From 08d8e4e422aafdc11e4230a87f2adee7facad809 Mon Sep 17 00:00:00 2001 From: Enrico Zoli Date: Mon, 6 Nov 2006 18:43:24 +0000 Subject: [PATCH] More work on groups, real numbers and integration algebras. Up to a thousand of unproved lemmas, we have the result that the distance induced by the integral on an integration Riesz space is a distance. The next step is to axiomatise an L-space (an integration Riesz space complete w.r.t. the induced distance). --- matita/dama/groups.ma | 11 +++ matita/dama/integration_algebras.ma | 118 +++++++++++++++++++++++++++- matita/dama/reals.ma | 49 +++++++++++- 3 files changed, 175 insertions(+), 3 deletions(-) diff --git a/matita/dama/groups.ma b/matita/dama/groups.ma index 1b39c1518..699bd73fc 100644 --- a/matita/dama/groups.ma +++ b/matita/dama/groups.ma @@ -126,4 +126,15 @@ theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x=x. rewrite > plus_comm; rewrite > opp_inverse; reflexivity. +qed. + +theorem eq_zero_opp_zero: ∀G:abelian_group.0=-0. + [ assumption + | intros; + apply (cancellationlaw ? 0); + rewrite < plus_comm in ⊢ (? ? ? %); + rewrite > opp_inverse; + rewrite > zero_neutral; + reflexivity + ]. qed. \ No newline at end of file diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index 28185a785..534882ff2 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -39,11 +39,68 @@ record is_semi_norm (R:real) (V: vector_space R) (semi_norm:V→R) : Prop \def sn_triangle_inequality: ∀x,y:V. semi_norm (x + y) ≤ semi_norm x + semi_norm y }. +theorem eq_semi_norm_zero_zero: + ∀R:real.∀V:vector_space R.∀semi_norm:V→R. + is_semi_norm ? ? semi_norm → + semi_norm 0 = 0. + intros; + (* facile *) + elim daemon. +qed. + record is_norm (R:real) (V:vector_space R) (norm:V → R) : Prop \def { n_semi_norm:> is_semi_norm ? ? norm; n_properness: ∀x:V. norm x = 0 → x = 0 }. +record is_semi_distance (R:real) (C:Type) (semi_d: C→C→R) : Prop \def + { sd_positive: ∀x,y:C. 0 ≤ semi_d x y; + sd_properness: \forall x:C. semi_d x x = 0; + sd_triangle_inequality: ∀x,y,z:C. semi_d x z ≤ semi_d x y + semi_d z y + }. + +record is_distance (R:real) (C:Type) (d:C→C→R) : Prop \def + { d_semi_distance:> is_semi_distance ? ? d; + d_properness: ∀x,y:C. d x y = 0 → x=y + }. + +definition induced_distance ≝ + λR:real.λV:vector_space R.λnorm:V→R. + λf,g:V.norm (f - g). + +theorem induced_distance_is_distance: + ∀R:real.∀V:vector_space R.∀norm:V→R. + is_norm ? ? norm → is_distance ? ? (induced_distance ? ? norm). + intros; + apply mk_is_distance; + [ apply mk_is_semi_distance; + [ unfold induced_distance; + intros; + apply sn_positive; + apply n_semi_norm; + assumption + | unfold induced_distance; + intros; + unfold minus; + rewrite < plus_comm; + rewrite > opp_inverse; + apply eq_semi_norm_zero_zero; + apply n_semi_norm; + assumption + | unfold induced_distance; + intros; + (* ??? *) + elim daemon + ] + | unfold induced_distance; + intros; + generalize in match (n_properness ? ? ? H ? H1); + intro; + (* facile *) + elim daemon + ]. +qed. + record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def { (* abelian semigroup properties *) l_comm_j: symmetric ? join; @@ -66,6 +123,11 @@ definition le \def λC:Type.λL:lattice C.λf,g. meet ? L f g = f. interpretation "Lattice le" 'leq a b = (cic:/matita/integration_algebras/le.con _ _ a b). +definition lt \def λC:Type.λL:lattice C.λf,g. le ? L f g ∧ f ≠ g. + +interpretation "Lattice lt" 'lt a b = + (cic:/matita/integration_algebras/lt.con _ _ a b). + definition carrier_of_lattice ≝ λC:Type.λL:lattice C.C. @@ -113,7 +175,10 @@ definition is_weak_unit ≝ 2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value? λR:real.λV:archimedean_riesz_space R.λunit: V. ∀x:V. meet x unit = 0 → u = 0. -*) λR:real.λV:archimedean_riesz_space R.λe:V.True. + 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces + only. We pick this definition for now. +*) λR:real.λV:archimedean_riesz_space R.λe:V. + ∀v:V. lt ? V 0 v → lt ? V 0 (meet ? V v e). (* Here we are avoiding a construction (the quotient space to define f=g iff I(|f-g|)=0 *) @@ -139,9 +204,58 @@ record integration_riesz_space (R:real) : Type \def ) * irs_unit))) 0; irs_quotient_space1: ∀f,g:irs_archimedean_riesz_space. - f=g → integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 + integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 → f=g }. +definition induced_norm ≝ + λR:real.λV:integration_riesz_space R.λf:V. + integral ? ? (absolute_value ? ? f). + +lemma induced_norm_is_norm: + ∀R:real.∀V:integration_riesz_space R.is_norm ? V (induced_norm ? V). + intros; + apply mk_is_norm; + [ apply mk_is_semi_norm; + [ unfold induced_norm; + intros; + apply i_positive; + [ apply (irs_integral_properties ? V) + | (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm; + (* facile *) + elim daemon + | intros; + unfold induced_norm; + (* difficile *) + elim daemon + ] + | intros; + unfold induced_norm in H; + apply irs_quotient_space1; + unfold minus; + rewrite < plus_comm; + rewrite < eq_zero_opp_zero; + rewrite > zero_neutral; + assumption + ]. +qed. + +definition distance_induced_by_integral ≝ + λR:real.λV:integration_riesz_space R. + induced_distance ? ? (induced_norm R V). + +theorem distance_induced_by_integral_is_distance: + ∀R:real.∀V:integration_riesz_space R. + is_distance ? ? (distance_induced_by_integral ? V). + intros; + unfold distance_induced_by_integral; + apply induced_distance_is_distance; + apply induced_norm_is_norm. +qed. + record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop ≝ { (* ring properties *) diff --git a/matita/dama/reals.ma b/matita/dama/reals.ma index 336bfe2e7..63f487899 100644 --- a/matita/dama/reals.ma +++ b/matita/dama/reals.ma @@ -121,4 +121,51 @@ definition max: ∀R:real.R → R → R. apply cauchy_max_seq. qed. -definition abs \def λR:real.λx:R. max R x (-x). \ No newline at end of file +definition abs \def λR:real.λx:R. max R x (-x). + +lemma comparison: + ∀R:real.∀f,g:nat→R. is_cauchy_seq ? f → is_cauchy_seq ? g → + (∀n:nat.f n ≤ g n) → lim ? f ? ≤ lim ? g ?. + [ assumption + | assumption + | intros; + elim daemon + ]. +qed. + +definition to_zero ≝ + λR:real.λn. + -(inv R (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n)))). + +axiom is_cauchy_seq_to_zero: ∀R:real. is_cauchy_seq ? (to_zero R). + +lemma technical1: ∀R:real.lim R (to_zero R) (is_cauchy_seq_to_zero R) = 0. + intros; + unfold lim; + elim daemon. +qed. + +lemma abs_x_ge_O: \forall R: real. \forall x:R. 0 ≤ abs R x. + intros; + unfold abs; + unfold max; + rewrite < technical1; + apply comparison; + intros; + unfold to_zero; + unfold max_seq; + elim + (to_cotransitive R (of_le R) R 0 +(inv R (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n)))) (x--x) +(lt_zero_to_le_inv_zero R (S n) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))))); + [ simplify; + (* facile *) + elim daemon + | simplify; + (* facile *) + elim daemon + ]. +qed. \ No newline at end of file -- 2.39.2