From 1936ff5bb1319f44919f1146140debc7f52f1cff Mon Sep 17 00:00:00 2001 From: Ferruccio Guidi Date: Wed, 21 Feb 2007 15:59:26 +0000 Subject: [PATCH] decompose now works without premises --- helm/software/matita/tests/decompose.ma | 4 +- helm/software/matita/tests/fguidi.ma | 2 +- .../tests/paramodulation/boolean_algebra.ma | 41 +++++++++---------- 3 files changed, 22 insertions(+), 25 deletions(-) diff --git a/helm/software/matita/tests/decompose.ma b/helm/software/matita/tests/decompose.ma index 03f43a9ca..815fcf66c 100644 --- a/helm/software/matita/tests/decompose.ma +++ b/helm/software/matita/tests/decompose.ma @@ -22,7 +22,5 @@ alias symbol "or" (instance 0) = "Coq's logical or". theorem stupid: \forall a,b,c:Prop. (a \land c \lor b \land c) \to (c \land (b \lor a)). - intros.decompose H.split.assumption.right.assumption. + intros.decompose.split.assumption.right.assumption. split.assumption.left.assumption.qed. - - diff --git a/helm/software/matita/tests/fguidi.ma b/helm/software/matita/tests/fguidi.ma index b1c17185d..5def3ec47 100644 --- a/helm/software/matita/tests/fguidi.ma +++ b/helm/software/matita/tests/fguidi.ma @@ -113,5 +113,5 @@ qed. theorem le_trans: \forall x,y. (le x y) \to \forall z. (le y z) \to (le x z). intros 1. elim x; clear H. clear x. auto paramodulation. -fwd H1 [H]. decompose H. +fwd H1 [H]. decompose. *) diff --git a/helm/software/matita/tests/paramodulation/boolean_algebra.ma b/helm/software/matita/tests/paramodulation/boolean_algebra.ma index 0d3e16f5d..85525db0e 100644 --- a/helm/software/matita/tests/paramodulation/boolean_algebra.ma +++ b/helm/software/matita/tests/paramodulation/boolean_algebra.ma @@ -62,7 +62,7 @@ theorem bool1: (inv zero) = one. intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -76,7 +76,7 @@ theorem bool2: \forall x:A. (mult x zero) = zero. intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -90,7 +90,7 @@ theorem bool3: \forall x:A. (inv (inv x)) = x. intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -104,7 +104,7 @@ theorem bool266: \forall x,y:A. (mult x (add (inv x) y)) = (mult x y). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -118,7 +118,7 @@ theorem bool507: \forall x,y:A. zero = (mult x (mult (inv x) y)). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -132,7 +132,7 @@ theorem bool515: \forall x,y:A. zero = mult (inv x) (mult x y). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -146,7 +146,7 @@ theorem bool304: \forall x,y:A. x = (mult (add y x) x). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -160,7 +160,7 @@ theorem bool531: \forall x,y:A. zero = (mult (inv (add x y)) y). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -174,7 +174,7 @@ theorem bool253: \forall x,y:A. (add (inv x) (mult y x)) = (add (inv x) y). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -189,7 +189,7 @@ theorem bool557: inv x = (add (inv x) (inv (add y x))). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -204,7 +204,7 @@ theorem bool609: inv x = (add (inv (add y x)) (inv x)). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -219,7 +219,7 @@ theorem bool260: add x (mult x y) = mult x (add x y). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -234,7 +234,7 @@ theorem bool276: (mult (add x y) (add z (add x u))) = (add (mult (add x y) z) (add x (mult y u))). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -249,7 +249,7 @@ theorem bool250: add x (mult y z) = mult (add y x) (add x z). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -332,7 +332,7 @@ theorem bool756full: add x y = add x (add y (mult x z)). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -347,7 +347,7 @@ theorem bool1164: (add x y) = (add (add x (mult y z)) y). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -392,7 +392,7 @@ theorem bool1230: add (add x y) z = add (add x y) (add z y). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -407,7 +407,7 @@ theorem bool1372: add x (add y z) = add (add x z) y. intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -422,7 +422,7 @@ theorem bool381: add (inv x) y = add (mult x y) (inv x). intros. unfold bool_algebra in H. -decompose H. +decompose auto paramodulation. qed. *) @@ -515,7 +515,6 @@ theorem bool5: (inv (mult x y)) = (add (inv x) (inv y)). intros. unfold bool_algebra in H. -decompose H. +decompose. auto paramodulation. qed. - -- 2.39.2