From: Ferruccio Guidi Date: Wed, 27 Jul 2011 21:25:17 +0000 (+0000) Subject: - xoa: bug fix and improvement X-Git-Tag: make_still_working~2348 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=f9201115d73cc65ab2aadc1a7c94cd52564d3b2e;p=helm.git - xoa: bug fix and improvement - *_defs: optimization - confluence: case "flat-theta" closed --- diff --git a/matita/matita/lib/lambda-delta/ground.ma b/matita/matita/lib/lambda-delta/ground.ma index 54f9da02a..d2dd9b345 100644 --- a/matita/matita/lib/lambda-delta/ground.ma +++ b/matita/matita/lib/lambda-delta/ground.ma @@ -10,8 +10,6 @@ V_______________________________________________________________ *) include "basics/list.ma". -include "lambda-delta/xoa_defs.ma". -include "lambda-delta/xoa_notation.ma". (* ARITHMETICAL PROPERTIES **************************************************) diff --git a/matita/matita/lib/lambda-delta/reduction/lpr_defs.ma b/matita/matita/lib/lambda-delta/reduction/lpr_defs.ma index 241119108..8adec5ca5 100644 --- a/matita/matita/lib/lambda-delta/reduction/lpr_defs.ma +++ b/matita/matita/lib/lambda-delta/reduction/lpr_defs.ma @@ -30,9 +30,9 @@ interpretation lemma lpr_inv_item1_aux: ∀L1,L2. L1 ⇒ L2 → ∀K1,I,V1. L1 = K1. 𝕓{I} V1 → ∃∃K2,V2. K1 ⇒ K2 & V1 ⇒ V2 & L2 = K2. 𝕓{I} V2. -#L1 #L2 #H elim H -H L1 L2 +#L1 #L2 * -L1 L2 [ #K1 #I #V1 #H destruct -| #K1 #K2 #I #V1 #V2 #HK12 #HV12 #_ #L #J #W #H destruct - K1 I V1 /2 width=5/ +| #K1 #K2 #I #V1 #V2 #HK12 #HV12 #L #J #W #H destruct - K1 I V1 /2 width=5/ ] qed. diff --git a/matita/matita/lib/lambda-delta/reduction/tpr_tpr.ma b/matita/matita/lib/lambda-delta/reduction/tpr_tpr.ma index 6e632f72d..cb2b7c947 100644 --- a/matita/matita/lib/lambda-delta/reduction/tpr_tpr.ma +++ b/matita/matita/lib/lambda-delta/reduction/tpr_tpr.ma @@ -103,7 +103,7 @@ lemma tpr_conf_flat_theta: V0 ⇒ V1 → V0 ⇒ V2 → ↑[O,1] V2 ≡ V → W0 ⇒ W2 → U0 ⇒ U2 → 𝕓{Abbr} W0. U0 ⇒ T1 → ∃∃X. 𝕗{Appl} V1. T1 ⇒ X & 𝕓{Abbr} W2. 𝕗{Appl} V. U2 ⇒ X. -#V0 #V1 #T1 #V2 #V #W0 #W2 #U0 #U2 #IH #HV01 #HV02 #HV2 #HW02 #HU02 #H +#V0 #V1 #T1 #V2 #V #W0 #W2 #U0 #U2 #IH #HV01 #HV02 #HV2 #HW02 #HU02 #H elim (IH … HV01 … HV02) -HV01 HV02 // #VV #HVV1 #HVV2 elim (lift_total VV 0 1) #VVV #HVV lapply (tpr_lift … HVV2 … HV2 … HVV) #HVVV @@ -112,10 +112,30 @@ elim (tpr_inv_abbr1 … H) -H * [ -HV2 HVV2 #WW #UU #HWW0 #HUU0 #H destruct -T1; elim (IH … HW02 … HWW0) -HW02 HWW0 // #W #HW2 #HWW elim (IH … HU02 … HUU0) -HU02 HUU0 IH // #U #HU2 #HUU + @ex2_1_intro [2: @tpr_theta |1:skip |3: @tpr_bind ] /2 width=7/ (**) (* /4 width=7/ is too slow *) +(* case 2: delta *) +| -HV2 HVV2 #WW2 #UU2 #UU #HWW2 #HUU02 #HUU2 #H destruct -T1; + elim (IH … HW02 … HWW2) -HW02 HWW2 // #W #HW02 #HWW2 + elim (IH … HU02 … HUU02) -HU02 HUU02 IH // #U #HU2 #HUUU2 + elim (tpr_ps_bind … HWW2 HUUU2 … HUU2) -HUU2 HUUU2 #UUU #HUUU2 #HUUU1 @ex2_1_intro - [2: @tpr_theta [5: @HVV1 |6: @HVV |7:// by {}; (*@HWW*) |8: @HUU |1,2,3,4:skip ] - |3: @tpr_bind [ @HW2 | @tpr_flat [ @HVVV | @HU2 ] ] - | skip + [2: @tpr_theta + |1:skip + |3: @tpr_delta [3: @tpr_flat |1: skip ] + ] /2 width=14/ (**) (* /5 width=14/ is too slow *) +(* case 3: zeta *) +| -HW02 HVV HVVV #UU1 #HUU10 #HUUT1 + elim (tpr_inv_lift … HU02 … HUU10) -HU02 #UU #HUU2 #HUU1 + lapply (tw_lift … HUU10) -HUU10 #HUU10 + elim (IH … HUUT1 … HUU1) -HUUT1 HUU1 IH // -HUU10 #U #HU2 #HUUU2 + @ex2_1_intro + [2: @tpr_flat + |1: skip + |3: @tpr_zeta [2: @lift_flat |1: skip |3: @tpr_flat ] + ] /2 width=5/ (**) (* /5 width=5/ is too slow *) +] +qed. + (* Confluence ***************************************************************) lemma tpr_conf_aux: @@ -155,120 +175,13 @@ lemma tpr_conf_aux: | #V2 #W #U0 #T2 #HV02 #HT02 #H1 #H2 #H3 destruct -T0 X2 I @tpr_conf_flat_beta /2 width=8/ (**) (* /3 width=8/ is too slow *) (* case 8: flat, theta *) - | #V2 #V #W0 #W2 #U0 #U2 #HV02 #HW02 #HT02 #HV2 #H1 #H2 #H3 destruct -T0 X2 I + | #V2 #V #W0 #W2 #U0 #U2 #HV02 #HW02 #HT02 #HV2 #H1 #H2 #H3 destruct -T0 X2 I + @tpr_conf_flat_theta /2 width=11/ (**) (* /3 width=11/ is too slow *) +(* case 9: flat, tau *) + | #HT02 #H destruct -I // + theorem tpr_conf: ∀T0,T1,T2. T0 ⇒ T1 → T0 ⇒ T2 → ∃∃T. T1 ⇒ T & T2 ⇒ T. #T @(tw_wf_ind … T) -T /3 width=6/ qed. -*) -lemma tpr_conf_aux: - ∀T. ( - ∀T1. #T1 < #T → ∀T3,T4. T1 ⇒ T3 → T1 ⇒ T4 → - ∃∃T0. T3 ⇒ T0 & T4 ⇒ T0 - ) → - ∀U1,T1,U2,T2. U1 ⇒ T1 → U2 ⇒ T2 → - U1 = T → U2 = T → - ∃∃T0. T1 ⇒ T0 & T2 ⇒ T0. -#T #IH #U1 #T1 #U2 #T2 -* -U1 T1 -[ #k1 * -U2 T2 -(* case 1: sort, sort *) - [ #k2 #H1 #H2 destruct -T k2 // -(* case 2: sort, lref (excluded) *) - | #i2 #H1 #H2 destruct -(* case 3: sort, bind (excluded) *) - | #I2 #V21 #V22 #T21 #T22 #_ #_ #H1 #H2 destruct -(* case 4: sort, flat (excluded) *) - | #I2 #V21 #V22 #T21 #T22 #_ #_ #H1 #H2 destruct -(* case 5: sort, beta (excluded) *) - | #V21 #V22 #W2 #T21 #T22 #_ #_ #H1 #H2 destruct -(* case 6: sort, delta (excluded) *) - | #V21 #V22 #T21 #T22 #T20 #_ #_ #_ #H1 #H2 destruct -(* case 7: sort, theta (excluded) *) - | #V2 #V21 #V22 #W21 #W22 #T21 #T22 #_ #_ #_ #_ #H1 #H2 destruct -(* case 8: sort, zeta (excluded) *) - | #V2 #T21 #T22 #T20 #_ #_ #H1 #H2 destruct -(* case 9: sort, tau (excluded) *) - | #V2 #T21 #T22 #_ #H1 #H2 destruct - ] -| #i1 * -U2 T2 -(* case 10: lref, sort (excluded) broken *) - [ #k2 #H1 #H2 destruct -(* case 11: lref, sort (excluded) *) - | #i2 #H1 #H2 destruct -T i2 // -(* case 12: lref, bind (excluded) *) - | #I2 #V21 #V22 #T21 #T22 #_ #_ #H1 #H2 destruct -(* case 13: lref, flat (excluded) *) - | #I2 #V21 #V22 #T21 #T22 #_ #_ #H1 #H2 destruct -(* case 14: lref, beta (excluded) *) - | #V21 #V22 #W2 #T21 #T22 #_ #_ #H1 #H2 destruct -(* case 15: lref, delta (excluded) *) - | #V21 #V22 #T21 #T22 #T20 #_ #_ #_ #H1 #H2 destruct -(* case 16: lref, theta (excluded) *) - | #V2 #V21 #V22 #W21 #W22 #T21 #T22 #_ #_ #_ #_ #H1 #H2 destruct -(* case 17: lref, zeta (excluded) *) - | #V2 #T21 #T22 #T20 #_ #_ #H1 #H2 destruct -(* case 18: lref, tau (excluded) *) - | #V2 #T21 #T22 #_ #H1 #H2 destruct - ] -| #I1 #V11 #V12 #T11 #T12 #HV112 #HT112 * -U2 T2 -(* case 19: bind, sort (excluded) *) - [ #k2 #H1 #H2 destruct -(* case 20: bind, lref (excluded) *) - | #i2 #H1 #H2 destruct -(* case 21: bind, bind *) - | #I2 #V21 #V22 #T21 #T22 #HV212 #HT212 #H1 #H2 - destruct -T I2 V21 T21 /3 width=7/ -(* case 22: bind, flat (excluded) *) - | #I2 #V21 #V22 #T21 #T22 #_ #_ #H1 #H2 destruct -(* case 23: bind, beta (excluded) *) - | #V21 #V22 #W2 #T21 #T22 #_ #_ #H1 #H2 destruct -(* case 24: bind, delta (excluded) *) - | #V21 #V22 #T21 #T22 #T20 #_ #_ #_ #H1 #H2 destruct -(* case 25: bind, theta (excluded) *) - | #V2 #V21 #V22 #W21 #W22 #T21 #T22 #_ #_ #_ #_ #H1 #H2 destruct -(* case 26: bind, zeta *) - | #V2 #T21 #T22 #T20 #HT212 #HT220 #H1 #H2 - destruct -I1 V2 T21 T /3 width=8/ -(* case 27: bind, tau (excluded) *) - | #V2 #T21 #T22 #_ #H1 #H2 destruct - ] -| #I1 #V11 #V12 #T11 #T12 #HV112 #HT112 * -U2 T2 -(* case 28: flat, sort (excluded) *) - [ #k2 #H1 #H2 destruct -(* case 29: flat, lref (excluded) *) - | #i2 #H1 #H2 destruct -(* case 30: flat, bind (excluded) *) - | #I2 #V21 #V22 #T21 #T22 #_ #_ #H1 #H2 destruct -(* case 31: flat, flat *) - | #I2 #V21 #V22 #T21 #T22 #HV212 #HT212 #H1 #H2 - destruct -T I2 V21 T21 /3 width=7/ -(* case 32: flat, beta *) - | #V21 #V22 #W2 #T21 #T22 #HV212 #HT212 #H1 #H2 - destruct -I1 V21 T11 T /3 width=8/ (**) (* slow *) -(* case 33: flat, delta (excluded) *) - | #V21 #V22 #T21 #T22 #T20 #_ #_ #_ #H1 #H2 destruct -(* case 34: flat, theta *) - | #V2 #V21 #V22 #W21 #W22 #T21 #T22 #H212 #HV222 #HW212 #HT212 #H1 #H2 - destruct -I1 V21 T11 T // - -lemma tpr_conf_flat_theta: - ∀V11,V12,T12,V2,V22,W21,W22,T21,T22. ( - ∀T1. #T1 < #V11 + (#W21 + #T21 + 1) + 1 → - ∀T3,T4. T1 ⇒ T3 → T1 ⇒ T4 → - ∃∃T0. T3 ⇒ T0 & T4 ⇒T0 - ) → - V11 ⇒ V12 → V11 ⇒ V22 → ↑[O,1] V22 ≡ V2 → - W21 ⇒ W22 → T21 ⇒ T22 → 𝕓{Abbr} W21. T21 ⇒ T12 → - ∃∃T0. 𝕗{Appl} V12. T12 ⇒ T0 & 𝕓{Abbr} W22. 𝕗{Appl} V2. T22 ⇒T0. - -lemma tpr_conf_bind_delta: - ∀V0,V1,T0,T1,V2,T2,T. ( - ∀X. #X < #V0 + #T0 + 1 → - ∀X1,X2. X0 ⇒ X1 → X0 ⇒ X2 → - ∃∃X. X1 ⇒ X & X2⇒X - ) → - V0 ⇒ V1 → V0 ⇒ V2 → - T0 ⇒ T1 → T0 ⇒ T2 → ⋆. 𝕓{Abbr} V2 ⊢ T2 [O,1] ≫ T → - ∃∃X. 𝕓{Abbr} V1. T1 ⇒ X & 𝕓{Abbr} V2. T ⇒ X. \ No newline at end of file diff --git a/matita/matita/lib/lambda-delta/substitution/lift_defs.ma b/matita/matita/lib/lambda-delta/substitution/lift_defs.ma index 472aef809..ff2545339 100644 --- a/matita/matita/lib/lambda-delta/substitution/lift_defs.ma +++ b/matita/matita/lib/lambda-delta/substitution/lift_defs.ma @@ -27,7 +27,7 @@ inductive lift: term → nat → nat → term → Prop ≝ interpretation "relocation" 'RLift T1 d e T2 = (lift T1 d e T2). -(* The basic properties *****************************************************) +(* Basic properties *********************************************************) lemma lift_lref_ge_minus: ∀d,e,i. d + e ≤ i → ↑[d, e] #(i - e) ≡ #i. #d #e #i #H >(plus_minus_m_m i e) in ⊢ (? ? ? ? %) /3/ @@ -41,7 +41,7 @@ lemma lift_refl: ∀T,d. ↑[d, 0] T ≡ T. ] qed. -(* The basic inversion lemmas ***********************************************) +(* Basic inversion lemmas ***************************************************) lemma lift_inv_refl_aux: ∀d,e,T1,T2. ↑[d, e] T1 ≡ T2 → e = 0 → T1 = T2. #d #e #T1 #T2 #H elim H -H d e T1 T2 /3/ @@ -51,10 +51,10 @@ lemma lift_inv_refl: ∀d,T1,T2. ↑[d, 0] T1 ≡ T2 → T1 = T2. /2/ qed. lemma lift_inv_sort1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀k. T1 = ⋆k → T2 = ⋆k. -#d #e #T1 #T2 #H elim H -H d e T1 T2 // +#d #e #T1 #T2 * -d e T1 T2 // [ #i #d #e #_ #k #H destruct -| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #k #H destruct -| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #k #H destruct +| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct +| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct ] qed. @@ -63,12 +63,12 @@ lemma lift_inv_sort1: ∀d,e,T2,k. ↑[d,e] ⋆k ≡ T2 → T2 = ⋆k. lemma lift_inv_lref1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀i. T1 = #i → (i < d ∧ T2 = #i) ∨ (d ≤ i ∧ T2 = #(i + e)). -#d #e #T1 #T2 #H elim H -H d e T1 T2 +#d #e #T1 #T2 * -d e T1 T2 [ #k #d #e #i #H destruct | #j #d #e #Hj #i #Hi destruct /3/ | #j #d #e #Hj #i #Hi destruct /3/ -| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #i #H destruct -| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #i #H destruct +| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #i #H destruct +| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #i #H destruct ] qed. @@ -92,12 +92,12 @@ lemma lift_inv_bind1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀I,V1,U1. T1 = 𝕓{I} V1.U1 → ∃∃V2,U2. ↑[d,e] V1 ≡ V2 & ↑[d+1,e] U1 ≡ U2 & T2 = 𝕓{I} V2. U2. -#d #e #T1 #T2 #H elim H -H d e T1 T2 +#d #e #T1 #T2 * -d e T1 T2 [ #k #d #e #I #V1 #U1 #H destruct | #i #d #e #_ #I #V1 #U1 #H destruct | #i #d #e #_ #I #V1 #U1 #H destruct -| #J #W1 #W2 #T1 #T2 #d #e #HW #HT #_ #_ #I #V1 #U1 #H destruct /2 width=5/ -| #J #W1 #W2 #T1 #T2 #d #e #HW #HT #_ #_ #I #V1 #U1 #H destruct +| #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct /2 width=5/ +| #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct ] qed. @@ -110,12 +110,12 @@ lemma lift_inv_flat1_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀I,V1,U1. T1 = 𝕗{I} V1.U1 → ∃∃V2,U2. ↑[d,e] V1 ≡ V2 & ↑[d,e] U1 ≡ U2 & T2 = 𝕗{I} V2. U2. -#d #e #T1 #T2 #H elim H -H d e T1 T2 +#d #e #T1 #T2 * -d e T1 T2 [ #k #d #e #I #V1 #U1 #H destruct | #i #d #e #_ #I #V1 #U1 #H destruct | #i #d #e #_ #I #V1 #U1 #H destruct -| #J #W1 #W2 #T1 #T2 #d #e #HW #HT #_ #_ #I #V1 #U1 #H destruct -| #J #W1 #W2 #T1 #T2 #d #e #HW #HT #_ #_ #I #V1 #U1 #H destruct /2 width=5/ +| #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct +| #J #W1 #W2 #T1 #T2 #d #e #HW #HT #I #V1 #U1 #H destruct /2 width=5/ ] qed. @@ -125,10 +125,10 @@ lemma lift_inv_flat1: ∀d,e,T2,I,V1,U1. ↑[d,e] 𝕗{I} V1. U1 ≡ T2 → /2/ qed. lemma lift_inv_sort2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀k. T2 = ⋆k → T1 = ⋆k. -#d #e #T1 #T2 #H elim H -H d e T1 T2 // +#d #e #T1 #T2 * -d e T1 T2 // [ #i #d #e #_ #k #H destruct -| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #k #H destruct -| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #_ #_ #k #H destruct +| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct +| #I #V1 #V2 #T1 #T2 #d #e #_ #_ #k #H destruct ] qed. @@ -137,12 +137,12 @@ lemma lift_inv_sort2: ∀d,e,T1,k. ↑[d,e] T1 ≡ ⋆k → T1 = ⋆k. lemma lift_inv_lref2_aux: ∀d,e,T1,T2. ↑[d,e] T1 ≡ T2 → ∀i. T2 = #i → (i < d ∧ T1 = #i) ∨ (d + e ≤ i ∧ T1 = #(i - e)). -#d #e #T1 #T2 #H elim H -H d e T1 T2 +#d #e #T1 #T2 * -d e T1 T2 [ #k #d #e #i #H destruct | #j #d #e #Hj #i #Hi destruct /3/ | #j #d #e #Hj #i #Hi destruct "hvbox(∃∃ ident x0 break . term 19 P0 break & term 19 P1)" non associative with precedence 20 for @{ 'Ex (λ${ident x0}.$P0) (λ${ident x0}.$P1) }. -notation "hvbox(∃∃ ident x0 , ident x1 break . term 19 P0 break & term 19 P1)" +notation < "hvbox(∃∃ ident x0 break . term 19 P0 break & term 19 P1)" non associative with precedence 20 - for @{ 'Ex (λ${ident x0},${ident x1}.$P0) (λ${ident x0},${ident x1}.$P1) }. + for @{ 'Ex (λ${ident x0}:$T0.$P0) (λ${ident x0}:$T0.$P1) }. + +(* multiple existental quantifier (2, 2) *) -notation "hvbox(∃∃ ident x0 break . term 19 P0 break & term 19 P1 break & term 19 P2)" +notation > "hvbox(∃∃ ident x0 , ident x1 break . term 19 P0 break & term 19 P1)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}.λ${ident x1}.$P0) (λ${ident x0}.λ${ident x1}.$P1) }. + +notation < "hvbox(∃∃ ident x0 , ident x1 break . term 19 P0 break & term 19 P1)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.$P1) }. + +(* multiple existental quantifier (3, 1) *) + +notation > "hvbox(∃∃ ident x0 break . term 19 P0 break & term 19 P1 break & term 19 P2)" non associative with precedence 20 for @{ 'Ex (λ${ident x0}.$P0) (λ${ident x0}.$P1) (λ${ident x0}.$P2) }. -notation "hvbox(∃∃ ident x0 , ident x1 break . term 19 P0 break & term 19 P1 break & term 19 P2)" +notation < "hvbox(∃∃ ident x0 break . term 19 P0 break & term 19 P1 break & term 19 P2)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}:$T0.$P0) (λ${ident x0}:$T0.$P1) (λ${ident x0}:$T0.$P2) }. + +(* multiple existental quantifier (3, 2) *) + +notation > "hvbox(∃∃ ident x0 , ident x1 break . term 19 P0 break & term 19 P1 break & term 19 P2)" non associative with precedence 20 - for @{ 'Ex (λ${ident x0},${ident x1}.$P0) (λ${ident x0},${ident x1}.$P1) (λ${ident x0},${ident x1}.$P2) }. + for @{ 'Ex (λ${ident x0}.λ${ident x1}.$P0) (λ${ident x0}.λ${ident x1}.$P1) (λ${ident x0}.λ${ident x1}.$P2) }. -notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2)" +notation < "hvbox(∃∃ ident x0 , ident x1 break . term 19 P0 break & term 19 P1 break & term 19 P2)" non associative with precedence 20 - for @{ 'Ex (λ${ident x0},${ident x1},${ident x2}.$P0) (λ${ident x0},${ident x1},${ident x2}.$P1) (λ${ident x0},${ident x1},${ident x2}.$P2) }. + for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.$P2) }. + +(* multiple existental quantifier (3, 3) *) -notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)" +notation > "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2)" non associative with precedence 20 - for @{ 'Ex (λ${ident x0},${ident x1},${ident x2}.$P0) (λ${ident x0},${ident x1},${ident x2}.$P1) (λ${ident x0},${ident x1},${ident x2}.$P2) (λ${ident x0},${ident x1},${ident x2}.$P3) }. + for @{ 'Ex (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P0) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P1) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P2) }. -notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)" +notation < "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2)" non associative with precedence 20 - for @{ 'Ex (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P0) (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P1) (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P2) (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P3) }. + for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P2) }. + +(* multiple existental quantifier (4, 3) *) -notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)" +notation > "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)" non associative with precedence 20 - for @{ 'Ex (λ${ident x0},${ident x1},${ident x2}.$P0) (λ${ident x0},${ident x1},${ident x2}.$P1) (λ${ident x0},${ident x1},${ident x2}.$P2) (λ${ident x0},${ident x1},${ident x2}.$P3) (λ${ident x0},${ident x1},${ident x2}.$P4) }. + for @{ 'Ex (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P0) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P1) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P2) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P3) }. -notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)" +notation < "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)" non associative with precedence 20 - for @{ 'Ex (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P0) (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P1) (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P2) (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P3) (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P4) }. + for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P2) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P3) }. + +(* multiple existental quantifier (4, 4) *) + +notation > "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.$P0) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.$P1) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.$P2) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.$P3) }. + +notation < "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.$P2) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.$P3) }. + +(* multiple existental quantifier (5, 3) *) -notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5)" +notation > "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)" non associative with precedence 20 - for @{ 'Ex (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P0) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P1) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P2) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P3) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P4) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P5) }. + for @{ 'Ex (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P0) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P1) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P2) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P3) (λ${ident x0}.λ${ident x1}.λ${ident x2}.$P4) }. -notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5 break & term 19 P6)" +notation < "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)" non associative with precedence 20 - for @{ 'Ex (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P0) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P1) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P2) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P3) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P4) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P5) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P6) }. + for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P2) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P3) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.$P4) }. + +(* multiple existental quantifier (5, 4) *) + +notation > "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.$P0) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.$P1) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.$P2) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.$P3) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.$P4) }. + +notation < "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.$P2) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.$P3) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.$P4) }. + +(* multiple existental quantifier (6, 6) *) + +notation > "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P0) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P1) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P2) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P3) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P4) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P5) }. + +notation < "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P2) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P3) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P4) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P5) }. + +(* multiple existental quantifier (7, 6) *) + +notation > "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5 break & term 19 P6)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P0) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P1) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P2) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P3) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P4) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P5) (λ${ident x0}.λ${ident x1}.λ${ident x2}.λ${ident x3}.λ${ident x4}.λ${ident x5}.$P6) }. + +notation < "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5 break & term 19 P6)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P0) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P1) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P2) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P3) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P4) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P5) (λ${ident x0}:$T0.λ${ident x1}:$T1.λ${ident x2}:$T2.λ${ident x3}:$T3.λ${ident x4}:$T4.λ${ident x5}:$T5.$P6) }. + +(* multiple disjunction connective (3) *) notation "hvbox(∨∨ term 29 P0 break | term 29 P1 break | term 29 P2)" non associative with precedence 30 for @{ 'Or $P0 $P1 $P2 }. +(* multiple disjunction connective (4) *) + notation "hvbox(∨∨ term 29 P0 break | term 29 P1 break | term 29 P2 break | term 29 P3)" non associative with precedence 30 for @{ 'Or $P0 $P1 $P2 $P3 }.