From: Claudio Sacerdoti Coen Date: Mon, 21 Nov 2005 19:16:51 +0000 (+0000) Subject: Proof using function induction terminated. It's really gorgeous. X-Git-Tag: V_0_7_2_3~11 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=fd7ae775b0f6c3bdd6343975ce2a859e8c3c5c94;p=helm.git Proof using function induction terminated. It's really gorgeous. --- diff --git a/helm/matita/library/list/sort.ma b/helm/matita/library/list/sort.ma index 455462d8d..e620ed536 100644 --- a/helm/matita/library/list/sort.ma +++ b/helm/matita/library/list/sort.ma @@ -49,6 +49,43 @@ let rec insert (A:Set) (le: A → A → bool) x (l: list A) on l ≝ ] ]. +lemma insert_ind : + ∀A:Set. ∀le: A → A → bool. ∀x. + ∀P:(list A → list A → Prop). + ∀H:(∀l: list A. l=[] → P [] [x]). + ∀H2: + (∀l: list A. ∀he. ∀l'. P l' (insert ? le x l') → + le x he = false → l=he::l' → P (he::l') (he::(insert ? le x l'))). + ∀H3: + (∀l: list A. ∀he. ∀l'. P l' (insert ? le x l') → + le x he = true → l=he::l' → P (he::l') (x::he::l')). + ∀l:list A. P l (insert ? le x l). + intros. + apply ( + let rec insert_ind (l: list A) \def + match l in list + return + λli. + l = li → P li (insert ? le x li) + with + [ nil ⇒ H l + | (cons he l') ⇒ + match le x he + return + λb. le x he = b → l = he::l' → + P (he::l') + (match b with + [ true ⇒ x::he::l' + | false ⇒ he::(insert ? le x l') ]) + with + [ true ⇒ H2 l he l' (insert_ind l') + | false ⇒ H1 l he l' (insert_ind l') + ] + (refl_eq ? (le x he)) + ] (refl_eq ? l) in insert_ind l). +qed. + + let rec insertionsort (A:Set) (le: A → A → bool) (l: list A) on l ≝ match l with [ nil ⇒ [] @@ -90,59 +127,34 @@ lemma ordered_injective: ]. qed. - lemma insert_sorted: \forall A:Set. \forall le:A\to A\to bool. (\forall a,b:A. le a b = false \to le b a = true) \to \forall l:list A. \forall x:A. ordered A le l = true \to ordered A le (insert A le x l) = true. intros 5 (A le H l x). - apply ( - let rec insert_ind (l: list A) \def - match l in list - return - λli. - l = li → ordered ? le li = true → - ordered ? le (insert A le x li) = true - with - [ nil ⇒ ? - | (cons he l') ⇒ - match le x he - return - λb. le x he = b → l = he::l' → - ordered ? le (he::l') = true → ordered ? le - (match b with - [ true ⇒ x::he::l' - | false ⇒ he::(insert A le x l') ]) = true - with - [ true ⇒ ? - | false ⇒ let res ≝ insert_ind l' in ? - ] - (refl_eq ? (le x he)) - ] (refl_eq ? l) in insert_ind l); - - intros; simplify; - [ rewrite > insert_ind; - [ generalize in match (H ? ? H1); clear H1; intro; - generalize in match H3; clear H3; + apply (insert_ind ? ? ? (λl,il. ordered ? le l = true → ordered ? le il = true)); + intros; simplify; intros; + [2: rewrite > H1; + [ generalize in match (H ? ? H2); clear H2; intro; + generalize in match H4; clear H4; elim l'; simplify; - [ rewrite > H4; + [ rewrite > H5; reflexivity | elim (le x s); simplify; - [ rewrite > H4; + [ rewrite > H5; reflexivity - | simplify in H3; - rewrite > (andb_true_true ? ? H3); + | simplify in H4; + rewrite > (andb_true_true ? ? H4); reflexivity ] ] - - | apply (ordered_injective ? ? ? H3) + | apply (ordered_injective ? ? ? H4) ] - | rewrite > H1; - rewrite > H3; - reflexivity | reflexivity + | rewrite > H2; + rewrite > H4; + reflexivity ]. qed.