From: Enrico Tassi Date: Mon, 22 Dec 2008 18:07:58 +0000 (+0000) Subject: Beginning of o-basic_topologies. X-Git-Tag: make_still_working~4331 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=e88702452d7ff1dcec1156e4e5588eaf577103a0;p=helm.git Beginning of o-basic_topologies. --- diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma new file mode 100644 index 000000000..a958da425 --- /dev/null +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma @@ -0,0 +1,205 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "o-algebra.ma". +include "o-saturations.ma". + +record basic_topology: Type ≝ + { carrbt:> OA; + A: arrows1 SET (oa_P carrbt) (oa_P carrbt); + J: arrows1 SET (oa_P carrbt) (oa_P carrbt); + A_is_saturation: is_saturation ? A; + J_is_reduction: is_reduction ? J; + compatibility: ∀U,V. (A U >< J V) = (U >< J V) + }. + +record continuous_relation (S,T: basic_topology) : Type ≝ + { cont_rel:> arrows1 ? S T; + reduced: ∀U. U = J ? U → cont_rel U = J ? (cont_rel U); + saturated: ∀U. U = A ? U → cont_rel⎻* U = A ? (cont_rel⎻* U) + }. + +definition continuous_relation_setoid: basic_topology → basic_topology → setoid1. + intros (S T); constructor 1; + [ apply (continuous_relation S T) + | constructor 1; + [ apply (λr,s:continuous_relation S T.∀b. eq1 (oa_P (carrbt S)) (A ? (r⎻ b)) (A ? (s⎻ b))); + | simplify; intros; apply refl1; + | simplify; intros; apply sym1; apply H + | simplify; intros; apply trans1; [2: apply H |3: apply H1; |1: skip]]] +qed. + +definition cont_rel': ∀S,T: basic_topology. continuous_relation_setoid S T → arrows1 ? S T ≝ cont_rel. + +coercion cont_rel'. + +definition cont_rel'': + ∀S,T: basic_topology. + continuous_relation_setoid S T → unary_morphism (oa_P (carrbt S)) (oa_P (carrbt T)). + intros; apply rule cont_rel; apply c; +qed. + +coercion cont_rel''. + +theorem continuous_relation_eq': + ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. + a = a' → ∀X.a⎻* (A o1 X) = a'⎻* (A o1 X). + intros; + lapply (prop_1_SET ??? H); + + split; intro; unfold minus_star_image; simplify; intros; + [ cut (ext ?? a a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;] + lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut; + cut (A ? (ext ?? a' a1) ⊆ A ? X); [2: apply (. (H ?)‡#); assumption] + lapply (fi ?? (A_is_saturation ???) Hcut); + apply (Hletin1 x); change with (x ∈ ext ?? a' a1); split; simplify; + [ apply I | assumption ] + | cut (ext ?? a' a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;] + lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut; + cut (A ? (ext ?? a a1) ⊆ A ? X); [2: apply (. (H ?)\sup -1‡#); assumption] + lapply (fi ?? (A_is_saturation ???) Hcut); + apply (Hletin1 x); change with (x ∈ ext ?? a a1); split; simplify; + [ apply I | assumption ]] +qed. + +theorem continuous_relation_eq_inv': + ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2. + (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → a=a'. + intros 6; + cut (∀a,a': continuous_relation_setoid o1 o2. + (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → + ∀V:o2. A ? (ext ?? a' V) ⊆ A ? (ext ?? a V)); + [2: clear b H a' a; intros; + lapply depth=0 (λV.saturation_expansive ??? (extS ?? a V)); [2: apply A_is_saturation;|skip] + (* fundamental adjunction here! to be taken out *) + cut (∀V:Ω \sup o2.V ⊆ minus_star_image ?? a (A ? (extS ?? a V))); + [2: intro; intros 2; unfold minus_star_image; simplify; intros; + apply (Hletin V1 x); whd; split; [ exact I | exists; [apply a1] split; assumption]] + clear Hletin; + cut (∀V:Ω \sup o2.V ⊆ minus_star_image ?? a' (A ? (extS ?? a V))); + [2: intro; apply (. #‡(H ?)); apply Hcut] clear H Hcut; + (* second half of the fundamental adjunction here! to be taken out too *) + intro; lapply (Hcut1 (singleton ? V)); clear Hcut1; + unfold minus_star_image in Hletin; unfold singleton in Hletin; simplify in Hletin; + whd in Hletin; whd in Hletin:(?→?→%); simplify in Hletin; + apply (if ?? (A_is_saturation ???)); + intros 2 (x H); lapply (Hletin V ? x ?); + [ apply refl | cases H; assumption; ] + change with (x ∈ A ? (ext ?? a V)); + apply (. #‡(†(extS_singleton ????))); + assumption;] + split; apply Hcut; [2: assumption | intro; apply sym1; apply H] +qed. + +definition continuous_relation_comp: + ∀o1,o2,o3. + continuous_relation_setoid o1 o2 → + continuous_relation_setoid o2 o3 → + continuous_relation_setoid o1 o3. + intros (o1 o2 o3 r s); constructor 1; + [ apply (s ∘ r) + | intros; + apply sym1; + apply (.= †(image_comp ??????)); + apply (.= (reduced ?????)\sup -1); + [ apply (.= (reduced ?????)); [ assumption | apply refl1 ] + | apply (.= (image_comp ??????)\sup -1); + apply refl1] + | intros; + apply sym1; + apply (.= †(minus_star_image_comp ??????)); + apply (.= (saturated ?????)\sup -1); + [ apply (.= (saturated ?????)); [ assumption | apply refl1 ] + | apply (.= (minus_star_image_comp ??????)\sup -1); + apply refl1]] +qed. + +definition BTop: category1. + constructor 1; + [ apply basic_topology + | apply continuous_relation_setoid + | intro; constructor 1; + [ apply id1 + | intros; + apply (.= (image_id ??)); + apply sym1; + apply (.= †(image_id ??)); + apply sym1; + assumption + | intros; + apply (.= (minus_star_image_id ??)); + apply sym1; + apply (.= †(minus_star_image_id ??)); + apply sym1; + assumption] + | intros; constructor 1; + [ apply continuous_relation_comp; + | intros; simplify; intro x; simplify; + lapply depth=0 (continuous_relation_eq' ???? H) as H'; + lapply depth=0 (continuous_relation_eq' ???? H1) as H1'; + letin K ≝ (λX.H1' (minus_star_image ?? a (A ? X))); clearbody K; + cut (∀X:Ω \sup o1. + minus_star_image o2 o3 b (A o2 (minus_star_image o1 o2 a (A o1 X))) + = minus_star_image o2 o3 b' (A o2 (minus_star_image o1 o2 a' (A o1 X)))); + [2: intro; apply sym1; apply (.= #‡(†((H' ?)\sup -1))); apply sym1; apply (K X);] + clear K H' H1'; + cut (∀X:Ω \sup o1. + minus_star_image o1 o3 (b ∘ a) (A o1 X) = minus_star_image o1 o3 (b'∘a') (A o1 X)); + [2: intro; + apply (.= (minus_star_image_comp ??????)); + apply (.= #‡(saturated ?????)); + [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ] + apply sym1; + apply (.= (minus_star_image_comp ??????)); + apply (.= #‡(saturated ?????)); + [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ] + apply ((Hcut X) \sup -1)] + clear Hcut; generalize in match x; clear x; + apply (continuous_relation_eq_inv'); + apply Hcut1;] + | intros; simplify; intro; do 2 (unfold continuous_relation_comp); simplify; + apply (.= †(ASSOC1‡#)); + apply refl1 + | intros; simplify; intro; unfold continuous_relation_comp; simplify; + apply (.= †((id_neutral_right1 ????)‡#)); + apply refl1 + | intros; simplify; intro; simplify; + apply (.= †((id_neutral_left1 ????)‡#)); + apply refl1] +qed. + +(*CSC: unused! *) +(* this proof is more logic-oriented than set/lattice oriented *) +theorem continuous_relation_eqS: + ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2. + a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X). + intros; + cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y); + [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split; + try assumption; split; assumption] + cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y)); + [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption; + apply (. #‡(H1 ?)); + apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x); + assumption;] clear Hcut; + split; apply (if ?? (A_is_saturation ???)); intros 2; + [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)] + cases Hletin; clear Hletin; cases x; clear x; + cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X); + [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption; + exists [1,3: apply w] split; assumption;] + cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X)); + [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;] + apply Hcut2; assumption. +qed.