From 1883bb697368eda63861ebbb233062f74abd20d1 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Fri, 4 Jul 2008 11:57:33 +0000 Subject: [PATCH] Compatibility finished. --- .../matita/library/demo/formal_topology.ma | 23 ++++++++++++++++--- 1 file changed, 20 insertions(+), 3 deletions(-) diff --git a/helm/software/matita/library/demo/formal_topology.ma b/helm/software/matita/library/demo/formal_topology.ma index d828f8c4e..ca544b598 100644 --- a/helm/software/matita/library/demo/formal_topology.ma +++ b/helm/software/matita/library/demo/formal_topology.ma @@ -53,8 +53,8 @@ with coversl : (2 \sup A) → CProp ≝ notation "hvbox(a break ◃ b)" non associative with precedence 45 for @{ 'covers $a $b }. -interpretation "covers" 'covers a U = (covers _ U a). interpretation "coversl" 'covers A U = (coversl _ U A). +interpretation "covers" 'covers a U = (covers _ U a). definition covers_elim ≝ λA:axiom_set.λU: 2 \sup A.λP:2 \sup A. @@ -73,10 +73,12 @@ definition covers_elim ≝ coinductive fish (A:axiom_set) (U: 2 \sup A) : A → CProp ≝ mk_fish: ∀a:A. (a ∈ U ∧ ∀j: i ? a. ∃y: A. y ∈ C ? a j ∧ fish A U y) → fish A U a. +definition fishl ≝ λA:axiom_set.λU:2 \sup A.λV:2 \sup A. ∃a. a ∈ V ∧ fish ? U a. notation "hvbox(a break ⋉ b)" non associative with precedence 45 for @{ 'fish $a $b }. +interpretation "fishl" 'fish A U = (fishl _ U A). interpretation "fish" 'fish a U = (fish _ U a). let corec fish_rec (A:axiom_set) (U: 2 \sup A) @@ -104,7 +106,7 @@ qed. theorem transitivity: ∀A:axiom_set.∀a:A.∀U,V. a ◃ U → U ◃ V → a ◃ V. intros; - apply (covers_elim ?? (mk_powerset A (λa.a ◃ V)) ??? H); intros; + apply (covers_elim ?? (mk_powerset A (λa.a ◃ V)) ??? H); simplify; intros; [ cases H1 in H2; intro; apply H2; @@ -123,11 +125,26 @@ theorem coreflexivity: ∀A:axiom_set.∀a:A.∀V. a ⋉ V → a ∈ V. qed. theorem cotransitivity: - ∀A:axiom_set.∀a:A.∀U,V. a ⋉ U → (∀b. b ⋉ U → b ∈ V) → a ⋉ V. + ∀A:axiom_set.∀a:A.∀U,V. a ⋉ U → (∀b:A. b ⋉ U → b ∈ V) → a ⋉ V. intros; apply (fish_rec ?? (mk_powerset A (λa.a ⋉ U)) ??? H); simplify; intros; [ apply H1; assumption | cases H2 in j; clear H2; cases H3; clear H3; assumption] +qed. + +theorem compatibility: ∀A:axiom_set.∀a:A.∀U,V. a ⋉ V → a ◃ U → U ⋉ V. + intros; + generalize in match H; clear H; generalize in match V; clear V; + apply (covers_elim ?? (mk_powerset A (λa.∀p:2 \sup A.a ⋉ p → U ⋉ p)) ??? H1); + clear H1; simplify; intros; + [ exists [apply a1] + split; + assumption + | cases H2 in j H H1; clear H2 a1; intros; + cases H; clear H; + cases (H4 i); clear H4; cases H; clear H; + apply (H2 w); clear H2; + assumption] qed. \ No newline at end of file -- 2.39.2