From 05958b9e55bdbbde3b61211633237ebeaa07bb6d Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Sun, 21 Dec 2008 21:47:57 +0000 Subject: [PATCH] bleah --- .../formal_topology/overlap/o-algebra.ma | 144 ++++++++++++++---- 1 file changed, 115 insertions(+), 29 deletions(-) diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index 4dcf99b8b..9e8b473b6 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -17,7 +17,11 @@ include "logic/cprop_connectives.ma". inductive bool : Type := true : bool | false : bool. +<<<<<<< .mine +lemma BOOL : setoid. +======= lemma BOOL : objs1 SET. +>>>>>>> .r9407 constructor 1; [apply bool] constructor 1; [ intros (x y); apply (match x with [ true ⇒ match y with [ true ⇒ True | _ ⇒ False] | false ⇒ match y with [ true ⇒ False | false ⇒ True ]]); | whd; simplify; intros; cases x; apply I; @@ -33,10 +37,14 @@ coercion hint. lemma IF_THEN_ELSE_p : ∀S:setoid.∀a,b:S.∀x,y:BOOL.x = y → - let f ≝ λm.match m with [ true ⇒ a | false ⇒ b ] in f x = f y. + (λm.match m with [ true ⇒ a | false ⇒ b ]) x = + (λm.match m with [ true ⇒ a | false ⇒ b ]) y. intros; cases x in H; cases y; simplify; intros; try apply refl; whd in H; cases H; qed. +<<<<<<< .mine +interpretation "unary morphism comprehension with no proof" 'comprehension T P = +======= lemma if_then_else : ∀T:SET. ∀a,b:T. arrows1 SET BOOL T. intros; constructor 1; intros; [ apply (match c with [ true ⇒ t | false ⇒ t1 ]); @@ -44,24 +52,35 @@ intros; constructor 1; intros; qed. interpretation "mk " 'comprehension T P = +>>>>>>> .r9407 (mk_unary_morphism T _ P _). notation > "hvbox({ ident i ∈ s | term 19 p | by })" with precedence 90 -for @{ 'comprehension_by $s (\lambda ${ident i}. $p) $by}. +for @{ 'comprehension_by $s (λ${ident i}. $p) $by}. +notation < "hvbox({ ident i ∈ s | term 19 p })" with precedence 90 +for @{ 'comprehension_by $s (λ${ident i}:$_. $p) $by}. -interpretation "unary morphism comprehension with proof" 'comprehension_by s f p = +interpretation "unary morphism comprehension with proof" 'comprehension_by s \eta.f p = (mk_unary_morphism s _ f p). +<<<<<<< .mine +======= definition A : ∀S:SET.∀a,b:S.arrows1 SET BOOL S. apply (λS,a,b.{ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b] | IF_THEN_ELSE_p S a b}). qed. +>>>>>>> .r9407 record OAlgebra : Type := { oa_P :> SET; oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1 *) oa_overlap: binary_morphism1 oa_P oa_P CPROP; +<<<<<<< .mine + oa_meet: ∀I:setoid.unary_morphism (unary_morphism_setoid I oa_P) oa_P; + oa_join: ∀I:setoid.unary_morphism (unary_morphism_setoid I oa_P) oa_P; +======= oa_meet: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P; oa_join: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P; +>>>>>>> .r9407 oa_one: oa_P; oa_zero: oa_P; oa_leq_refl: ∀a:oa_P. oa_leq a a; @@ -75,12 +94,20 @@ record OAlgebra : Type := { oa_overlap_preservers_meet: ∀p,q.oa_overlap p q → oa_overlap p (oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q }); +<<<<<<< .mine + oa_join_split: + ∀I:setoid.∀p.∀q:I ⇒ oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); + (* + oa_base : setoid; +======= (*(oa_meet BOOL (if_then_else oa_P p q));*) oa_join_split: (* ha I → oa_P da castare a funX (ums A oa_P) *) ∀I:SET.∀p.∀q:arrows1 SET I oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i); (*oa_base : setoid; +>>>>>>> .r9407 oa_enum : ums oa_base oa_P; - oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q*) + oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q + *) oa_density: ∀p,q.(∀r.oa_overlap p r → oa_overlap q r) → oa_leq p q }. @@ -91,35 +118,39 @@ notation "hovbox(a mpadded width -150% (>)< b)" non associative with precedence for @{ 'overlap $a $b}. interpretation "o-algebra overlap" 'overlap a b = (fun1 ___ (oa_overlap _) a b). +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\emsp) \nbsp term 90 p)" +non associative with precedence 50 for @{ 'oa_meet $p }. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (ident i ∈  I) break term 90 p)" +non associative with precedence 50 for @{ 'oa_meet_mk (λ${ident i}:$I.$p) }. +notation < "hovbox(a ∧ b)" left associative with precedence 35 +for @{ 'oa_meet_mk (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }. + notation > "hovbox(∧ f)" non associative with precedence 60 for @{ 'oa_meet $f }. -notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (ident i ∈  I) break term 90 p)" non associative with precedence 50 -for @{ 'oa_meet (λ${ident i}:$I.$p) }. -notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\emsp) \nbsp term 90 p)" non associative with precedence 50 -for @{ 'oa_meet (λ${ident i}.($p $_)) }. -notation < "hovbox(a ∧ b)" left associative with precedence 50 -for @{ 'oa_meet - ($foo $bar $baz - (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) - $res) }. - -interpretation "o-algebra meet" 'oa_meet f = (fun_1 __ (oa_meet __) f). -(*interpretation "o-algebra binary meet" 'and x y = (fun_1 __ (oa_meet _ BOOL) (if_then_else _ x y)).*) - -(* -notation > "hovbox(a ∨ b)" left associative with precedence 49 -for @{ 'oa_join (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) }. +notation > "hovbox(a ∧ b)" left associative with precedence 50 +for @{ 'oa_meet (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. + +interpretation "o-algebra meet" 'oa_meet f = + (fun_1 __ (oa_meet __) f). +interpretation "o-algebra meet with explicit function" 'oa_meet_mk f = + (fun_1 __ (oa_meet __) (mk_unary_morphism _ _ f _)). + +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" +non associative with precedence 49 for @{ 'oa_join $p }. +notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈  I) break term 90 p)" +non associative with precedence 49 for @{ 'oa_join_mk (λ${ident i}:$I.$p) }. +notation < "hovbox(a ∨ b)" left associative with precedence 49 +for @{ 'oa_join_mk (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }. + notation > "hovbox(∨ f)" non associative with precedence 59 for @{ 'oa_join $f }. -notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈  I) break term 90 p)" non associative with precedence 49 -for @{ 'oa_join (λ${ident i}:$I.$p) }. -notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" non associative with precedence 49 -for @{ 'oa_join (λ${ident i}.($p $_)) }. -notation < "hovbox(a ∨ b)" left associative with precedence 49 -for @{ 'oa_join (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }. +notation > "hovbox(a ∨ b)" left associative with precedence 49 +for @{ 'oa_join (mk_unary_morphism BOOL ? (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) (IF_THEN_ELSE_p ? $a $b)) }. -interpretation "o-algebra join" 'oa_join \eta.f = (oa_join _ _ f). -*) +interpretation "o-algebra join" 'oa_join f = + (fun_1 __ (oa_join __) f). +interpretation "o-algebra join with explicit function" 'oa_join_mk f = + (fun_1 __ (oa_join __) (mk_unary_morphism _ _ f _)). record ORelation (P,Q : OAlgebra) : Type ≝ { or_f :> arrows1 SET P Q; @@ -150,8 +181,25 @@ intros (P Q); constructor 1; [ apply (ORelation P Q); | constructor 1; +<<<<<<< .mine + [ alias symbol "and" = "constructive and". + apply (λp,q. And4 (∀a.p⎻* a = q⎻* a) (∀a.p⎻ a = q⎻ a) + (∀a.p a = q a) (∀a.p* a = q* a)); + | whd; simplify; intros; repeat split; intros; apply refl; +======= [ apply (λp,q. eq1 ? p⎻* q⎻* ∧ eq1 ? p⎻ q⎻ ∧ eq1 ? p q ∧ eq1 ? p* q* ); | whd; simplify; intros; repeat split; intros; apply refl1; +>>>>>>> .r9407 +<<<<<<< .mine + | whd; simplify; intros; cases H; clear H; split; + intro a; apply sym; generalize in match a;assumption; + | whd; simplify; intros; cases H; cases H1; clear H H1; split; intro a; + [ apply (.= (H2 a)); apply H6; + | apply (.= (H3 a)); apply H7; + | apply (.= (H4 a)); apply H8; + | apply (.= (H5 a)); apply H9;]]] +qed. +======= | whd; simplify; intros; cases H; cases H1; cases H3; clear H H3 H1; repeat split; intros; apply sym1; assumption; | whd; simplify; intros; cases H; cases H1; cases H2; cases H4; cases H6; cases H8; @@ -164,7 +212,11 @@ constructor 1; |*: assumption ]]] qed. +>>>>>>> .r9407 +<<<<<<< .mine +definition ORelation_composition : ∀P,Q,R. +======= lemma hint1 : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q. intros; apply (or_f ?? c);qed. coercion hint1. @@ -175,11 +227,34 @@ lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed. coercion hint2. definition composition : ∀P,Q,R. +>>>>>>> .r9407 binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). intros; constructor 1; [ intros (F G); constructor 1; +<<<<<<< .mine + [ apply {x ∈ P | G (F x)}; intros; simplify; apply (†(†H)); + | apply {x ∈ P | G⎻* (F⎻* x)}; intros; simplify; apply (†(†H)); + | apply {x ∈ R | F* (G* x)}; intros; simplify; apply (†(†H)); + | apply {x ∈ R | F⎻ (G⎻ x)}; intros; simplify; apply (†(†H)); + | intros; simplify; + lapply (or_prop1 ?? G (F p) q) as H1; lapply (or_prop1 ?? F p (G* q)) as H2; + split; intro H; + [ apply (if1 ?? H2); apply (if1 ?? H1); apply H; + | apply (fi1 ?? H1); apply (fi1 ?? H2); apply H;] + | intros; simplify; + lapply (or_prop2 ?? G p (F⎻* q)) as H1; lapply (or_prop2 ?? F (G⎻ p) q) as H2; + split; intro H; + [ apply (if1 ?? H1); apply (if1 ?? H2); apply H; + | apply (fi1 ?? H2); apply (fi1 ?? H1); apply H;] + | intros; simplify; + lapply (or_prop3 ?? F p (G⎻ q)) as H1; lapply (or_prop3 ?? G (F p) q) as H2; + split; intro H; + [ apply (if1 ?? H1); apply (if1 ?? H2); apply H; + | apply (fi1 ?? H2); apply (fi1 ?? H1); apply H;]] +| intros; simplify; split; simplify; intros; elim DAEMON;] +======= [ apply (G ∘ F); | apply (G⎻* ∘ F⎻* ); | apply (F* ∘ G* ); @@ -204,6 +279,7 @@ constructor 1; lapply (.= ((†H1)‡#)); [8: apply Hletin; [ apply trans1; [2: lapply (prop1); [apply Hletin; *)] +>>>>>>> .r9407 qed. definition OA : category1. @@ -211,6 +287,16 @@ split; [ apply (OAlgebra); | intros; apply (ORelation_setoid o o1); | intro O; split; +<<<<<<< .mine + [1,2,3,4: constructor 1; [1,3,5,7:apply (λx.x);|*:intros;assumption] + |5,6,7:intros;split;intros; assumption;] +|4: apply ORelation_composition; +|*: elim DAEMON;] +qed. + + + +======= [1,2,3,4: apply id1; |5,6,7:intros; apply refl1;] | apply composition; @@ -218,4 +304,4 @@ split; [1,3: apply (comp_assoc1); | 2,4: apply ((comp_assoc1 ????????) \sup -1);] | intros; repeat split; unfold composition; simplify; apply id_neutral_left1; | intros; repeat split; unfold composition; simplify; apply id_neutral_right1;] -qed. \ No newline at end of file +qed.>>>>>>> .r9407 -- 2.39.2