From: Ferruccio Guidi Date: Thu, 26 Dec 2013 14:54:55 +0000 (+0000) Subject: the theory of extended multiple substitution for therms is complete X-Git-Tag: make_still_working~1010 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=e76eade57c0454a58b0d58e5484efe9af417847e;p=helm.git the theory of extended multiple substitution for therms is complete a simpler theory is complete as well but parked in etc for now --- diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/cprs.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/cprs.ma index efa8e3da6..640f4dbfc 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/cprs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/cprs.ma @@ -60,7 +60,7 @@ lemma cprs_strap2: ∀G,L,T1,T,T2. normalize /2 width=3/ qed. lemma lsubr_cprs_trans: ∀G. lsub_trans … (cprs G) lsubr. -/3 width=5 by lsubr_cpr_trans, TC_lsub_trans/ +/3 width=5 by lsubr_cpr_trans, LTC_lsub_trans/ qed-. (* Basic_1: was: pr3_pr1 *) diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/cpxs.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/cpxs.ma index 91ddd1621..a3f8e8316 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/cpxs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/cpxs.ma @@ -57,7 +57,7 @@ lemma cpxs_strap2: ∀h,g,G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡[h, g] T → normalize /2 width=3 by TC_strap/ qed. lemma lsubr_cpxs_trans: ∀h,g,G. lsub_trans … (cpxs h g G) lsubr. -/3 width=5 by lsubr_cpx_trans, TC_lsub_trans/ +/3 width=5 by lsubr_cpx_trans, LTC_lsub_trans/ qed-. lemma cprs_cpxs: ∀h,g,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡* T2 → ⦃G, L⦄ ⊢ T1 ➡*[h, g] T2. diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys.etc b/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys.etc new file mode 100644 index 000000000..a0603f13e --- /dev/null +++ b/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys.etc @@ -0,0 +1,200 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "basic_2/notation/relations/extpsubststar_4.ma". +include "basic_2/grammar/genv.ma". +include "basic_2/grammar/cl_shift.ma". +include "basic_2/relocation/ldrop_append.ma". +include "basic_2/relocation/lsuby.ma". + +(* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) + +(* avtivate genv *) +inductive cpys: relation4 genv lenv term term ≝ +| cpys_atom : ∀I,G,L. cpys G L (⓪{I}) (⓪{I}) +| cpys_delta: ∀I,G,L,K,V,V2,W2,i. + ⇩[0, i] L ≡ K.ⓑ{I}V → cpys G K V V2 → + ⇧[0, i + 1] V2 ≡ W2 → cpys G L (#i) W2 +| cpys_bind : ∀a,I,G,L,V1,V2,T1,T2. + cpys G L V1 V2 → cpys G (L.ⓑ{I}V1) T1 T2 → + cpys G L (ⓑ{a,I}V1.T1) (ⓑ{a,I}V2.T2) +| cpys_flat : ∀I,G,L,V1,V2,T1,T2. + cpys G L V1 V2 → cpys G L T1 T2 → + cpys G L (ⓕ{I}V1.T1) (ⓕ{I}V2.T2) +. + +interpretation + "context-sensitive extended multiple substitution (term)" + 'ExtPSubstStar G L T1 T2 = (cpys G L T1 T2). + +(* Basic properties *********************************************************) + +lemma lsuby_cpys_trans: ∀G. lsub_trans … (cpys G) lsuby. +#G #L1 #T1 #T2 #H elim H -G -L1 -T1 -T2 +[ // +| #I #G #L1 #K1 #V1 #V2 #W2 #i #HLK1 #_ #HVW2 #IHV12 #L2 #HL12 + elim (lsuby_fwd_ldrop2_pair … HL12 … HLK1) -HL12 -HLK1 * + /3 width=7 by cpys_delta/ +| /4 width=1 by lsuby_pair, cpys_bind/ +| /3 width=1 by cpys_flat/ +] +qed-. + +(* Note: this is "∀L. reflexive … (cpys L)" *) +lemma cpys_refl: ∀G,T,L. ⦃G, L⦄ ⊢ T ▶*× T. +#G #T elim T -T // * /2 width=1 by cpys_bind, cpys_flat/ +qed. + +lemma cpys_pair_sn: ∀I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ▶*× V2 → + ∀T. ⦃G, L⦄ ⊢ ②{I}V1.T ▶*× ②{I}V2.T. +* /2 width=1 by cpys_bind, cpys_flat/ +qed. + +lemma cpys_bind_ext: ∀G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ▶*× V2 → + ∀J,T1,T2. ⦃G, L.ⓑ{J}V1⦄ ⊢ T1 ▶*× T2 → + ∀a,I. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*× ⓑ{a,I}V2.T2. +/4 width=4 by lsuby_cpys_trans, cpys_bind, lsuby_pair/ qed. + +lemma cpys_delift: ∀I,G,K,V,T1,L,d. ⇩[0, d] L ≡ (K.ⓑ{I}V) → + ∃∃T2,T. ⦃G, L⦄ ⊢ T1 ▶*× T2 & ⇧[d, 1] T ≡ T2. +#I #G #K #V #T1 elim T1 -T1 +[ * /2 width=4 by cpys_atom, lift_sort, lift_gref, ex2_2_intro/ + #i #L #d elim (lt_or_eq_or_gt i d) #Hid [1,3: /3 width=4 by cpys_atom, lift_lref_ge_minus, lift_lref_lt, ex2_2_intro/ ] + destruct + elim (lift_total V 0 (i+1)) #W #HVW + elim (lift_split … HVW i i) /3 width=7 by cpys_delta, ex2_2_intro/ +| * [ #a ] #I #W1 #U1 #IHW1 #IHU1 #L #d #HLK + elim (IHW1 … HLK) -IHW1 #W2 #W #HW12 #HW2 + [ elim (IHU1 (L. ⓑ{I}W1) (d+1)) -IHU1 /3 width=9 by cpys_bind, ldrop_ldrop, lift_bind, ex2_2_intro/ + | elim (IHU1 … HLK) -IHU1 -HLK /3 width=8 by cpys_flat, lift_flat, ex2_2_intro/ + ] +] +qed-. + +lemma cpys_append: ∀G. l_appendable_sn … (cpys G). +#G #K #T1 #T2 #H elim H -G -K -T1 -T2 +/2 width=3 by cpys_bind, cpys_flat/ +#I #G #K #K0 #V1 #V2 #W2 #i #HK0 #_ #HVW2 #IHV12 #L +lapply (ldrop_fwd_length_lt2 … HK0) #H +@(cpys_delta … I … (L@@K0) V1 … HVW2) // +@(ldrop_O1_append_sn_le … HK0) /2 width=2 by lt_to_le/ (**) (* /3/ does not work *) +qed. + +(* Basic inversion lemmas ***************************************************) + +fact cpys_inv_atom1_aux: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ▶*× T2 → ∀J. T1 = ⓪{J} → + T2 = ⓪{J} ∨ + ∃∃I,K,V,V2,i. ⇩[O, i] L ≡ K.ⓑ{I}V & ⦃G, K⦄ ⊢ V ▶*× V2 & + ⇧[O, i + 1] V2 ≡ T2 & J = LRef i. +#G #L #T1 #T2 * -L -T1 -T2 +[ #I #G #L #J #H destruct /2 width=1 by or_introl/ +| #I #G #L #K #V #V2 #T2 #i #HLK #HV2 #HVT2 #J #H destruct /3 width=9 by ex4_5_intro, or_intror/ +| #a #I #G #L #V1 #V2 #T1 #T2 #_ #_ #J #H destruct +| #I #G #L #V1 #V2 #T1 #T2 #_ #_ #J #H destruct +] +qed-. + +lemma cpys_inv_atom1: ∀J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ▶*× T2 → + T2 = ⓪{J} ∨ + ∃∃I,K,V,V2,i. ⇩[O, i] L ≡ K.ⓑ{I}V & ⦃G, K⦄ ⊢ V ▶*× V2 & + ⇧[O, i + 1] V2 ≡ T2 & J = LRef i. +/2 width=3 by cpys_inv_atom1_aux/ qed-. + +lemma cpys_inv_sort1: ∀G,L,T2,k. ⦃G, L⦄ ⊢ ⋆k ▶*× T2 → T2 = ⋆k. +#G #L #T2 #k #H elim (cpys_inv_atom1 … H) -H // * +#I #K #V #V2 #i #_ #_ #_ #H destruct +qed-. + +lemma cpys_inv_lref1: ∀G,L,T2,i. ⦃G, L⦄ ⊢ #i ▶*× T2 → + T2 = #i ∨ + ∃∃I,K,V,V2. ⇩[O, i] L ≡ K. ⓑ{I}V & ⦃G, K⦄ ⊢ V ▶*× V2 & + ⇧[O, i + 1] V2 ≡ T2. +#G #L #T2 #i #H elim (cpys_inv_atom1 … H) -H /2 width=1 by or_introl/ * +#I #K #V #V2 #j #HLK #HV2 #HVT2 #H destruct /3 width=7 by ex3_4_intro, or_intror/ +qed-. + +lemma cpys_inv_lref1_ge: ∀G,L,T2,i. ⦃G, L⦄ ⊢ #i ▶*× T2 → |L| ≤ i → T2 = #i. +#G #L #T2 #i #H elim (cpys_inv_lref1 … H) -H // * +#I #K #V1 #V2 #HLK #_ #_ #HL -V2 lapply (ldrop_fwd_length_lt2 … HLK) -K -I -V1 +#H elim (lt_refl_false i) /2 width=3 by lt_to_le_to_lt/ +qed-. + +lemma cpys_inv_gref1: ∀G,L,T2,p. ⦃G, L⦄ ⊢ §p ▶*× T2 → T2 = §p. +#G #L #T2 #p #H elim (cpys_inv_atom1 … H) -H // * +#I #K #V #V2 #i #_ #_ #_ #H destruct +qed-. + +fact cpys_inv_bind1_aux: ∀G,L,U1,U2. ⦃G, L⦄ ⊢ U1 ▶*× U2 → + ∀a,J,V1,T1. U1 = ⓑ{a,J}V1.T1 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*× V2 & ⦃G, L.ⓑ{J}V1⦄ ⊢ T1 ▶*× T2 & + U2 = ⓑ{a,J}V2.T2. +#G #L #U1 #U2 * -L -U1 -U2 +[ #I #G #L #b #J #W #U1 #H destruct +| #I #G #L #K #V #V2 #W2 #i #_ #_ #_ #b #J #W #U1 #H destruct +| #a #I #G #L #V1 #V2 #T1 #T2 #HV12 #HT12 #b #J #W #U1 #H destruct /2 width=5 by ex3_2_intro/ +| #I #G #L #V1 #V2 #T1 #T2 #_ #_ #b #J #W #U1 #H destruct +] +qed-. + +lemma cpys_inv_bind1: ∀a,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*× U2 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*× V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*× T2 & + U2 = ⓑ{a,I}V2.T2. +/2 width=3 by cpys_inv_bind1_aux/ qed-. + +lemma cpys_inv_bind1_ext: ∀a,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*× U2 → ∀J. + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*× V2 & ⦃G, L.ⓑ{J}V1⦄ ⊢ T1 ▶*× T2 & + U2 = ⓑ{a,I}V2.T2. +#a #I #G #L #V1 #T1 #U2 #H #J elim (cpys_inv_bind1 … H) -H +#V2 #T2 #HV12 #HT12 #H destruct +/4 width=5 by lsuby_cpys_trans, lsuby_pair, ex3_2_intro/ +qed-. + +fact cpys_inv_flat1_aux: ∀G,L,U,U2. ⦃G, L⦄ ⊢ U ▶*× U2 → + ∀J,V1,U1. U = ⓕ{J}V1.U1 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*× V2 & ⦃G, L⦄ ⊢ U1 ▶*× T2 & + U2 = ⓕ{J}V2.T2. +#G #L #U #U2 * -L -U -U2 +[ #I #G #L #J #W #U1 #H destruct +| #I #G #L #K #V #V2 #W2 #i #_ #_ #_ #J #W #U1 #H destruct +| #a #I #G #L #V1 #V2 #T1 #T2 #_ #_ #J #W #U1 #H destruct +| #I #G #L #V1 #V2 #T1 #T2 #HV12 #HT12 #J #W #U1 #H destruct /2 width=5 by ex3_2_intro/ +] +qed-. + +lemma cpys_inv_flat1: ∀I,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓕ{I}V1.U1 ▶*× U2 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*× V2 & ⦃G, L⦄ ⊢ U1 ▶*× T2 & + U2 = ⓕ{I}V2.T2. +/2 width=3 by cpys_inv_flat1_aux/ qed-. + +(* Basic forward lemmas *****************************************************) + +lemma cpys_fwd_bind1: ∀a,I,G,L,V1,T1,T. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*× T → ∀b,J. + ∃∃V2,T2. ⦃G, L⦄ ⊢ ⓑ{b,J}V1.T1 ▶*× ⓑ{b,J}V2.T2 & + T = ⓑ{a,I}V2.T2. +#a #I #G #L #V1 #T1 #T #H #b #J elim (cpys_inv_bind1_ext … H J) -H +#V2 #T2 #HV12 #HT12 #H destruct /3 width=4 by cpys_bind, ex2_2_intro/ +qed-. + +lemma cpys_fwd_shift1: ∀G,L1,L,T1,T. ⦃G, L⦄ ⊢ L1 @@ T1 ▶*× T → + ∃∃L2,T2. |L1| = |L2| & T = L2 @@ T2. +#G #L1 @(lenv_ind_dx … L1) -L1 normalize +[ #L #T1 #T #HT1 @(ex2_2_intro … (⋆)) // (**) (* explicit constructor *) +| #I #L1 #V1 #IH #L #T1 #X >shift_append_assoc normalize + #H elim (cpys_inv_bind1 … H) -H + #V0 #T0 #_ #HT10 #H destruct + elim (IH … HT10) -IH -HT10 #L2 #T2 #HL12 #H destruct + >append_length >HL12 -HL12 + @(ex2_2_intro … (⋆.ⓑ{I}V0@@L2) T2) [ >append_length ] /2 width=3 by trans_eq/ (**) (* explicit constructor *) +] +qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys_cpys.etc b/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys_cpys.etc new file mode 100644 index 000000000..e0abed64d --- /dev/null +++ b/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys_cpys.etc @@ -0,0 +1,72 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "basic_2/grammar/lpx_sn_lpx_sn.ma". +include "basic_2/substitution/fqup.ma". +include "basic_2/substitution/lpys_ldrop.ma". + +(* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) + +(* Main properties **********************************************************) + +theorem cpys_antisym: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ▶*× T2 → ⦃G, L⦄ ⊢ T2 ▶*× T1 → T1 = T2. +#G #L #T1 #T2 #H elim H -G -L -T1 -T2 // +[ #I #G #L #K #V1 #V2 #W2 #i #HLK #_ #HVW2 #_ #HW2 lapply (ldrop_fwd_ldrop2 … HLK) -I -V1 + #HLK elim (cpys_inv_lift1 … HW2 … HLK … HVW2) -L -HVW2 + #X #H #_ elim (lift_inv_lref2_be … H) -G -K -V2 -W2 -X // +| #a #I #G #L #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #H elim (cpys_inv_bind1 … H) -H + #V #T #HV2 #HT2 #H destruct + lapply (IHV12 HV2) #H destruct -IHV12 -HV2 /3 width=1 by eq_f2/ +| #I #G #L #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #H elim (cpys_inv_flat1 … H) -H + #V #T #HV2 #HT2 #H destruct /3 width=1 by eq_f2/ +] +qed-. + +theorem cpys_trans_lpys: ∀G. lpx_sn_transitive (cpys G) (cpys G). +#G0 #L0 #T0 @(fqup_wf_ind_eq … G0 L0 T0) -G0 -L0 -T0 #G0 #L0 #T0 #IH #G1 #L1 * [|*] +[ #I #HG #HL #HT #T #H1 #L2 #HL12 #T2 #HT2 destruct + elim (cpys_inv_atom1 … H1) -H1 + [ #H destruct + elim (cpys_inv_atom1 … HT2) -HT2 + [ #H destruct // + | * #I2 #K2 #V #V2 #i #HLK2 #HV2 #HVT2 #H destruct + elim (lpys_ldrop_trans_O1 … HL12 … HLK2) -L2 #X #HLK1 #H + elim (lpys_inv_pair2 … H) -H #K1 #V1 #HK12 #HV1 #H destruct + lapply (fqup_lref … G1 … HLK1) /3 width=10 by cpys_delta/ + ] + | * #I1 #K1 #V1 #V #i #HLK1 #HV1 #HVT #H destruct + elim (lpys_ldrop_conf … HLK1 … HL12) -HL12 #X #H #HLK2 + elim (lpys_inv_pair1 … H) -H #K2 #W2 #HK12 #_ #H destruct + lapply (ldrop_fwd_ldrop2 … HLK2) -W2 #HLK2 + elim (cpys_inv_lift1 … HT2 … HLK2 … HVT) -L2 -T + lapply (fqup_lref … G1 … HLK1) /3 width=10 by cpys_delta/ + ] +| #a #I #V1 #T1 #HG #HL #HT #X1 #H1 #L2 #HL12 #X2 #H2 + elim (cpys_inv_bind1 … H1) -H1 #V #T #HV1 #HT1 #H destruct + elim (cpys_inv_bind1 … H2) -H2 #V2 #T2 #HV2 #HT2 #H destruct + /4 width=5 by cpys_bind, lpys_pair/ +| #I #V1 #T1 #HG #HL #HT #X1 #H1 #L2 #HL12 #X2 #H2 + elim (cpys_inv_flat1 … H1) -H1 #V #T #HV1 #HT1 #H destruct + elim (cpys_inv_flat1 … H2) -H2 #V2 #T2 #HV2 #HT2 #H destruct + /3 width=5 by cpys_flat/ +] +qed-. + +theorem cpys_trans: ∀G,L. Transitive … (cpys G L). +/2 width=5 by cpys_trans_lpys/ qed-. + +(* Advanced properties ******************************************************) + +lemma lpys_cpys_trans: ∀G. lsub_trans … (cpys G) (lpys G). +/2 width=5 by cpys_trans_lpys/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys_lift.etc b/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys_lift.etc new file mode 100644 index 000000000..d798c8a62 --- /dev/null +++ b/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys_lift.etc @@ -0,0 +1,176 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "basic_2/relocation/ldrop_ldrop.ma". +include "basic_2/substitution/fqus_alt.ma". +include "basic_2/substitution/cpys.ma". + +(* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) + +(* Relocation properties ****************************************************) + +lemma cpys_lift: ∀G. l_liftable (cpys G). +#G #K #T1 #T2 #H elim H -G -K -T1 -T2 +[ #I #G #K #L #d #e #_ #U1 #H1 #U2 #H2 + >(lift_mono … H1 … H2) -H1 -H2 // +| #I #G #K #KV #V #V2 #W2 #i #HKV #HV2 #HVW2 #IHV2 #L #d #e #HLK #U1 #H #U2 #HWU2 + elim (lift_inv_lref1 … H) * #Hid #H destruct + [ elim (lift_trans_ge … HVW2 … HWU2) -W2 // plus_plus_comm_23 #HVU2 + lapply (ldrop_trans_ge_comm … HLK … HKV ?) -K /3 width=7 by cpys_delta/ + ] +| #a #I #G #K #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #L #d #e #HLK #U1 #H1 #U2 #H2 + elim (lift_inv_bind1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1 destruct + elim (lift_inv_bind1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /4 width=5 by cpys_bind, ldrop_skip/ +| #I #G #K #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #L #d #e #HLK #U1 #H1 #U2 #H2 + elim (lift_inv_flat1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1 destruct + elim (lift_inv_flat1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /3 width=6 by cpys_flat/ +] +qed. + +lemma cpys_inv_lift1: ∀G. l_deliftable_sn (cpys G). +#G #L #U1 #U2 #H elim H -G -L -U1 -U2 +[ * #G #L #i #K #d #e #_ #T1 #H + [ lapply (lift_inv_sort2 … H) -H #H destruct /2 width=3 by cpys_atom, lift_sort, ex2_intro/ + | elim (lift_inv_lref2 … H) -H * #Hid #H destruct /3 width=3 by cpys_atom, lift_lref_ge_minus, lift_lref_lt, ex2_intro/ + | lapply (lift_inv_gref2 … H) -H #H destruct /2 width=3 by cpys_atom, lift_gref, ex2_intro/ + ] +| #I #G #L #LV #V #V2 #W2 #i #HLV #HV2 #HVW2 #IHV2 #K #d #e #HLK #T1 #H + elim (lift_inv_lref2 … H) -H * #Hid #H destruct + [ elim (ldrop_conf_lt … HLK … HLV) -L // #L #U #HKL #HLV #HUV + elim (IHV2 … HLV … HUV) -V #U2 #HUV2 #HU2 + elim (lift_trans_le … HUV2 … HVW2) -V2 // >minus_plus plus_minus // shift_append_assoc #H plus_plus_comm_23 >(plus_plus_comm_23 dt) /2 width=1 by le_S_S/ |4: /2 width=1 by le_S_S/ - ] (**) (* 29s without the rewrites *) - /3 width=5 by _//3 width=5 by cpy_bind, lift_bind, ex2_intro/ + ] + /3 width=5 by cpy_bind, lift_bind, ex2_intro/ | #I #G #L #V1 #V2 #U1 #U2 #dt #et #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H #Hdtd #Hdedet elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct elim (IHV12 … HLK … HWV1) -V1 // diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/lleq.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/lleq.ma index 407d414de..b5bef1116 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/lleq.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/lleq.ma @@ -67,6 +67,10 @@ lemma lleq_ge: ∀L1,L2,T,d1. L1 ⋕[d1, T] L2 → ∀d2. d1 ≤ d2 → L1 ⋕[d ] qed-. +lemma lleq_bind_O: ∀a,I,L1,L2,V,T. L1 ⋕[0, V] L2 → L1.ⓑ{I}V ⋕[0, T] L2.ⓑ{I}V → + L1 ⋕[0, ⓑ{a,I}V.T] L2. +/3 width=3 by lleq_ge, lleq_bind/ qed. + (* Basic inversion lemmas ***************************************************) fact lleq_inv_lref_aux: ∀d,X,L1,L2. L1 ⋕[d, X] L2 → ∀i. X = #i → diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/lsuby.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/lsuby.ma index d2aa16144..3c89103c3 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/lsuby.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/lsuby.ma @@ -31,10 +31,6 @@ interpretation "local environment refinement (extended substitution)" 'ExtLRSubEq L1 d e L2 = (lsuby d e L1 L2). -definition lsuby_trans: ∀S. predicate (lenv → relation S) ≝ λS,R. - ∀L2,s1,s2. R L2 s1 s2 → - ∀L1,d,e. L1 ⊑×[d, e] L2 → R L1 s1 s2. - (* Basic properties *********************************************************) lemma lsuby_pair_lt: ∀I1,I2,L1,L2,V,e. L1 ⊑×[0, e-1] L2 → 0 < e → @@ -62,10 +58,6 @@ lemma lsuby_length: ∀L1,L2. |L2| ≤ |L1| → L1 ⊑×[0, 0] L2. ] qed. -lemma TC_lsuby_trans: ∀S,R. lsuby_trans S R → lsuby_trans S (λL. (TC … (R L))). -#S #R #HR #L1 #s1 #s2 #H elim H -s2 /3 width=7 by step, inj/ -qed. - (* Basic inversion lemmas ***************************************************) fact lsuby_inv_atom1_aux: ∀L1,L2,d,e. L1 ⊑×[d, e] L2 → L1 = ⋆ → L2 = ⋆. diff --git a/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys.ma b/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys.ma index 433718803..91f9f35aa 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys.ma @@ -12,177 +12,155 @@ (* *) (**************************************************************************) -notation "hvbox( L ⊢ break term 46 T1 break ▶ * [ term 46 d , break term 46 e ] break term 46 T2 )" - non associative with precedence 45 - for @{ 'PSubstStar $L $T1 $d $e $T2 }. +include "basic_2/notation/relations/extpsubststar_6.ma". +include "basic_2/relocation/cpy.ma". -include "basic_2/substitution/tps.ma". +(* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) -(* PARTIAL UNFOLD ON TERMS **************************************************) +definition cpys: nat → nat → relation4 genv lenv term term ≝ + λd,e,G. LTC … (cpy d e G). -definition tpss: nat → nat → lenv → relation term ≝ - λd,e,L. TC … (tps d e L). - -interpretation "partial unfold (term)" - 'PSubstStar L T1 d e T2 = (tpss d e L T1 T2). +interpretation "context-sensitive extended multiple substritution (term)" + 'ExtPSubstStar G L T1 d e T2 = (cpys d e G L T1 T2). (* Basic eliminators ********************************************************) -lemma tpss_ind: ∀d,e,L,T1. ∀R:predicate term. R T1 → - (∀T,T2. L ⊢ T1 ▶* [d, e] T → L ⊢ T ▶ [d, e] T2 → R T → R T2) → - ∀T2. L ⊢ T1 ▶* [d, e] T2 → R T2. -#d #e #L #T1 #R #HT1 #IHT1 #T2 #HT12 +lemma cpys_ind: ∀G,L,T1,d,e. ∀R:predicate term. R T1 → + (∀T,T2. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T → ⦃G, L⦄ ⊢ T ▶×[d, e] T2 → R T → R T2) → + ∀T2. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → R T2. +#G #L #T1 #d #e #R #HT1 #IHT1 #T2 #HT12 @(TC_star_ind … HT1 IHT1 … HT12) // qed-. -lemma tpss_ind_dx: ∀d,e,L,T2. ∀R:predicate term. R T2 → - (∀T1,T. L ⊢ T1 ▶ [d, e] T → L ⊢ T ▶* [d, e] T2 → R T → R T1) → - ∀T1. L ⊢ T1 ▶* [d, e] T2 → R T1. -#d #e #L #T2 #R #HT2 #IHT2 #T1 #HT12 +lemma cpys_ind_dx: ∀G,L,T2,d,e. ∀R:predicate term. R T2 → + (∀T1,T. ⦃G, L⦄ ⊢ T1 ▶×[d, e] T → ⦃G, L⦄ ⊢ T ▶*×[d, e] T2 → R T → R T1) → + ∀T1. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → R T1. +#G #L #T2 #d #e #R #HT2 #IHT2 #T1 #HT12 @(TC_star_ind_dx … HT2 IHT2 … HT12) // qed-. (* Basic properties *********************************************************) -lemma tps_tpss: ∀L,T1,T2,d,e. L ⊢ T1 ▶ [d, e] T2 → L ⊢ T1 ▶* [d, e] T2. -/2 width=1/ qed. - -lemma tpss_strap1: ∀L,T1,T,T2,d,e. - L ⊢ T1 ▶* [d, e] T → L ⊢ T ▶ [d, e] T2 → L ⊢ T1 ▶* [d, e] T2. -/2 width=3/ qed. - -lemma tpss_strap2: ∀L,T1,T,T2,d,e. - L ⊢ T1 ▶ [d, e] T → L ⊢ T ▶* [d, e] T2 → L ⊢ T1 ▶* [d, e] T2. -/2 width=3/ qed. - -lemma tpss_lsubr_trans: ∀L1,T1,T2,d,e. L1 ⊢ T1 ▶* [d, e] T2 → - ∀L2. L2 ⊑ [d, e] L1 → L2 ⊢ T1 ▶* [d, e] T2. -/3 width=3/ qed. - -lemma tpss_refl: ∀d,e,L,T. L ⊢ T ▶* [d, e] T. -/2 width=1/ qed. - -lemma tpss_bind: ∀L,V1,V2,d,e. L ⊢ V1 ▶* [d, e] V2 → - ∀a,I,T1,T2. L. ⓑ{I} V2 ⊢ T1 ▶* [d + 1, e] T2 → - L ⊢ ⓑ{a,I} V1. T1 ▶* [d, e] ⓑ{a,I} V2. T2. -#L #V1 #V2 #d #e #HV12 elim HV12 -V2 -[ #V2 #HV12 #a #I #T1 #T2 #HT12 elim HT12 -T2 - [ /3 width=5/ - | #T #T2 #_ #HT2 #IHT @step /2 width=5/ (**) (* /3 width=5/ is too slow *) - ] -| #V #V2 #_ #HV12 #IHV #a #I #T1 #T2 #HT12 - lapply (tpss_lsubr_trans … HT12 (L. ⓑ{I} V) ?) -HT12 /2 width=1/ #HT12 - lapply (IHV a … HT12) -IHV -HT12 #HT12 @step /2 width=5/ (**) (* /3 width=5/ is too slow *) +lemma cpy_cpys: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2. +/2 width=1 by inj/ qed. + +lemma cpys_strap1: ∀G,L,T1,T,T2,d,e. + ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T → ⦃G, L⦄ ⊢ T ▶×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2. +normalize /2 width=3 by step/ qed-. + +lemma cpys_strap2: ∀G,L,T1,T,T2,d,e. + ⦃G, L⦄ ⊢ T1 ▶×[d, e] T → ⦃G, L⦄ ⊢ T ▶*×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2. +normalize /2 width=3 by TC_strap/ qed-. + +lemma lsuby_cpys_trans: ∀G,d,e. lsub_trans … (cpys d e G) (lsuby d e). +/3 width=5 by lsuby_cpy_trans, LTC_lsub_trans/ +qed-. + +lemma cpys_refl: ∀G,L,d,e. reflexive … (cpys d e G L). +/2 width=1 by cpy_cpys/ qed. + +lemma cpys_bind: ∀G,L,V1,V2,d,e. ⦃G, L⦄ ⊢ V1 ▶*×[d, e] V2 → + ∀I,T1,T2. ⦃G, L.ⓑ{I}V2⦄ ⊢ T1 ▶*×[d+1, e] T2 → + ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*×[d, e] ⓑ{a,I}V2.T2. +#G #L #V1 #V2 #d #e #HV12 @(cpys_ind … HV12) -V2 +[ #I #T1 #T2 #HT12 @(cpys_ind … HT12) -T2 /3 width=5 by cpys_strap1, cpy_bind/ +| #V #V2 #_ #HV2 #IHV1 #I #T1 #T2 #HT12 #a + lapply (lsuby_cpys_trans … HT12 (L.ⓑ{I}V) ?) -HT12 + /3 width=5 by cpys_strap1, cpy_bind, lsuby_succ/ ] qed. -lemma tpss_flat: ∀L,I,V1,V2,T1,T2,d,e. - L ⊢ V1 ▶* [d, e] V2 → L ⊢ T1 ▶* [d, e] T2 → - L ⊢ ⓕ{I} V1. T1 ▶* [d, e] ⓕ{I} V2. T2. -#L #I #V1 #V2 #T1 #T2 #d #e #HV12 elim HV12 -V2 -[ #V2 #HV12 #HT12 elim HT12 -T2 - [ /3 width=1/ - | #T #T2 #_ #HT2 #IHT @step /2 width=5/ (**) (* /3 width=5/ is too slow *) - ] -| #V #V2 #_ #HV12 #IHV #HT12 - lapply (IHV … HT12) -IHV -HT12 #HT12 @step /2 width=5/ (**) (* /3 width=5/ is too slow *) -] +lemma cpys_flat: ∀G,L,V1,V2,d,e. ⦃G, L⦄ ⊢ V1 ▶*×[d, e] V2 → + ∀T1,T2. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → + ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*×[d, e] ⓕ{I}V2.T2. +#G #L #V1 #V2 #d #e #HV12 @(cpys_ind … HV12) -V2 +[ #T1 #T2 #HT12 @(cpys_ind … HT12) -T2 /3 width=5 by cpys_strap1, cpy_flat/ +| /3 width=5 by cpys_strap1, cpy_flat/ qed. -lemma tpss_weak: ∀L,T1,T2,d1,e1. L ⊢ T1 ▶* [d1, e1] T2 → +lemma cpys_weak: ∀G,L,T1,T2,d1,e1. ⦃G, L⦄ ⊢ T1 ▶*×[d1, e1] T2 → ∀d2,e2. d2 ≤ d1 → d1 + e1 ≤ d2 + e2 → - L ⊢ T1 ▶* [d2, e2] T2. -#L #T1 #T2 #d1 #e1 #H #d1 #d2 #Hd21 #Hde12 @(tpss_ind … H) -T2 -[ // -| #T #T2 #_ #HT12 #IHT - lapply (tps_weak … HT12 … Hd21 Hde12) -HT12 -Hd21 -Hde12 /2 width=3/ -] -qed. + ⦃G, L⦄ ⊢ T1 ▶*×[d2, e2] T2. +#G #L #T1 #T2 #d1 #e1 #H #d1 #d2 #Hd21 #Hde12 @(cpys_ind … H) -T2 +/3 width=7 by cpys_strap1, cpy_weak/ +qed-. -lemma tpss_weak_top: ∀L,T1,T2,d,e. - L ⊢ T1 ▶* [d, e] T2 → L ⊢ T1 ▶* [d, |L| - d] T2. -#L #T1 #T2 #d #e #H @(tpss_ind … H) -T2 -[ // -| #T #T2 #_ #HT12 #IHT - lapply (tps_weak_top … HT12) -HT12 /2 width=3/ -] -qed. +lemma cpys_weak_top: ∀G,L,T1,T2,d,e. + ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[d, |L| - d] T2. +#G #L #T1 #T2 #d #e #H @(cpys_ind … H) -T2 +/3 width=4 by cpys_strap1, cpy_weak_top/ +qed-. -lemma tpss_weak_full: ∀L,T1,T2,d,e. - L ⊢ T1 ▶* [d, e] T2 → L ⊢ T1 ▶* [0, |L|] T2. -#L #T1 #T2 #d #e #HT12 -lapply (tpss_weak … HT12 0 (d + e) ? ?) -HT12 // #HT12 -lapply (tpss_weak_top … HT12) // -qed. +lemma cpys_weak_full: ∀G,L,T1,T2,d,e. + ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[0, |L|] T2. +#G #L #T1 #T2 #d #e #H @(cpys_ind … H) -T2 +/3 width=5 by cpys_strap1, cpy_weak_full/ +qed-. -lemma tpss_append: ∀K,T1,T2,d,e. K ⊢ T1 ▶* [d, e] T2 → - ∀L. L @@ K ⊢ T1 ▶* [d, e] T2. -#K #T1 #T2 #d #e #H @(tpss_ind … H) -T2 // /3 width=3/ -qed. +lemma cpys_append: ∀G,d,e. l_appendable_sn … (cpys d e G). +#G #d #e #K #T1 #T2 #H @(cpys_ind … H) -T2 +/3 width=3 by cpys_strap1, cpy_append/ +qed-. (* Basic inversion lemmas ***************************************************) -(* Note: this can be derived from tpss_inv_atom1 *) -lemma tpss_inv_sort1: ∀L,T2,k,d,e. L ⊢ ⋆k ▶* [d, e] T2 → T2 = ⋆k. -#L #T2 #k #d #e #H @(tpss_ind … H) -T2 -[ // -| #T #T2 #_ #HT2 #IHT destruct - >(tps_inv_sort1 … HT2) -HT2 // -] +(* Note: this can be derived from cpys_inv_atom1 *) +lemma cpys_inv_sort1: ∀G,L,T2,k,d,e. ⦃G, L⦄ ⊢ ⋆k ▶*×[d, e] T2 → T2 = ⋆k. +#G #L #T2 #k #d #e #H @(cpys_ind … H) -T2 // +#T #T2 #_ #HT2 #IHT1 destruct +>(cpy_inv_sort1 … HT2) -HT2 // qed-. -(* Note: this can be derived from tpss_inv_atom1 *) -lemma tpss_inv_gref1: ∀L,T2,p,d,e. L ⊢ §p ▶* [d, e] T2 → T2 = §p. -#L #T2 #p #d #e #H @(tpss_ind … H) -T2 -[ // -| #T #T2 #_ #HT2 #IHT destruct - >(tps_inv_gref1 … HT2) -HT2 // -] +(* Note: this can be derived from cpys_inv_atom1 *) +lemma cpys_inv_gref1: ∀G,L,T2,p,d,e. ⦃G, L⦄ ⊢ §p ▶*×[d, e] T2 → T2 = §p. +#G #L #T2 #p #d #e #H @(cpys_ind … H) -T2 // +#T #T2 #_ #HT2 #IHT1 destruct +>(cpy_inv_gref1 … HT2) -HT2 // qed-. -lemma tpss_inv_bind1: ∀d,e,L,a,I,V1,T1,U2. L ⊢ ⓑ{a,I} V1. T1 ▶* [d, e] U2 → - ∃∃V2,T2. L ⊢ V1 ▶* [d, e] V2 & - L. ⓑ{I} V2 ⊢ T1 ▶* [d + 1, e] T2 & - U2 = ⓑ{a,I} V2. T2. -#d #e #L #a #I #V1 #T1 #U2 #H @(tpss_ind … H) -U2 -[ /2 width=5/ +lemma cpys_inv_bind1: ∀a,I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*×[d, e] U2 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*×[d, e] V2 & + ⦃G, L.ⓑ{I}V2⦄ ⊢ T1 ▶*×[d+1, e] T2 & + U2 = ⓑ{a,I}V2.T2. +#a #I #G #L #V1 #T1 #U2 #d #e #H @(cpys_ind … H) -U2 +[ /2 width=5 by ex3_2_intro/ | #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct - elim (tps_inv_bind1 … HU2) -HU2 #V2 #T2 #HV2 #HT2 #H - lapply (tpss_lsubr_trans … HT1 (L. ⓑ{I} V2) ?) -HT1 /2 width=1/ /3 width=5/ + elim (cpy_inv_bind1 … HU2) -HU2 #V2 #T2 #HV2 #HT2 #H + lapply (lsuby_cpys_trans … HT1 (L.ⓑ{I}V2) ?) -HT1 + /3 width=5 by cpys_strap1, lsuby_succ, ex3_2_intro/ ] qed-. -lemma tpss_inv_flat1: ∀d,e,L,I,V1,T1,U2. L ⊢ ⓕ{I} V1. T1 ▶* [d, e] U2 → - ∃∃V2,T2. L ⊢ V1 ▶* [d, e] V2 & L ⊢ T1 ▶* [d, e] T2 & - U2 = ⓕ{I} V2. T2. -#d #e #L #I #V1 #T1 #U2 #H @(tpss_ind … H) -U2 -[ /2 width=5/ +lemma cpys_inv_flat1: ∀I,G,L,V1,T1,U2,d,e. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*×[d, e] U2 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*×[d, e] V2 & ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 & + U2 = ⓕ{I}V2.T2. +#I #G #L #V1 #T1 #U2 #d #e #H @(cpys_ind … H) -U2 +[ /2 width=5 by ex3_2_intro/ | #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct - elim (tps_inv_flat1 … HU2) -HU2 /3 width=5/ + elim (cpy_inv_flat1 … HU2) -HU2 + /3 width=5 by cpys_strap1, ex3_2_intro/ ] qed-. -lemma tpss_inv_refl_O2: ∀L,T1,T2,d. L ⊢ T1 ▶* [d, 0] T2 → T1 = T2. -#L #T1 #T2 #d #H @(tpss_ind … H) -T2 -[ // -| #T #T2 #_ #HT2 #IHT <(tps_inv_refl_O2 … HT2) -HT2 // -] +lemma cpys_inv_refl_O2: ∀G,L,T1,T2,d. ⦃G, L⦄ ⊢ T1 ▶*×[d, 0] T2 → T1 = T2. +#G #L #T1 #T2 #d #H @(cpys_ind … H) -T2 // +#T #T2 #_ #HT2 #IHT1 <(cpy_inv_refl_O2 … HT2) -HT2 // qed-. (* Basic forward lemmas *****************************************************) -lemma tpss_fwd_tw: ∀L,T1,T2,d,e. L ⊢ T1 ▶* [d, e] T2 → ♯{T1} ≤ ♯{T2}. -#L #T1 #T2 #d #e #H @(tpss_ind … H) -T2 // -#T #T2 #_ #HT2 #IHT1 -lapply (tps_fwd_tw … HT2) -HT2 #HT2 -@(transitive_le … IHT1) // +lemma cpys_fwd_tw: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → ♯{T1} ≤ ♯{T2}. +#G #L #T1 #T2 #d #e #H @(cpys_ind … H) -T2 // +#T #T2 #_ #HT2 #IHT1 lapply (cpy_fwd_tw … HT2) -HT2 +/2 width=3 by transitive_le/ qed-. -lemma tpss_fwd_shift1: ∀L,L1,T1,T,d,e. L ⊢ L1 @@ T1 ▶*[d, e] T → +lemma cpys_fwd_shift1: ∀G,L,L1,T1,T,d,e. ⦃G, L⦄ ⊢ L1 @@ T1 ▶*×[d, e] T → ∃∃L2,T2. |L1| = |L2| & T = L2 @@ T2. -#L #L1 #T1 #T #d #e #H @(tpss_ind … H) -T -[ /2 width=4/ -| #T #X #_ #H0 * #L0 #T0 #HL10 #H destruct - elim (tps_fwd_shift1 … H0) -H0 #L2 #T2 #HL02 #H destruct /2 width=4/ +#G #L #L1 #T1 #T #d #e #H @(cpys_ind … H) -T +[ /2 width=4 by ex2_2_intro/ +| #T #X #_ #HX * #L0 #T0 #HL10 #H destruct + elim (cpy_fwd_shift1 … HX) -HX #L2 #T2 #HL02 #H destruct + /2 width=4 by ex2_2_intro/ ] qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys_alt.ma b/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys_alt.ma new file mode 100644 index 000000000..cf0b10e76 --- /dev/null +++ b/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys_alt.ma @@ -0,0 +1,102 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "basic_2/notation/relations/extpsubststaralt_6.ma". +include "basic_2/substitution/cpys_lift.ma". + +(* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) + +(* alternative definition of cpys *) +inductive cpysa: nat → nat → relation4 genv lenv term term ≝ +| cpysa_atom : ∀I,G,L,d,e. cpysa d e G L (⓪{I}) (⓪{I}) +| cpysa_subst: ∀I,G,L,K,V1,V2,W2,i,d,e. d ≤ i → i < d + e → + ⇩[0, i] L ≡ K.ⓑ{I}V1 → cpysa 0 (d+e-i-1) G K V1 V2 → + ⇧[0, i+1] V2 ≡ W2 → cpysa d e G L (#i) W2 +| cpysa_bind : ∀a,I,G,L,V1,V2,T1,T2,d,e. + cpysa d e G L V1 V2 → cpysa (d + 1) e G (L.ⓑ{I}V2) T1 T2 → + cpysa d e G L (ⓑ{a,I}V1.T1) (ⓑ{a,I}V2.T2) +| cpysa_flat : ∀I,G,L,V1,V2,T1,T2,d,e. + cpysa d e G L V1 V2 → cpysa d e G L T1 T2 → + cpysa d e G L (ⓕ{I}V1.T1) (ⓕ{I}V2.T2) +. + +interpretation + "context-sensitive extended multiple substritution (term) alternative" + 'ExtPSubstStarAlt G L T1 d e T2 = (cpysa d e G L T1 T2). + +(* Basic properties *********************************************************) + +lemma lsuby_cpysa_trans: ∀G,d,e. lsub_trans … (cpysa d e G) (lsuby d e). +#G #d #e #L1 #T1 #T2 #H elim H -G -L1 -T1 -T2 -d -e +[ // +| #I #G #L1 #K1 #V1 #V2 #W2 #i #d #e #Hdi #Hide #HLK1 #_ #HVW2 #IHV12 #L2 #HL12 + elim (lsuby_fwd_ldrop2_be … HL12 … HLK1) -HL12 -HLK1 /3 width=7 by cpysa_subst/ +| /4 width=1 by lsuby_succ, cpysa_bind/ +| /3 width=1 by cpysa_flat/ +] +qed-. + +lemma cpysa_refl: ∀G,T,L,d,e. ⦃G, L⦄ ⊢ T ▶▶*×[d, e] T. +#G #T elim T -T // +#I elim I -I /2 width=1 by cpysa_bind, cpysa_flat/ +qed. + +lemma cpysa_cpy_trans: ∀G,L,T1,T,d,e. ⦃G, L⦄ ⊢ T1 ▶▶*×[d, e] T → + ∀T2. ⦃G, L⦄ ⊢ T ▶×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶▶*×[d, e] T2. +#G #L #T1 #T #d #e #H elim H -G -L -T1 -T -d -e +[ #I #G #L #d #e #X #H + elim (cpy_inv_atom1 … H) -H // * /2 width=7 by cpysa_subst/ +| #I #G #L #K #V1 #V2 #W2 #i #d #e #Hdi #Hide #HLK #_ #HVW2 #IHV12 #T2 #H + lapply (ldrop_fwd_ldrop2 … HLK) #H0LK + lapply (cpy_weak … H 0 (d+e) ? ?) -H // #H + elim (cpy_inv_lift1_be … H … H0LK … HVW2) -H -H0LK -HVW2 /3 width=7 by cpysa_subst/ +| #a #I #G #L #V1 #V #T1 #T #d #e #_ #_ #IHV1 #IHT1 #X #H + elim (cpy_inv_bind1 … H) -H #V2 #T2 #HV2 #HT2 #H destruct + lapply (lsuby_cpy_trans … HT2 (L.ⓑ{I}V) ?) -HT2 /2 width=1 by lsuby_succ/ #HT2 + lapply (IHV1 … HV2) -IHV1 -HV2 #HV12 + lapply (IHT1 … HT2) -IHT1 -HT2 #HT12 + lapply (lsuby_cpysa_trans … HT12 (L.ⓑ{I}V2) ?) -HT12 /2 width=1 by lsuby_succ, cpysa_bind/ +| #I #G #L #V1 #V #T1 #T #d #e #_ #_ #IHV1 #IHT1 #X #H + elim (cpy_inv_flat1 … H) -H #V2 #T2 #HV2 #HT2 #H destruct /3 width=1 by cpysa_flat/ +] +qed-. + +lemma cpys_cpysa: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶▶*×[d, e] T2. +/3 width=8 by cpysa_cpy_trans, cpys_ind/ qed. + +(* Basic inversion lemmas ***************************************************) + +lemma cpysa_cpys: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶▶*×[d, e] T2 → ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2. +#G #L #T1 #T2 #d #e #H elim H -G -L -T1 -T2 -d -e +/2 width=7 by cpys_subst, cpys_flat, cpys_bind, cpy_cpys/ +qed-. + +lemma cpys_ind_alt: ∀R:nat→nat→relation4 genv lenv term term. + (∀I,G,L,d,e. R d e G L (⓪{I}) (⓪{I})) → + (∀I,G,L,K,V1,V2,W2,i,d,e. d ≤ i → i < d + e → + ⇩[O, i] L ≡ K.ⓑ{I}V1 → ⦃G, K⦄ ⊢ V1 ▶*×[O, d+e-i-1] V2 → + ⇧[O, i + 1] V2 ≡ W2 → R O (d+e-i-1) G K V1 V2 → R d e G L (#i) W2 + ) → + (∀a,I,G,L,V1,V2,T1,T2,d,e. ⦃G, L⦄ ⊢ V1 ▶*×[d, e] V2 → + ⦃G, L.ⓑ{I}V2⦄ ⊢ T1 ▶*×[d + 1, e] T2 → R d e G L V1 V2 → + R (d+1) e G (L.ⓑ{I}V2) T1 T2 → R d e G L (ⓑ{a,I}V1.T1) (ⓑ{a,I}V2.T2) + ) → + (∀I,G,L,V1,V2,T1,T2,d,e. ⦃G, L⦄ ⊢ V1 ▶*×[d, e] V2 → + ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → R d e G L V1 V2 → + R d e G L T1 T2 → R d e G L (ⓕ{I}V1.T1) (ⓕ{I}V2.T2) + ) → + ∀d,e,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → R d e G L T1 T2. +#R #H1 #H2 #H3 #H4 #d #e #G #L #T1 #T2 #H elim (cpys_cpysa … H) -G -L -T1 -T2 -d -e +/3 width=8 by cpysa_cpys/ +qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys_cpys.ma b/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys_cpys.ma new file mode 100644 index 000000000..f84916b9b --- /dev/null +++ b/matita/matita/contribs/lambdadelta/basic_2/substitution/cpys_cpys.ma @@ -0,0 +1,94 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "basic_2/relocation/cpy_cpy.ma". +include "basic_2/substitution/cpys_lift.ma". + +(* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) + +(* Advanced inversion lemmas ************************************************) + +lemma cpys_inv_SO2: ∀G,L,T1,T2,d. ⦃G, L⦄ ⊢ T1 ▶*×[d, 1] T2 → ⦃G, L⦄ ⊢ T1 ▶×[d, 1] T2. +#G #L #T1 #T2 #d #H @(cpys_ind … H) -T2 /2 width=3 by cpy_trans_ge/ +qed-. + +(* Advanced properties ******************************************************) + +lemma cpys_strip_eq: ∀G,L,T0,T1,d1,e1. ⦃G, L⦄ ⊢ T0 ▶*×[d1, e1] T1 → + ∀T2,d2,e2. ⦃G, L⦄ ⊢ T0 ▶×[d2, e2] T2 → + ∃∃T. ⦃G, L⦄ ⊢ T1 ▶×[d2, e2] T & ⦃G, L⦄ ⊢ T2 ▶*×[d1, e1] T. +normalize /3 width=3 by cpy_conf_eq, TC_strip1/ qed-. + +lemma cpys_strip_neq: ∀G,L1,T0,T1,d1,e1. ⦃G, L1⦄ ⊢ T0 ▶*×[d1, e1] T1 → + ∀L2,T2,d2,e2. ⦃G, L2⦄ ⊢ T0 ▶×[d2, e2] T2 → + (d1 + e1 ≤ d2 ∨ d2 + e2 ≤ d1) → + ∃∃T. ⦃G, L2⦄ ⊢ T1 ▶×[d2, e2] T & ⦃G, L1⦄ ⊢ T2 ▶*×[d1, e1] T. +normalize /3 width=3 by cpy_conf_neq, TC_strip1/ qed-. + +lemma cpys_strap1_down: ∀G,L,T1,T0,d1,e1. ⦃G, L⦄ ⊢ T1 ▶*×[d1, e1] T0 → + ∀T2,d2,e2. ⦃G, L⦄ ⊢ T0 ▶×[d2, e2] T2 → d2 + e2 ≤ d1 → + ∃∃T. ⦃G, L⦄ ⊢ T1 ▶×[d2, e2] T & ⦃G, L⦄ ⊢ T ▶*×[d1, e1] T2. +normalize /3 width=3 by cpy_trans_down, TC_strap1/ qed. + +lemma cpys_strap2_down: ∀G,L,T1,T0,d1,e1. ⦃G, L⦄ ⊢ T1 ▶×[d1, e1] T0 → + ∀T2,d2,e2. ⦃G, L⦄ ⊢ T0 ▶*×[d2, e2] T2 → d2 + e2 ≤ d1 → + ∃∃T. ⦃G, L⦄ ⊢ T1 ▶*×[d2, e2] T & ⦃G, L⦄ ⊢ T ▶×[d1, e1] T2. +normalize /3 width=3 by cpy_trans_down, TC_strap2/ qed-. + +lemma cpys_split_up: ∀G,L,T1,T2,d,e. ⦃G, L⦄ ⊢ T1 ▶*×[d, e] T2 → + ∀i. d ≤ i → i ≤ d + e → + ∃∃T. ⦃G, L⦄ ⊢ T1 ▶*×[d, i - d] T & ⦃G, L⦄ ⊢ T ▶*×[i, d + e - i] T2. +#G #L #T1 #T2 #d #e #H #i #Hdi #Hide @(cpys_ind … H) -T2 +[ /2 width=3 by ex2_intro/ +| #T #T2 #_ #HT12 * #T3 #HT13 #HT3 + elim (cpy_split_up … HT12 … Hdi Hide) -HT12 -Hide #T0 #HT0 #HT02 + elim (cpys_strap1_down … HT3 … HT0 ?) -T /3 width=5 by cpys_strap1, ex2_intro/ + >commutative_plus /2 width=1 by le_minus_to_plus_r/ +] +qed-. + +lemma cpys_inv_lift1_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 → + ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → + d ≤ dt → dt ≤ d + e → d + e ≤ dt + et → + ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[d, dt + et - (d + e)] T2 & + ⇧[d, e] T2 ≡ U2. +#G #L #U1 #U2 #dt #et #HU12 #K #d #e #HLK #T1 #HTU1 #Hddt #Hdtde #Hdedet +elim (cpys_split_up … HU12 (d + e)) -HU12 // -Hdedet #U #HU1 #HU2 +lapply (cpys_weak … HU1 d e ? ?) -HU1 // [ >commutative_plus /2 width=1 by le_minus_to_plus_r/ ] -Hddt -Hdtde #HU1 +lapply (cpys_inv_lift1_eq … HU1 … HTU1) -HU1 #HU1 destruct +elim (cpys_inv_lift1_ge … HU2 … HLK … HTU1) -HU2 -HLK -HTU1 // minus_plus >commutative_plus /2 width=1 by le_minus_to_plus_r/ +] +qed. + +(* Advanced inverion lemmas *************************************************) + +lemma cpys_inv_atom1: ∀G,L,T2,I,d,e. ⦃G, L⦄ ⊢ ⓪{I} ▶*×[d, e] T2 → + T2 = ⓪{I} ∨ + ∃∃J,K,V1,V2,i. d ≤ i & i < d + e & + ⇩[O, i] L ≡ K.ⓑ{J}V1 & + ⦃G, K⦄ ⊢ V1 ▶*×[0, d+e-i-1] V2 & + ⇧[O, i + 1] V2 ≡ T2 & + I = LRef i. +#G #L #T2 #I #d #e #H @(cpys_ind … H) -T2 +[ /2 width=1 by or_introl/ +| #T #T2 #_ #HT2 * + [ #H destruct + elim (cpy_inv_atom1 … HT2) -HT2 [ /2 width=1 by or_introl/ | * /3 width=11 by ex6_5_intro, or_intror/ ] + | * #J #K #V1 #V #i #Hdi #Hide #HLK #HV1 #HVT #HI + lapply (ldrop_fwd_ldrop2 … HLK) #H + elim (cpy_inv_lift1_ge_up … HT2 … H … HVT) normalize -HT2 -H -HVT [2,3,4: /2 width=1 by le_S/ ] + (lift_mono … HTU1 … H) -H // +| -HTU1 #T #T2 #_ #HT2 #IHT #U2 #HTU2 + elim (lift_total T d e) #U #HTU + lapply (IHT … HTU) -IHT #HU1 + lapply (cpy_lift_le … HT2 … HLK HTU HTU2 ?) -HT2 -HLK -HTU -HTU2 /2 width=3 by cpys_strap1/ +] +qed-. + +lemma cpys_lift_be: ∀G,K,T1,T2,dt,et. ⦃G, K⦄ ⊢ T1 ▶*×[dt, et] T2 → + ∀L,U1,d,e. dt ≤ d → d ≤ dt + et → + ⇩[d, e] L ≡ K → ⇧[d, e] T1 ≡ U1 → + ∀U2. ⇧[d, e] T2 ≡ U2 → ⦃G, L⦄ ⊢ U1 ▶*×[dt, et + e] U2. +#G #K #T1 #T2 #dt #et #H #L #U1 #d #e #Hdtd #Hddet #HLK #HTU1 @(cpys_ind … H) -T2 +[ #U2 #H >(lift_mono … HTU1 … H) -H // +| -HTU1 #T #T2 #_ #HT2 #IHT #U2 #HTU2 + elim (lift_total T d e) #U #HTU + lapply (IHT … HTU) -IHT #HU1 + lapply (cpy_lift_be … HT2 … HLK HTU HTU2 ? ?) -HT2 -HLK -HTU -HTU2 /2 width=3 by cpys_strap1/ +] +qed-. + +lemma cpys_lift_ge: ∀G,K,T1,T2,dt,et. ⦃G, K⦄ ⊢ T1 ▶*×[dt, et] T2 → + ∀L,U1,d,e. d ≤ dt → ⇩[d, e] L ≡ K → + ⇧[d, e] T1 ≡ U1 → ∀U2. ⇧[d, e] T2 ≡ U2 → + ⦃G, L⦄ ⊢ U1 ▶*×[dt + e, et] U2. +#G #K #T1 #T2 #dt #et #H #L #U1 #d #e #Hddt #HLK #HTU1 @(cpys_ind … H) -T2 +[ #U2 #H >(lift_mono … HTU1 … H) -H // +| -HTU1 #T #T2 #_ #HT2 #IHT #U2 #HTU2 + elim (lift_total T d e) #U #HTU + lapply (IHT … HTU) -IHT #HU1 + lapply (cpy_lift_ge … HT2 … HLK HTU HTU2 ?) -HT2 -HLK -HTU -HTU2 /2 width=3 by cpys_strap1/ +] +qed-. + +lemma cpys_inv_lift1_le: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 → + ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → + dt + et ≤ d → + ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[dt, et] T2 & ⇧[d, e] T2 ≡ U2. +#G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hdetd @(cpys_ind … H) -U2 +[ /2 width=3 by ex2_intro/ +| -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU + elim (cpy_inv_lift1_le … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ +] +qed-. + +lemma cpys_inv_lift1_be: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 → + ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → + dt ≤ d → d + e ≤ dt + et → + ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[dt, et - e] T2 & ⇧[d, e] T2 ≡ U2. +#G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hdtd #Hdedet @(cpys_ind … H) -U2 +[ /2 width=3 by ex2_intro/ +| -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU + elim (cpy_inv_lift1_be … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ +] +qed-. + +lemma cpys_inv_lift1_ge: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 → + ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → + d + e ≤ dt → + ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[dt - e, et] T2 & ⇧[d, e] T2 ≡ U2. +#G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hdedt @(cpys_ind … H) -U2 +[ /2 width=3 by ex2_intro/ +| -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU + elim (cpy_inv_lift1_ge … HU2 … HLK … HTU ?) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ +] +qed-. + +lemma cpys_inv_lift1_eq: ∀G,L,U1,U2,d,e. + ⦃G, L⦄ ⊢ U1 ▶*×[d, e] U2 → ∀T1. ⇧[d, e] T1 ≡ U1 → U1 = U2. +#G #L #U1 #U2 #d #e #H #T1 #HTU1 @(cpys_ind … H) -U2 // +#U #U2 #_ #HU2 #IHU destruct +<(cpy_inv_lift1_eq … HU2 … HTU1) -HU2 -HTU1 // +qed-. + +lemma cpys_inv_lift1_ge_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 → + ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → + d ≤ dt → dt ≤ d + e → d + e ≤ dt + et → + ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[d, dt + et - (d + e)] T2 & + ⇧[d, e] T2 ≡ U2. +#G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hddt #Hdtde #Hdedet @(cpys_ind … H) -U2 +[ /2 width=3 by ex2_intro/ +| -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU + elim (cpy_inv_lift1_ge_up … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ +] +qed-. + +lemma cpys_inv_lift1_be_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 → + ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → + dt ≤ d → dt + et ≤ d + e → + ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[dt, d - dt] T2 & ⇧[d, e] T2 ≡ U2. +#G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hdtd #Hdetde @(cpys_ind … H) -U2 +[ /2 width=3 by ex2_intro/ +| -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU + elim (cpy_inv_lift1_be_up … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ +] +qed-. + +lemma cpys_inv_lift1_le_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 → + ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → + dt ≤ d → d ≤ dt + et → dt + et ≤ d + e → + ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[dt, d - dt] T2 & ⇧[d, e] T2 ≡ U2. +#G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hdtd #Hddet #Hdetde @(cpys_ind … H) -U2 +[ /2 width=3 by ex2_intro/ +| -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU + elim (cpy_inv_lift1_le_up … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/ +] +qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/web/basic_2_src.tbl b/matita/matita/contribs/lambdadelta/basic_2/web/basic_2_src.tbl index 5c4006b1c..f4fa07485 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/web/basic_2_src.tbl +++ b/matita/matita/contribs/lambdadelta/basic_2/web/basic_2_src.tbl @@ -208,6 +208,10 @@ table { ] class "yellow" [ { "substitution" * } { + [ { "contxt-sensitive extended multiple substitution" * } { + [ "cpys ( ⦃?,?⦄ ⊢ ? ▶*×[?,?] ? )" "cpys_alt ( ⦃?,?⦄ ⊢ ? ▶▶*×[?,?] ? )" "cpys_lift" + "cpys_cpys" * ] + } + ] [ { "iterated structural successor for closures" * } { [ "fqus ( ⦃?,?,?⦄ ⊃* ⦃?,?,?⦄ )" "fqus_alt" + "fqus_lleq" + "fqus_fqus" * ] [ "fqup ( ⦃?,?,?⦄ ⊃+ ⦃?,?,?⦄ )" "fqup_lleq" + "fqup_fqup" * ] @@ -230,16 +234,11 @@ table { ] class "orange" [ { "relocation" * } { - [ { "structural successor for closures" * } { - [ "fquq ( ⦃?,?,?⦄ ⊃⸮ ⦃?,?,?⦄ )" "fquq_alt ( ⦃?,?,?⦄ ⊃⊃⸮ ⦃?,?,?⦄ )" "fquq_lleq" * ] - [ "fqu ( ⦃?,?,?⦄ ⊃ ⦃?,?,?⦄ )" "fqu_lleq" * ] - } - ] [ { "lazy equivalence for local environments" * } { [ "lleq ( ? ⋕[?,?] ? )" "lleq_lleq" * ] } ] - [ { "contxt-sensitive extended substitution" * } { + [ { "contxt-sensitive extended ordinary substitution" * } { [ "cpy ( ⦃?,?⦄ ⊢ ? ▶×[?,?] ? )" "cpy_lift" + "cpy_cpy" * ] } ] @@ -251,6 +250,11 @@ table { [ "lsubr ( ? ⊑ ? )" "lsubr_lsubr" * ] } ] + [ { "structural successor for closures" * } { + [ "fquq ( ⦃?,?,?⦄ ⊃⸮ ⦃?,?,?⦄ )" "fquq_alt ( ⦃?,?,?⦄ ⊃⊃⸮ ⦃?,?,?⦄ )" "fquq_lleq" * ] + [ "fqu ( ⦃?,?,?⦄ ⊃ ⦃?,?,?⦄ )" "fqu_lleq" * ] + } + ] [ { "global env. slicing" * } { [ "gdrop ( ⇩[?] ? ≡ ? )" "gdrop_gdrop" * ] } diff --git a/matita/matita/contribs/lambdadelta/etc2ma.sh b/matita/matita/contribs/lambdadelta/etc2ma.sh new file mode 100644 index 000000000..c2d6481ef --- /dev/null +++ b/matita/matita/contribs/lambdadelta/etc2ma.sh @@ -0,0 +1 @@ +for FILE in `find $1 -name "*.etc"`; do svn mv $FILE ${FILE/%.etc/.ma} ; done diff --git a/matita/matita/contribs/lambdadelta/ground_2/lib/star.ma b/matita/matita/contribs/lambdadelta/ground_2/lib/star.ma index e5b788766..8cfdf349e 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/lib/star.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/lib/star.ma @@ -154,7 +154,7 @@ lemma NF_to_SN_sn: ∀A,R,S,a. NF_sn A R S a → SN_sn A R S a. elim HSa12 -HSa12 /2 width=1/ qed. -lemma TC_lsub_trans: ∀A,B,R,S. lsub_trans A B R S → lsub_trans A B (LTC … R) S. +lemma LTC_lsub_trans: ∀A,B,R,S. lsub_trans A B R S → lsub_trans A B (LTC … R) S. #A #B #R #S #HRS #L2 #T1 #T2 #H elim H -T2 [ /3 width=3/ ] #T #T2 #_ #HT2 #IHT1 #L1 #HL12 lapply (HRS … HT2 … HL12) -HRS -HT2 /3 width=3/