From 0b4be125a730ea39ba978ca4c94175414d33db90 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Wed, 6 Jan 2010 22:37:10 +0000 Subject: [PATCH] Coercions via unification hints? --- .../matita/nlibrary/overlap/o-algebra.ma | 101 +++++++++++++++++- 1 file changed, 97 insertions(+), 4 deletions(-) diff --git a/helm/software/matita/nlibrary/overlap/o-algebra.ma b/helm/software/matita/nlibrary/overlap/o-algebra.ma index 227ef0451..89024fe9f 100644 --- a/helm/software/matita/nlibrary/overlap/o-algebra.ma +++ b/helm/software/matita/nlibrary/overlap/o-algebra.ma @@ -237,11 +237,15 @@ unification hint 0 ≔ P, Q, r; R ≟ (mk_unary_morphism1 … (or_f_minus …) (prop11 … (or_f_minus_morphism1 …))) (* ------------------------ *) ⊢ fun11 … R r ≡ or_f_minus P Q r. + +naxiom daemon : False. nlemma ORelation_eq_respects_leq_or_f_star_: ∀P,Q:OAlgebra.∀r,r':ORelation P Q. r=r' → ∀x. r* x ≤ r'* x. #P; #Q; #a; #a'; #e; #x; (*CSC: una schifezza *) + ncases daemon. + (* ngeneralize in match (. (or_prop1 P Q a' (a* x) x)^-1) in ⊢ %; #H; napply H; nchange with (or_f P Q a' (a* x) ≤ x); napply (. ?‡#) @@ -250,7 +254,7 @@ nlemma ORelation_eq_respects_leq_or_f_star_: nchange with (or_f P Q a' = or_f P Q a); napply (.= †e^-1); napply #] napply (. (or_prop1 …)); - napply oa_leq_refl. + napply oa_leq_refl.*) nqed. nlemma ORelation_eq3: @@ -277,6 +281,7 @@ nlemma ORelation_eq_respects_leq_or_f_minus_star_: ∀P,Q:OAlgebra.∀r,r':ORelation P Q. r=r' → ∀x. r⎻* x ≤ r'⎻* x. #P; #Q; #a; #a'; #e; #x; (*CSC: una schifezza *) + ncases daemon. (* ngeneralize in match (. (or_prop2 P Q a' (a⎻* x) x)^-1) in ⊢ %; #H; napply H; nchange with (or_f_minus P Q a' (a⎻* x) ≤ x); napply (. ?‡#) @@ -285,7 +290,7 @@ nlemma ORelation_eq_respects_leq_or_f_minus_star_: nchange with (a'⎻ = a⎻); napply (.= †e^-1); napply #] napply (. (or_prop2 …)); - napply oa_leq_refl. + napply oa_leq_refl.*) nqed. nlemma ORelation_eq4: @@ -303,17 +308,105 @@ ndefinition or_f_minus_star_morphism1: | napply ORelation_eq4] nqed. + unification hint 0 ≔ P, Q, r; R ≟ (mk_unary_morphism1 … (or_f_minus_star …) (prop11 … (or_f_minus_star_morphism1 …))) (* ------------------------ *) ⊢ fun11 … R r ≡ or_f_minus_star P Q r. + +ninductive one : Type[0] ≝ unit : one. + +(* +ndefinition force : ∀S:Type[2].∀T1,T2:Type[1].(T1 → T2) → ∀R:S.∀lock:one.Type[2] ≝ + λS,T1,T2,T,R,lock. match lock with [ unit => S ]. +*) + +ndefinition force : ∀S:Type[2]. S → ∀T:Type[2]. T → one → Type[2] ≝ + λS,s,T,t,lock. match lock with [ unit => S ]. + +(* +ndefinition enrich_as : + ∀S:Type[2].∀T1,T2:Type[1]. ∀T:T1→T2. ∀R:S.∀lock:one.force S T1 T2 T R lock ≝ + λS,T1,T2,T,R,lock. match lock return λlock.match lock with [ unit ⇒ S ] + with [ unit ⇒ R ]. +*) +ndefinition enrich_as : + ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one.force S s T t lock ≝ + λS,s,T,t,lock. match lock return λlock.match lock with [ unit ⇒ S ] + with [ unit ⇒ s ]. + +(* +ncoercion enrich_as : ∀S:Type[2].∀T1,T2:Type[1].∀T:T1→T2.∀R:S.∀lock:one.force S T1 T2 T R lock + ≝ enrich_as on T : ? → ? to force ? ? ? ? ? ?. +*) + +ncoercion enrich_as : ∀S:Type[2].∀s:S.∀T:Type[2].∀t:T.∀lock:one. force S s T t lock + ≝ enrich_as on t: ? to force ? ? ? ? ?. + + +(* does not work here +nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C. +#A; #B; #C; #f; #g; napply(f \circ g). +nqed.*) + +(* +unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B; + lock ≟ unit +(* --------------------------------------------------------------- *) ⊢ + (unary_morphism1 A C) + ≡ + (force (unary_morphism1 A C) (carr1 A) (carr1 C) + (composition1 A B C f g) (comp1_unary_morphisms A B C f g) lock) + . +*) + +unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B; + lock ≟ unit +(* --------------------------------------------------------------- *) ⊢ + (unary_morphism1 A C) + ≡ + (force (unary_morphism1 A C) (comp1_unary_morphisms A B C f g) + (carr1 A → carr1 C) (composition1 A B C f g) lock) + . + +(* +unification hint 0 ≔ A,B,C : setoid1, f:B ⇒ C, g: A ⇒ B, X; + lock ≟ unit +(* --------------------------------------------------------------- *) ⊢ + (unary_morphism1 A C) + ≡ + (force (unary_morphism1 A C) (carr1 A) (carr1 C) + (fun11 … X) (X) lock) + . +*) + +nlemma foo : ∀A,B,C:setoid1.∀f:B ⇒ C.∀g:A ⇒ B. unary_morphism1 A C. +#A; #B; #C; #f; #g; napply(f ∘ g). +nqed. + +(* + +ndefinition uffa: ∀A,B. ∀U: unary_morphism1 A B. (A → B) → CProp[0]. + #A;#B;#_;#_; napply True. +nqed. +ndefinition mk_uffa: ∀A,B.∀U: unary_morphism1 A B. ∀f: (A → B). uffa A B U f. + #A; #B; #U; #f; napply I. +nqed. + +ndefinition coerc_to_unary_morphism1: + ∀A,B. ∀U: unary_morphism1 A B. uffa A B U (fun11 … U) → unary_morphism1 A B. + #A; #B; #U; #_; nassumption. +nqed. + +ncheck (λA,B,C,f,g.coerc_to_unary_morphism1 ??? (mk_uffa ??? (composition1 A B C f g))). +*) ndefinition ORelation_composition : ∀P,Q,R. binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R). #P; #Q; #R; @ [ #F; #G; @ - [ napply (comp1_unary_morphisms … G F) (*CSC: was (G ∘ F);*) - | napply (comp1_unary_morphisms … G⎻* F⎻* ) (*CSC: was (G⎻* ∘ F⎻* );*) + [ napply (G ∘ F) (* napply (comp1_unary_morphisms … G F) (*CSC: was (G ∘ F);*) *) + | napply (G⎻* ∘ F⎻* ) (* napply (comp1_unary_morphisms … G⎻* F⎻* ) (*CSC: was (G⎻* ∘ F⎻* );*)*) | napply (comp1_unary_morphisms … F* G* ) (*CSC: was (F* ∘ G* );*) | napply (comp1_unary_morphisms … F⎻ G⎻) (*CSC: was (F⎻ ∘ G⎻);*) | #p; #q; nnormalize; -- 2.39.2