From 08281577f00c9d178ff3227b49ab96e600917998 Mon Sep 17 00:00:00 2001 From: Andrea Asperti Date: Fri, 19 Feb 2010 07:27:31 +0000 Subject: [PATCH] Wilmer's stuff for destruct. --- .../matita/nlibrary/Plogic/equality.ma | 98 +++++++++++++++++-- 1 file changed, 90 insertions(+), 8 deletions(-) diff --git a/helm/software/matita/nlibrary/Plogic/equality.ma b/helm/software/matita/nlibrary/Plogic/equality.ma index eef0806a2..68e7aa509 100644 --- a/helm/software/matita/nlibrary/Plogic/equality.ma +++ b/helm/software/matita/nlibrary/Plogic/equality.ma @@ -14,18 +14,18 @@ include "logic/pts.ma". -ninductive eq (A:Type[3]) (x:A) : A → Prop ≝ - refl_eq : eq A x x. +ninductive eq (A:Type[2]) (x:A) : A → Prop ≝ + refl: eq A x x. interpretation "leibnitz's equality" 'eq t x y = (eq t x y). nlemma eq_rect_r: - ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type. P a (refl_eq A a) → P x p. + ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type. P a (refl A a) → P x p. #A; #a; #x; #p; ncases p; #P; #H; nassumption. nqed. nlemma eq_ind_r : - ∀A.∀a.∀P: ∀x:A. x = a → Prop. P a (refl_eq A a) → ∀x.∀p:eq ? x a.P x p. + ∀A.∀a.∀P: ∀x:A. x = a → Prop. P a (refl A a) → ∀x.∀p:eq ? x a.P x p. #A; #a; #P; #p; #x0; #p0; napply (eq_rect_r ? ? ? p0); nassumption. nqed. @@ -37,19 +37,101 @@ ncases p0; #Heq; nassumption. nqed. *) -ntheorem rewrite_l: ∀A:Type[3].∀x.∀P:A → Prop. P x → ∀y. x = y → P y. +ntheorem rewrite_l: ∀A:Type[2].∀x.∀P:A → Prop. P x → ∀y. x = y → P y. #A; #x; #P; #Hx; #y; #Heq;ncases Heq;nassumption. nqed. -ntheorem sym_eq: ∀A:Type[3].∀x,y:A. x = y → y = x. +ntheorem sym_eq: ∀A:Type[2].∀x,y:A. x = y → y = x. #A; #x; #y; #Heq; napply (rewrite_l A x (λz.z=x)); ##[ @; ##| nassumption; ##] nqed. -ntheorem rewrite_r: ∀A:Type[3].∀x.∀P:A → Prop. P x → ∀y. y = x → P y. +ntheorem rewrite_r: ∀A:Type[2].∀x.∀P:A → Prop. P x → ∀y. y = x → P y. #A; #x; #P; #Hx; #y; #Heq;ncases (sym_eq ? ? ?Heq);nassumption. nqed. -ntheorem eq_coerc: ∀A,B:Type[2].A→(A=B)→B. +ntheorem eq_coerc: ∀A,B:Type[1].A→(A=B)→B. #A; #B; #Ha; #Heq;nelim Heq; nassumption. nqed. + +ndefinition R0 ≝ λT:Type[0].λt:T.t. + +ndefinition R1 ≝ eq_rect_Type0. + +ndefinition R2 : + ∀T0:Type[0]. + ∀a0:T0. + ∀T1:∀x0:T0. a0=x0 → Type[0]. + ∀a1:T1 a0 (refl ? a0). + ∀T2:∀x0:T0. ∀p0:a0=x0. ∀x1:T1 x0 p0. R1 ?? T1 a1 ? p0 = x1 → Type[0]. + ∀a2:T2 a0 (refl ? a0) a1 (refl ? a1). + ∀b0:T0. + ∀e0:a0 = b0. + ∀b1: T1 b0 e0. + ∀e1:R1 ?? T1 a1 ? e0 = b1. + T2 b0 e0 b1 e1. +#T0;#a0;#T1;#a1;#T2;#a2;#b0;#e0;#b1;#e1; +napply (eq_rect_Type0 ????? e1); +napply (R1 ?? ? ?? e0); +napply a2; +nqed. + +ndefinition R3 : + ∀T0:Type[0]. + ∀a0:T0. + ∀T1:∀x0:T0. a0=x0 → Type[0]. + ∀a1:T1 a0 (refl ? a0). + ∀T2:∀x0:T0. ∀p0:a0=x0. ∀x1:T1 x0 p0. R1 ?? T1 a1 ? p0 = x1 → Type[0]. + ∀a2:T2 a0 (refl ? a0) a1 (refl ? a1). + ∀T3:∀x0:T0. ∀p0:a0=x0. ∀x1:T1 x0 p0.∀p1:R1 ?? T1 a1 ? p0 = x1. + ∀x2:T2 x0 p0 x1 p1.R2 ???? T2 a2 x0 p0 ? p1 = x2 → Type[0]. + ∀a3:T3 a0 (refl ? a0) a1 (refl ? a1) a2 (refl ? a2). + ∀b0:T0. + ∀e0:a0 = b0. + ∀b1: T1 b0 e0. + ∀e1:R1 ?? T1 a1 ? e0 = b1. + ∀b2: T2 b0 e0 b1 e1. + ∀e2:R2 ???? T2 a2 b0 e0 ? e1 = b2. + T3 b0 e0 b1 e1 b2 e2. +#T0;#a0;#T1;#a1;#T2;#a2;#T3;#a3;#b0;#e0;#b1;#e1;#b2;#e2; +napply (eq_rect_Type0 ????? e2); +napply (R2 ?? ? ???? e0 ? e1); +napply a3; +nqed. + +ndefinition R4 : + ∀T0:Type[0]. + ∀a0:T0. + ∀T1:∀x0:T0. eq T0 a0 x0 → Type[0]. + ∀a1:T1 a0 (refl T0 a0). + ∀T2:∀x0:T0. ∀p0:eq (T0 …) a0 x0. ∀x1:T1 x0 p0.eq (T1 …) (R1 T0 a0 T1 a1 x0 p0) x1 → Type[0]. + ∀a2:T2 a0 (refl T0 a0) a1 (refl (T1 a0 (refl T0 a0)) a1). + ∀T3:∀x0:T0. ∀p0:eq (T0 …) a0 x0. ∀x1:T1 x0 p0.∀p1:eq (T1 …) (R1 T0 a0 T1 a1 x0 p0) x1. + ∀x2:T2 x0 p0 x1 p1.eq (T2 …) (R2 T0 a0 T1 a1 T2 a2 x0 p0 x1 p1) x2 → Type[0]. + ∀a3:T3 a0 (refl T0 a0) a1 (refl (T1 a0 (refl T0 a0)) a1) + a2 (refl (T2 a0 (refl T0 a0) a1 (refl (T1 a0 (refl T0 a0)) a1)) a2). + ∀T4:∀x0:T0. ∀p0:eq (T0 …) a0 x0. ∀x1:T1 x0 p0.∀p1:eq (T1 …) (R1 T0 a0 T1 a1 x0 p0) x1. + ∀x2:T2 x0 p0 x1 p1.∀p2:eq (T2 …) (R2 T0 a0 T1 a1 T2 a2 x0 p0 x1 p1) x2. + ∀x3:T3 x0 p0 x1 p1 x2 p2.∀p3:eq (T3 …) (R3 T0 a0 T1 a1 T2 a2 T3 a3 x0 p0 x1 p1 x2 p2) x3. + Type[0]. + ∀a4:T4 a0 (refl T0 a0) a1 (refl (T1 a0 (refl T0 a0)) a1) + a2 (refl (T2 a0 (refl T0 a0) a1 (refl (T1 a0 (refl T0 a0)) a1)) a2) + a3 (refl (T3 a0 (refl T0 a0) a1 (refl (T1 a0 (refl T0 a0)) a1) + a2 (refl (T2 a0 (refl T0 a0) a1 (refl (T1 a0 (refl T0 a0)) a1)) a2)) + a3). + ∀b0:T0. + ∀e0:eq (T0 …) a0 b0. + ∀b1: T1 b0 e0. + ∀e1:eq (T1 …) (R1 T0 a0 T1 a1 b0 e0) b1. + ∀b2: T2 b0 e0 b1 e1. + ∀e2:eq (T2 …) (R2 T0 a0 T1 a1 T2 a2 b0 e0 b1 e1) b2. + ∀b3: T3 b0 e0 b1 e1 b2 e2. + ∀e3:eq (T3 …) (R3 T0 a0 T1 a1 T2 a2 T3 a3 b0 e0 b1 e1 b2 e2) b3. + T4 b0 e0 b1 e1 b2 e2 b3 e3. +#T0;#a0;#T1;#a1;#T2;#a2;#T3;#a3;#T4;#a4;#b0;#e0;#b1;#e1;#b2;#e2;#b3;#e3; +napply (eq_rect_Type0 ????? e3); +napply (R3 ????????? e0 ? e1 ? e2); +napply a4; +nqed. + +naxiom streicherK : ∀T:Type[0].∀t:T.∀P:t = t → Type[2].P (refl ? t) → ∀p.P p. \ No newline at end of file -- 2.39.2