From 13f687d1d7cc07a19dcf28e1624f78a3a9d9c840 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Tue, 4 Nov 2008 10:22:30 +0000 Subject: [PATCH] - A new interesting elimination principle over inductively generated topologies: the elimination principle for general topologies hold! - A proof of Cantor theorem using formal topologies. By Silvio Valentini. --- helm/software/matita/library/demo/cantor.ma | 53 +++++++++++++++++++ .../matita/library/demo/formal_topology.ma | 18 +++++++ 2 files changed, 71 insertions(+) create mode 100644 helm/software/matita/library/demo/cantor.ma diff --git a/helm/software/matita/library/demo/cantor.ma b/helm/software/matita/library/demo/cantor.ma new file mode 100644 index 000000000..3294017d7 --- /dev/null +++ b/helm/software/matita/library/demo/cantor.ma @@ -0,0 +1,53 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "demo/formal_topology.ma". +include "datatypes/constructors.ma". + +axiom A: Type. +axiom S: A → Ω \sup A. + +definition axs: axiom_set. + constructor 1; + [ apply A; + | intro; apply unit; + | intros; apply (S a)] +qed. + +definition S' : axs → Ω \sup axs ≝ S. + +definition emptyset: Ω \sup axs ≝ {x | False}. + +definition Z: Ω \sup axs ≝ {x | x ◃ emptyset}. + +theorem cantor: ∀a:axs. ¬ (Z ⊆ S' a ∧ S' a ⊆ Z). + intros 2; cases H; clear H; + cut (a ◃ S' a); + [2: constructor 2; [constructor 1 | whd in ⊢ (? ? ? % ?); autobatch]] + cut (a ◃ emptyset); + [2: apply transitivity; [apply (S' a)] + [ assumption + | constructor 1; intros; + lapply (H2 ? H); whd in Hletin; assumption]] + cut (a ∈ S' a); + [2: apply H1; whd; assumption] + generalize in match Hcut2; clear Hcut2; + change with (a ∈ {a | a ∈ S' a → False}); + apply (covers_elim ?????? Hcut1); + [ intros 2; simplify; intros; assumption; + | intros; simplify; intros; whd in H3; simplify in H3; apply (H3 a1); + [ assumption + | assumption + ]] +qed. diff --git a/helm/software/matita/library/demo/formal_topology.ma b/helm/software/matita/library/demo/formal_topology.ma index 15da20a11..56a8c4120 100644 --- a/helm/software/matita/library/demo/formal_topology.ma +++ b/helm/software/matita/library/demo/formal_topology.ma @@ -109,6 +109,24 @@ theorem transitivity: ∀A:axiom_set.∀a:A.∀U,V. a ◃ U → U ◃ V → a assumption]] qed. +theorem covers_elim2: + ∀A: axiom_set. ∀U:Ω \sup A.∀P: A → CProp. + (∀a:A. a ∈ U → P a) → + (∀a:A.∀V:Ω \sup A. a ◃ V → V ◃ U → (∀y. y ∈ V → P y) → P a) → + ∀a:A. a ◃ U → P a. + intros; + change with (a ∈ {a | P a}); + apply (covers_elim ?????? H2); + [ intros 2; simplify; apply H; assumption + | intros; + simplify in H4 ⊢ %; + apply H1; + [ apply (C ? a1 j); + | autobatch; + | assumption; + | assumption]] +qed. + theorem coreflexivity: ∀A:axiom_set.∀a:A.∀V. a ⋉ V → a ∈ V. intros; cases H; -- 2.39.2