From: Claudio Sacerdoti Coen Date: Sat, 26 May 2007 23:19:47 +0000 (+0000) Subject: 1. Now I save a log.ma file that is exactly what is proved! X-Git-Tag: 0.4.95@7852~430 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=e7439fbd8ae444812c50e32862e92438cc7ae9c2;p=helm.git 1. Now I save a log.ma file that is exactly what is proved! 2. Only three arcs missing in 61s (with a low depth) :-| --- diff --git a/matita/contribs/formal_topology/bin/formal_topology.ma b/matita/contribs/formal_topology/bin/formal_topology.ma index 7ea6ee0a1..c01130570 100644 --- a/matita/contribs/formal_topology/bin/formal_topology.ma +++ b/matita/contribs/formal_topology/bin/formal_topology.ma @@ -47,8 +47,12 @@ axiom m_antimonotonia: ∀A,B. A ⊆ B → m B ⊆ m A. axiom m_saturazione: ∀A. A ⊆ m (m A). axiom m_puntofisso: ∀A. m A = m (m (m A)). -lemma l1: ∀A,B. i A ⊆ B → i A ⊆ i B. intros; rewrite < i_idempotenza; autobatch. qed. -lemma l2: ∀A,B. A ⊆ c B → c A ⊆ c B. intros; rewrite < c_idempotenza in ⊢ (? ? %); autobatch. qed. +lemma l1: ∀A,B. i A ⊆ B → i A ⊆ i B. + intros; rewrite < i_idempotenza; apply (i_monotonia (i A) B H). +qed. +lemma l2: ∀A,B. A ⊆ c B → c A ⊆ c B. + intros; rewrite < c_idempotenza in ⊢ (? ? %); apply (c_monotonia A (c B) H). +qed. axiom th1: ∀A. c (m A) ⊆ m (i A). axiom th2: ∀A. i (m A) ⊆ m (c A). diff --git a/matita/contribs/formal_topology/bin/theory_explorer.ml b/matita/contribs/formal_topology/bin/theory_explorer.ml index b5ccd4632..0e3e86684 100644 --- a/matita/contribs/formal_topology/bin/theory_explorer.ml +++ b/matita/contribs/formal_topology/bin/theory_explorer.ml @@ -136,8 +136,9 @@ let test to_be_considered_and_now ((s,_,_) as set) rel candidate repr = print_string (string_of_cop candidate ^ " " ^ string_of_rel rel ^ " " ^ string_of_cop repr ^ "? "); flush stdout; - assert (Unix.system "cp formal_topology.ma xxx.ma" = Unix.WEXITED 0); - let ch = open_out_gen [Open_append ; Open_creat] 0 "xxx.ma" in + assert (Unix.system "cat log.ma | sed s/^theorem/axiom/g | sed 's/\\. intros.*qed\\././g' > xxx.ma" = Unix.WEXITED 0); + let ch = open_out_gen [Open_append] 0 "xxx.ma" in +(* let i = ref 0 in List.iter (function (repr,others,leq,_) -> @@ -158,6 +159,7 @@ let test to_be_considered_and_now ((s,_,_) as set) rel candidate repr = matita_of_cop "A" repr ^ " ⊆ " ^ matita_of_cop "A" repr' ^ ".\n"); ) !leq; ) s; +*) let candidate',rel',repr' = match rel with SupersetEqual -> repr,SubsetEqual,candidate @@ -167,7 +169,7 @@ let test to_be_considered_and_now ((s,_,_) as set) rel candidate repr = let name = name_of_theorem candidate' rel' repr' in ("theorem " ^ name ^ ": \\forall A." ^ matita_of_cop "A" candidate' ^ " " ^ string_of_rel rel' ^ " " ^ - matita_of_cop "A" repr' ^ ". intros; autobatch size=8 depth=4 width=2. qed.") in + matita_of_cop "A" repr' ^ ". intros; autobatch size=8 depth=3 width=2. qed.") in output_string ch (query ^ "\n"); close_out ch; let res = @@ -256,13 +258,15 @@ let rec geq_reachable node = let locate_using_leq to_be_considered_and_now ((repr,_,leq,geq) as node) set start = - let rec aux ((nodes,inf,sup) as set) = + let rec aux ((nodes,inf,sup) as set) already_visited = function [] -> set | (repr',_,_,geq') as node' :: tl -> - if repr=repr' then aux set (!geq'@tl) + if List.exists (function n -> n===node') already_visited then + aux set already_visited tl + else if repr=repr' then aux set (node'::already_visited) (!geq'@tl) else if leq_reachable node' !leq then - aux set tl + aux set (node'::already_visited) tl else if test to_be_considered_and_now set SubsetEqual repr repr' then begin let sup = remove node sup in @@ -277,12 +281,12 @@ let locate_using_leq to_be_considered_and_now ((repr,_,leq,geq) as node) inf in leq_transitive_closure node node'; - aux (nodes,inf,sup) (!geq'@tl) + aux (nodes,inf,sup) (node'::already_visited) (!geq'@tl) end else - aux set tl + aux set (node'::already_visited) tl in - aux set start + aux set [] start ;; exception SameEquivalenceClass of set * equivalence_class * equivalence_class;; @@ -290,13 +294,15 @@ exception SameEquivalenceClass of set * equivalence_class * equivalence_class;; let locate_using_geq to_be_considered_and_now ((repr,_,leq,geq) as node) set start = - let rec aux ((nodes,inf,sup) as set) = + let rec aux ((nodes,inf,sup) as set) already_visited = function [] -> set | (repr',_,leq',_) as node' :: tl -> - if repr=repr' then aux set (!leq'@tl) + if List.exists (function n -> n===node') already_visited then + aux set already_visited tl + else if repr=repr' then aux set (node'::already_visited) (!leq'@tl) else if geq_reachable node' !geq then - aux set tl + aux set (node'::already_visited) tl else if test to_be_considered_and_now set SupersetEqual repr repr' then begin if List.exists (function n -> n===node') !leq then @@ -316,13 +322,13 @@ let locate_using_geq to_be_considered_and_now ((repr,_,leq,geq) as node) sup in geq_transitive_closure node node'; - aux (nodes,inf,sup) (!leq'@tl) + aux (nodes,inf,sup) (node'::already_visited) (!leq'@tl) end end else - aux set tl + aux set (node'::already_visited) tl in - aux set start + aux set [] start ;; let analyze_one to_be_considered repr hecandidate (news,((nodes,inf,sup) as set)) =