From: Andrea Asperti Date: Mon, 12 Dec 2011 12:30:25 +0000 (+0000) Subject: Generalization to any alphabet. We do not need a finite X-Git-Tag: make_still_working~2036 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=ee26195bd2cd4f7096cd5c76f1cf082f7322c8a4;p=helm.git Generalization to any alphabet. We do not need a finite alphabet since in any case the chars occurring in the regular expressions are finite. --- diff --git a/matita/matita/lib/re/moves.ma b/matita/matita/lib/re/moves.ma index cb7d139f4..b2f53bb6f 100644 --- a/matita/matita/lib/re/moves.ma +++ b/matita/matita/lib/re/moves.ma @@ -149,17 +149,21 @@ theorem equiv_sem: ∀S:DeqSet.∀e1,e2:pre S. |#H #w1 @iff_trans [||@decidable_sem] moves_cons >moves_cons // +qed. definition in_moves ≝ λS:DeqSet.λw.λe:pre S. \snd(w ↦* e). +(* coinductive equiv (S:DeqSet) : pre S → pre S → Prop ≝ mk_equiv: ∀e1,e2: pre S. \snd e1 = \snd e2 → (∀x. equiv S (move ? x (\fst e1)) (move ? x (\fst e2))) → equiv S e1 e2. +*) definition beqb ≝ λb1,b2. match b1 with @@ -190,8 +194,8 @@ let rec beqitem S (i1,i2: pitem S) on i1 ≝ axiom beqitem_ok: ∀S,i1,i2. iff (beqitem S i1 i2 = true) (i1 = i2). -definition BinItem ≝ - mk_DeqSet (pitem Bin) (beqitem Bin) (beqitem_ok Bin). +definition DeqItem ≝ λS. + mk_DeqSet (pitem S) (beqitem S) (beqitem_ok S). definition beqpre ≝ λS:DeqSet.λe1,e2:pre S. beqitem S (\fst e1) (\fst e2) ∧ beqb (\snd e1) (\snd e2). @@ -203,24 +207,22 @@ axiom beqpairs_ok: ∀S,p1,p2. iff (beqpairs S p1 p2 = true) (p1 = p2). definition space ≝ λS.mk_DeqSet ((pre S)×(pre S)) (beqpairs S) (beqpairs_ok S). -definition sons ≝ λp:space Bin. - [〈move Bin true (\fst (\fst p)), move Bin true (\fst (\snd p))〉; - 〈move Bin false (\fst (\fst p)), move Bin false (\fst (\snd p))〉 - ]. +(* (sons S l p) computes all sons of p relative to characters in l *) + +definition sons ≝ λS:DeqSet.λl:list S.λp:space S. + map ?? (λa.〈move S a (\fst (\fst p)),move S a (\fst (\snd p))〉) l. -axiom memb_sons: ∀p,q. memb (space Bin) p (sons q) = true → +lemma memb_sons: ∀S,l,p,q. memb (space S) p (sons S l q) = true → ∃a.(move ? a (\fst (\fst q)) = \fst p ∧ move ? a (\fst (\snd q)) = \snd p). +#S #l elim l [#p #q normalize in ⊢ (%→?); #abs @False_ind /2/] +#a #tl #Hind #p #q #H cases (orb_true_l … H) -H + [#H @(ex_intro … a) <(proj1 … (eqb_true …)H) /2/ + |#H @Hind @H + ] +qed. -(* -let rec test_sons (l:list (space Bin)) ≝ - match l with - [ nil ⇒ true - | cons hd tl ⇒ - beqb (\snd (\fst hd)) (\snd (\snd hd)) ∧ test_sons tl - ]. *) - -let rec bisim (n:nat) (frontier,visited: list (space Bin)) ≝ +let rec bisim S l n (frontier,visited: list (space S)) on n ≝ match n with [ O ⇒ 〈false,visited〉 (* assert false *) | S m ⇒ @@ -228,14 +230,14 @@ let rec bisim (n:nat) (frontier,visited: list (space Bin)) ≝ [ nil ⇒ 〈true,visited〉 | cons hd tl ⇒ if beqb (\snd (\fst hd)) (\snd (\snd hd)) then - bisim m (unique_append ? (filter ? (λx.notb (memb ? x (hd::visited))) - (sons hd)) tl) (hd::visited) + bisim S l m (unique_append ? (filter ? (λx.notb (memb ? x (hd::visited))) + (sons S l hd)) tl) (hd::visited) else 〈false,visited〉 ] ]. -lemma unfold_bisim: ∀n.∀frontier,visited: list (space Bin). - bisim n frontier visited = +lemma unfold_bisim: ∀S,l,n.∀frontier,visited: list (space S). + bisim S l n frontier visited = match n with [ O ⇒ 〈false,visited〉 (* assert false *) | S m ⇒ @@ -243,42 +245,44 @@ lemma unfold_bisim: ∀n.∀frontier,visited: list (space Bin). [ nil ⇒ 〈true,visited〉 | cons hd tl ⇒ if beqb (\snd (\fst hd)) (\snd (\snd hd)) then - bisim m (unique_append ? (filter ? (λx.notb(memb ? x (hd::visited))) (sons hd)) tl) (hd::visited) + bisim S l m (unique_append ? (filter ? (λx.notb(memb ? x (hd::visited))) + (sons S l hd)) tl) (hd::visited) else 〈false,visited〉 ] ]. -#n cases n // qed. +#S #l #n cases n // qed. -lemma bisim_never: ∀frontier,visited: list (space Bin). - bisim O frontier visited = 〈false,visited〉. +lemma bisim_never: ∀S,l.∀frontier,visited: list (space S). + bisim S l O frontier visited = 〈false,visited〉. #frontier #visited >unfold_bisim // qed. -lemma bisim_end: ∀m.∀visited: list (space Bin). - bisim (S m) [] visited = 〈true,visited〉. +lemma bisim_end: ∀Sig,l,m.∀visited: list (space Sig). + bisim Sig l (S m) [] visited = 〈true,visited〉. #n #visisted >unfold_bisim // qed. -lemma bisim_step_true: ∀m.∀p.∀frontier,visited: list (space Bin). +lemma bisim_step_true: ∀Sig,l,m.∀p.∀frontier,visited: list (space Sig). beqb (\snd (\fst p)) (\snd (\snd p)) = true → - bisim (S m) (p::frontier) visited = - bisim m (unique_append ? (filter ? (λx.notb(memb (space Bin) x (p::visited))) (sons p)) frontier) (p::visited). -#m #p #frontier #visited #test >unfold_bisim normalize nodelta >test // + bisim Sig l (S m) (p::frontier) visited = + bisim Sig l m (unique_append ? (filter ? (λx.notb(memb (space Sig) x (p::visited))) + (sons Sig l p)) frontier) (p::visited). +#Sig #l #m #p #frontier #visited #test >unfold_bisim normalize nodelta >test // qed. -lemma bisim_step_false: ∀m.∀p.∀frontier,visited: list (space Bin). +lemma bisim_step_false: ∀Sig,l,m.∀p.∀frontier,visited: list (space Sig). beqb (\snd (\fst p)) (\snd (\snd p)) = false → - bisim (S m) (p::frontier) visited = 〈false,visited〉. -#m #p #frontier #visited #test >unfold_bisim normalize nodelta >test // + bisim Sig l (S m) (p::frontier) visited = 〈false,visited〉. +#Sig #l #m #p #frontier #visited #test >unfold_bisim normalize nodelta >test // qed. -definition visited_inv ≝ λe1,e2:pre Bin.λvisited: list (space Bin). +definition visited_inv ≝ λS.λe1,e2:pre S.λvisited: list (space S). uniqueb ? visited = true ∧ ∀p. memb ? p visited = true → - (∃w.(moves Bin w e1 = \fst p) ∧ (moves Bin w e2 = \snd p)) ∧ + (∃w.(moves S w e1 = \fst p) ∧ (moves S w e2 = \snd p)) ∧ (beqb (\snd (\fst p)) (\snd (\snd p)) = true). -definition frontier_inv ≝ λfrontier,visited: list (space Bin). +definition frontier_inv ≝ λS.λfrontier,visited: list (space S). uniqueb ? frontier = true ∧ ∀p. memb ? p frontier = true → memb ? p visited = false ∧ @@ -312,7 +316,6 @@ lemma notb_eq_false_r:∀b. b = true → notb b = false. #b cases b normalize // qed. - (* include "arithmetics/exp.ma". *) let rec pos S (i:re S) on i ≝ @@ -336,8 +339,8 @@ let rec pitem_enum S (i:re S) on i ≝ | k i ⇒ map ?? (pk S) (pitem_enum S i) ]. -axiom pitem_enum_complete: ∀i: pitem Bin. - memb BinItem i (pitem_enum ? (forget ? i)) = true. +(* axiom pitem_enum_complete: ∀S:DeqSet.∀i: pitem S. + memb ((pitem S)×(pitem S)) i (pitem_enum ? (forget ? i)) = true. *) (* #i elim i [// @@ -358,12 +361,12 @@ definition space_enum ≝ λS.λi1,i2:re S. axiom space_enum_complete : ∀S.∀e1,e2: pre S. memb (space S) 〈e1,e2〉 (space_enum S (|\fst e1|) (|\fst e2|)) = true. -lemma bisim_ok1: ∀e1,e2:pre Bin.\sem{e1}=1\sem{e2} → - ∀n.∀frontier,visited:list (space Bin). - |space_enum Bin (|\fst e1|) (|\fst e2|)| < n + |visited|→ - visited_inv e1 e2 visited → frontier_inv frontier visited → - \fst (bisim n frontier visited) = true. -#e1 #e2 #same #n elim n +lemma bisim_ok1: ∀S.∀e1,e2:pre S.\sem{e1}=1\sem{e2} → + ∀l,n.∀frontier,visited:list (space S). + |space_enum S (|\fst e1|) (|\fst e2|)| < n + |visited|→ + visited_inv S e1 e2 visited → frontier_inv S frontier visited → + \fst (bisim S l n frontier visited) = true. +#Sig #e1 #e2 #same #l #n elim n [#frontier #visited #abs * #unique #H @False_ind @(absurd … abs) @le_to_not_lt @sublist_length // * #e11 #e21 #membp cut ((|\fst e11| = |\fst e1|) ∧ (|\fst e21| = |\fst e2|)) @@ -374,7 +377,7 @@ lemma bisim_ok1: ∀e1,e2:pre Bin.\sem{e1}=1\sem{e2} → #p #front_tl #visited #Hn * #u_visited #vinv * #u_frontier #finv cases (finv p (memb_hd …)) #Hp * #p2 * #visited_p2 * #a * #movea1 #movea2 - cut (∃w.(moves Bin w e1 = \fst p) ∧ (moves Bin w e2 = \snd p)) + cut (∃w.(moves Sig w e1 = \fst p) ∧ (moves Sig w e2 = \snd p)) [cases (vinv … visited_p2) -vinv * #w1 * #mw1 #mw2 #_ @(ex_intro … (w1@[a])) /2/] -movea2 -movea1 -a -visited_p2 -p2 #reachp @@ -385,7 +388,7 @@ lemma bisim_ok1: ∀e1,e2:pre Bin.\sem{e1}=1\sem{e2} → [Hp whd in ⊢ (??%?); //] #p1 #H (cases (orb_true_l … H)) - [#eqp <(proj1 … (eqb_true (space Bin) ? p1) eqp) % // + [#eqp <(proj1 … (eqb_true (space Sig) ? p1) eqp) % // |#visited_p1 @(vinv … visited_p1) ] |whd % [@unique_append_unique @(andb_true_r … u_frontier)] @@ -411,47 +414,64 @@ lemma bisim_ok1: ∀e1,e2:pre Bin.\sem{e1}=1\sem{e2} → ] qed. -definition all_true ≝ λl.∀p. memb (space Bin) p l = true → +definition all_true ≝ λS.λl.∀p. memb (space S) p l = true → (beqb (\snd (\fst p)) (\snd (\snd p)) = true). -definition sub_sons ≝ λl1,l2.∀x,a. -memb (space Bin) x l1 = true → - memb (space Bin) 〈move ? a (\fst (\fst x)), move ? a (\fst (\snd x))〉 l2 = true. +definition sub_sons ≝ λS,l,l1,l2.∀x,a. +memb (space S) x l1 = true → memb S a l = true → + memb (space S) 〈move ? a (\fst (\fst x)), move ? a (\fst (\snd x))〉 l2 = true. lemma reachable_bisim: - ∀n.∀frontier,visited,visited_res:list (space Bin). - all_true visited → - sub_sons visited (frontier@visited) → - bisim n frontier visited = 〈true,visited_res〉 → - (sub_sons visited_res visited_res ∧ + ∀S,l,n.∀frontier,visited,visited_res:list (space S). + all_true S visited → + sub_sons S l visited (frontier@visited) → + bisim S l n frontier visited = 〈true,visited_res〉 → + (sub_sons S l visited_res visited_res ∧ sublist ? visited visited_res ∧ - all_true visited_res). -#n elim n + all_true S visited_res). +#S #l #n elim n [#fron #vis #vis_res #_ #_ >bisim_never #H destruct |#m #Hind * - [-Hind #vis #vis_res #allv #H normalize in ⊢ (%→?); + [(* case empty frontier *) + -Hind #vis #vis_res #allv #H normalize in ⊢ (%→?); #H1 destruct % // % // #p /2/ |#hd cases (true_or_false (beqb (\snd (\fst hd)) (\snd (\snd hd)))) - [|#H #tl #vis #vis_res #allv >(bisim_step_false … H) #_ #H1 destruct] + [|(* case head of the frontier is non ok (absurd) *) + #H #tl #vis #vis_res #allv >(bisim_step_false … H) #_ #H1 destruct] + (* frontier = hd:: tl and hd is ok *) #H #tl #visited #visited_res #allv >(bisim_step_true … H) - cut (all_true (hd::visited)) + (* new_visited = hd::visited are all ok *) + cut (all_true S (hd::visited)) [#p #H cases (orb_true_l … H) [#eqp <(proj1 … (eqb_true …) eqp) // |@allv]] + (* we now exploit the induction hypothesis *) #allh #subH #bisim cases (Hind … allh … bisim) -Hind - [* #H1 #H2 #H3 % // % // #p #H4 @H2 @memb_cons //] - #x #a #membx + [* #H1 #H2 #H3 % // % // #p #H4 @H2 @memb_cons //] + (* the only thing left to prove is the sub_sons invariant *) + #x #a #membx #memba cases (orb_true_l … membx) - [#eqhdx >(proj1 … (eqb_true …) eqhdx) - letin xa ≝ 〈move Bin a (\fst (\fst x)), move Bin a (\fst (\snd x))〉 - cases (true_or_false … (memb (space Bin) xa (x::visited))) - [#membxa @memb_append_l2 // - |#membxa @memb_append_l1 @sublist_unique_append_l1 @memb_filter_l + [(* case x = hd *) + #eqhdx >(proj1 … (eqb_true …) eqhdx) + (* xa is the son of x w.r.t. a; we must distinguish the case xa + was already visited form the case xa is new *) + letin xa ≝ 〈move S a (\fst (\fst x)), move S a (\fst (\snd x))〉 + cases (true_or_false … (memb (space S) xa (x::visited))) + [(* xa visited - trivial *) #membxa @memb_append_l2 // + |(* xa new *) #membxa @memb_append_l1 @sublist_unique_append_l1 @memb_filter_l [>membxa // - |whd in ⊢ (??(??%%)?); cases a [@memb_hd |@memb_cons @memb_hd] + |(* this can be probably improved *) + generalize in match memba; -memba elim l + [whd in ⊢ (??%?→?); #abs @False_ind /2/ + |#b #others #Hind #memba cases (orb_true_l … memba) #H + [>(proj1 … (eqb_true …) H) @memb_hd + |@memb_cons @Hind // + ] + ] ] ] - |#H1 letin xa ≝ 〈move Bin a (\fst (\fst x)), move Bin a (\fst (\snd x))〉 - cases (memb_append … (subH x a H1)) + |(* case x in visited *) + #H1 letin xa ≝ 〈move S a (\fst (\fst x)), move S a (\fst (\snd x))〉 + cases (memb_append … (subH x a H1 memba)) [#H2 (cases (orb_true_l … H2)) [#H3 @memb_append_l2 >(proj1 … (eqb_true …) H3) @memb_hd |#H3 @memb_append_l1 @sublist_unique_append_l2 @H3 @@ -461,33 +481,152 @@ lemma reachable_bisim: ] ] ] -qed. +qed. + +(* pit state *) +let rec blank_item (S: DeqSet) (i: re S) on i :pitem S ≝ + match i with + [ z ⇒ `∅ + | e ⇒ ϵ + | s y ⇒ `y + | o e1 e2 ⇒ (blank_item S e1) + (blank_item S e2) + | c e1 e2 ⇒ (blank_item S e1) · (blank_item S e2) + | k e ⇒ (blank_item S e)^* ]. + +definition pit_pre ≝ λS.λi.〈blank_item S (|i|), false〉. + +let rec occur (S: DeqSet) (i: re S) on i ≝ + match i with + [ z ⇒ [ ] + | e ⇒ [ ] + | s y ⇒ [y] + | o e1 e2 ⇒ unique_append ? (occur S e1) (occur S e2) + | c e1 e2 ⇒ unique_append ? (occur S e1) (occur S e2) + | k e ⇒ occur S e]. + +axiom memb_single: ∀S,a,x. memb S a [x] = true → a = x. + +axiom tech: ∀b. b ≠ true → b = false. +axiom tech2: ∀b. b = false → b ≠ true. + +lemma not_occur_to_pit: ∀S,a.∀i:pitem S. memb S a (occur S (|i|)) = false → + move S a i = pit_pre S i. +#S #a #i elim i // + [#x cases (true_or_false (a==x)) + [#H >(proj1 …(eqb_true …) H) whd in ⊢ ((??%?)→?); + >(proj2 …(eqb_true …) (refl …)) whd in ⊢ ((??%?)→?); #abs @False_ind /2/ + |#H normalize >H // + ] + |#i1 #i2 #Hind1 #Hind2 #H >move_cat >Hind1 [2:@tech + @(not_to_not … (tech2 … H)) #H1 @sublist_unique_append_l1 //] + >Hind2 [2:@tech @(not_to_not … (tech2 … H)) #H1 @sublist_unique_append_l2 //] + // + |#i1 #i2 #Hind1 #Hind2 #H >move_plus >Hind1 [2:@tech + @(not_to_not … (tech2 … H)) #H1 @sublist_unique_append_l1 //] + >Hind2 [2:@tech @(not_to_not … (tech2 … H)) #H1 @sublist_unique_append_l2 //] + // + |#i #Hind #H >move_star >Hind // @H + ] +qed. + +lemma move_pit: ∀S,a,i. move S a (\fst (pit_pre S i)) = pit_pre S i. +#S #a #i elim i // + [#i1 #i2 #Hind1 #Hind2 >move_cat >Hind1 >Hind2 // + |#i1 #i2 #Hind1 #Hind2 >move_plus >Hind1 >Hind2 // + |#i #Hind >move_star >Hind // + ] +qed. -axiom bisim_char: ∀e1,e2:pre Bin. -(∀w.(beqb (\snd (moves ? w e1)) (\snd (moves ? w e2))) = true) → +lemma moves_pit: ∀S,w,i. moves S w (pit_pre S i) = pit_pre S i. +#S #w #i elim w // #a #tl >moves_cons // +qed. + +lemma to_pit: ∀S,w,e. ¬ sublist S w (occur S (|\fst e|)) → + moves S w e = pit_pre S (\fst e). +#S #w elim w + [(* orribile *) + #e * #H @False_ind @H normalize #a #abs @False_ind /2/ + |#a #tl #Hind #e #H cases (true_or_false (memb S a (occur S (|\fst e|)))) + [#Htrue >moves_cons whd in ⊢ (???%); <(same_kernel … a) + @Hind >same_kernel @(not_to_not … H) #H1 #b #memb cases (orb_true_l … memb) + [#H2 <(proj1 … (eqb_true …) H2) // |#H2 @H1 //] + |#Hfalse >moves_cons >not_occur_to_pit // + ] + ] +qed. + +definition occ ≝ λS.λe1,e2:pre S. + unique_append ? (occur S (|\fst e1|)) (occur S (|\fst e2|)). + +(* definition occS ≝ λS:DeqSet.λoccur. + PSig S (λx.memb S x occur = true). *) + +lemma occ_enough: ∀S.∀e1,e2:pre S. +(∀w.(sublist S w (occ S e1 e2))→ + (beqb (\snd (moves S w e1)) (\snd (moves ? w e2))) = true) \to +∀w.(beqb (\snd (moves S w e1)) (\snd (moves ? w e2))) = true. +#S #e1 #e2 #H #w +cut (sublist S w (occ S e1 e2) ∨ ¬(sublist S w (occ S e1 e2))) +[elim w + [%1 #a normalize in ⊢ (%→?); #abs @False_ind /2/ + |#a #tl * #subtl + [cases (true_or_false (memb S a (occ S e1 e2))) #memba + [%1 whd #x #membx cases (orb_true_l … membx) + [#eqax <(proj1 … (eqb_true …) eqax) // + |@subtl + ] + |%2 @(not_to_not … (tech2 … memba)) #H1 @H1 @memb_hd + ] + |%2 @(not_to_not … subtl) #H1 #x #H2 @H1 @memb_cons // + ] + ] +|* [@H] + #H >to_pit + [2: @(not_to_not … H) #H1 #a #memba @sublist_unique_append_l1 @H1 //] + >to_pit + [2: @(not_to_not … H) #H1 #a #memba @sublist_unique_append_l2 @H1 //] + // +] +qed. + +lemma bisim_char: ∀S.∀e1,e2:pre S. +(∀w.(beqb (\snd (moves S w e1)) (\snd (moves ? w e2))) = true) → \sem{e1}=1\sem{e2}. +#S #e1 #e2 #H @(proj2 … (equiv_sem …)) #w @(proj1 …(beqb_ok …)) @H +qed. -lemma bisim_ok2: ∀e1,e2:pre Bin. - (beqb (\snd e1) (\snd e2) = true) → - ∀n.∀frontier:list (space Bin). - sub_sons [〈e1,e2〉] (frontier@[〈e1,e2〉]) → - \fst (bisim n frontier [〈e1,e2〉]) = true → \sem{e1}=1\sem{e2}. -#e1 #e2 #Hnil #n #frontier #init #bisim_true -letin visited_res ≝ (\snd (bisim n frontier [〈e1,e2〉])) -cut (bisim n frontier [〈e1,e2〉] = 〈true,visited_res〉) +lemma bisim_ok2: ∀S.∀e1,e2:pre S. + (beqb (\snd e1) (\snd e2) = true) → ∀n. + \fst (bisim S (occ S e1 e2) n (sons S (occ S e1 e2) 〈e1,e2〉) [〈e1,e2〉]) = true → + \sem{e1}=1\sem{e2}. +#S #e1 #e2 #Hnil #n +letin rsig ≝ (occ S e1 e2) +letin frontier ≝ (sons S rsig 〈e1,e2〉) +letin visited_res ≝ (\snd (bisim S rsig n frontier [〈e1,e2〉])) +#bisim_true +cut (bisim S rsig n frontier [〈e1,e2〉] = 〈true,visited_res〉) [fst_eq >snd_eq >moves_cons >moves_cons - @(Hind 〈?,?〉) @(H1 〈?,?〉) //] #all_reach -@bisim_char #w @(H3 〈?,?〉) @(all_reach w 〈?,?〉) @H2 // +cut (∀w.sublist ? w (occ S e1 e2)→∀p.memb (space S) p visited_res = true → + memb (space S) 〈moves ? w (\fst p), moves ? w (\snd p)〉 visited_res = true) + [#w elim w [//] + #a #w1 #Hind #Hsub * #e11 #e21 #visp >fst_eq >snd_eq >moves_cons >moves_cons + @(Hind ? 〈?,?〉) [#x #H4 @Hsub @memb_cons //] + @(H1 〈?,?〉) // @Hsub @memb_hd] #all_reach +@bisim_char @occ_enough +#w #Hsub @(H3 〈?,?〉) @(all_reach w Hsub 〈?,?〉) @H2 // qed. definition tt ≝ ps Bin true.