); - apply eq_sym; apply zero_neutral;] -apply (le_rewl ??? (μz+ μx + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply plus_comm;] -apply (le_rewl ??? (μz+ μx +- μ(z∧x)+ - μ(y∨z)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl; - apply plus_comm;] -apply (le_rewl ??? (μ(z∨x)+ - μ(y∨z)+ μ(y∨(z∧x)))); [ - repeat apply feq_plusr; apply modularj;] -apply (le_rewl ??? (μ(z∨x)+ (- μ(y∨z)+ μ(y∨(z∧x)))) (plus_assoc ????)); -apply (le_rewr ??? (μ(x∨z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral] -apply (le_rewr ??? (μ(x∨z) + (-μ(y∨z) + μ(y∨z)))); [ apply feq_plusl; apply opp_inverse] -apply (le_rewr ??? (μ(z∨x) + (-μ(y∨z) + μ(y∨z)))); [ apply feq_plusr; apply join_comm;] -repeat apply fle_plusl; apply join_meet_le; -qed. - -lemma meet_le_meet_join: ∀R.∀L:wlattice R.∀x,y,z:L.μ (x ∧ z) ≤ μ (x ∧ (y ∨ z)). -intros (R L x y z); -apply (le_rewr ??? ? (eq_sym ??? (step1_3_57 ?????))); -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ -μ(z∨x∨y))); [ - apply feq_plusl; apply feq_opp; apply (eq_trans ?? ? ?? (eq_sym ??? (join_assoc ?????))); apply eq_reflexive;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- ( μ(z∨x)+ μy+- μ((z∨x)∧y))))); [ - apply feq_plusl; apply feq_opp; apply eq_sym; apply modularj] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- μ(z∨x)+ -μy+-- μ((z∨x)∧y)))); [ - apply feq_plusl; apply (Eq≈ (- (μ(z∨x)+ μy) + -- μ((z∨x)∧y))); [ - apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] - apply eq_sym; apply eq_opp_plus_plus_opp_opp;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy+ μ(y∧(z∨x))))); [ - repeat apply feq_plusl; apply eq_sym; apply (Eq≈ (μ((z∨x)∧y)) (eq_opp_opp_x_x ??)); - apply meet_comm;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy)+ μ(y∧(z∨x)))); [ - apply eq_sym; apply plus_assoc;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μy + - μ(z∨x))+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; repeat apply feq_plusl; apply plus_comm;] -apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+- μy + - μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] -apply (le_rewr ??? (μx+ μy+ μz+- μy + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (Eq≈ ( μx+ μy+ μz+(- μy+- μ(y∧z))) (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewr ??? (μx+ μy+ -μy+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (Eq≈ ?? (plus_assoc ????)); - apply (Eq≈ (μx+ μy+( -μy+ μz)) (eq_sym ??? (plus_assoc ????))); - apply feq_plusl; apply plus_comm;] -apply (le_rewr ??? (μx+ 0 + μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply feq_plusl; apply eq_sym; apply (eq_trans ?? ? ? (plus_comm ???)); - apply opp_inverse; apply eq_reflexive;] -apply (le_rewr ??? (μx+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_comm ???)); - apply eq_sym; apply zero_neutral;] -apply (le_rewr ??? (μz+ μx + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply plus_comm;] -apply (le_rewr ??? (μz+ μx +- μ(z∨x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? ? ? (eq_sym ??? (plus_assoc ????))); apply feq_plusl; - apply plus_comm;] -apply (le_rewr ??? (μ(z∧x)+ - μ(y∧z)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply modularm;] -apply (le_rewr ??? (μ(z∧x)+ (- μ(y∧z)+ μ(y∧(z∨x)))) (plus_assoc ????)); -apply (le_rewl ??? (μ(x∧z) + 0)); [apply (eq_trans ?? ? ? (plus_comm ???)); apply zero_neutral] -apply (le_rewl ??? (μ(x∧z) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusl; apply opp_inverse] -apply (le_rewl ??? (μ(z∧x) + (-μ(y∧z) + μ(y∧z)))); [ apply feq_plusr; apply meet_comm;] -repeat apply fle_plusl; apply meet_join_le; -qed.