From 196824e1752495b174da3cdc3c8219e90d166f85 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Tue, 28 Aug 2007 15:32:32 +0000 Subject: [PATCH] * definition of implication free propositional formulas * definition of a classical semantics * proofs of correctness of some syntactical manipulations to reach normal forms * definition of sequent calculus trees * proof of soundness of sequent calculus derivations * proof of completeness of sequent calculus derivations (unfinished) --- .../demo/propositional_sequent_calculus.ma | 921 ++++++++++++++++++ 1 file changed, 921 insertions(+) create mode 100644 matita/library/demo/propositional_sequent_calculus.ma diff --git a/matita/library/demo/propositional_sequent_calculus.ma b/matita/library/demo/propositional_sequent_calculus.ma new file mode 100644 index 000000000..9bd89394d --- /dev/null +++ b/matita/library/demo/propositional_sequent_calculus.ma @@ -0,0 +1,921 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/demo/propositional_sequent_calculus/". + +include "nat/plus.ma". +include "nat/compare.ma". +include "list/sort.ma". +include "datatypes/constructors.ma". + +inductive Formula : Type ≝ + FTrue: Formula + | FFalse: Formula + | FAtom: nat → Formula + | FAnd: Formula → Formula → Formula + | FOr: Formula → Formula → Formula + | FNot: Formula → Formula. + +definition interp ≝ nat → bool. + +let rec eval (interp:interp) F on F : bool ≝ + match F with + [ FTrue ⇒ true + | FFalse ⇒ false + | FAtom n ⇒ interp n + | FAnd f1 f2 ⇒ eval interp f1 ∧ eval interp f2 + | FOr f1 f2 ⇒ eval interp f1 ∨ eval interp f2 + | FNot f ⇒ ¬ eval interp f + ]. + +inductive not_nf : Formula → Prop ≝ + NTrue: not_nf FTrue + | NFalse: not_nf FFalse + | NAtom: ∀n. not_nf (FAtom n) + | NAnd: ∀f1,f2. not_nf f1 → not_nf f2 → not_nf (FAnd f1 f2) + | NOr: ∀f1,f2. not_nf f1 → not_nf f2 → not_nf (FOr f1 f2) + | NNot: ∀n.not_nf (FNot (FAtom n)). + +let rec negate F ≝ + match F with + [ FTrue ⇒ FFalse + | FFalse ⇒ FTrue + | FAtom n ⇒ FNot (FAtom n) + | FAnd f1 f2 ⇒ FOr (negate f1) (negate f2) + | FOr f1 f2 ⇒ FAnd (negate f1) (negate f2) + | FNot f ⇒ elim_not f] +and elim_not F ≝ + match F with + [ FTrue ⇒ FTrue + | FFalse ⇒ FFalse + | FAtom n ⇒ FAtom n + | FAnd f1 f2 ⇒ FAnd (elim_not f1) (elim_not f2) + | FOr f1 f2 ⇒ FOr (elim_not f1) (elim_not f2) + | FNot f ⇒ negate f + ]. + +theorem not_nf_elim_not: ∀F.not_nf (elim_not F) ∧ not_nf (negate F). + intros; + elim F; + [1,2,3: simplify; autobatch + |4,5: + simplify; + elim H; clear H; + elim H1; clear H1; + split; + autobatch + |elim H; clear H; + split; + [ assumption + | assumption + ] + ] +qed. + +theorem demorgan1: ∀b1,b2:bool. (¬ (b1 ∧ b2)) = ¬ b1 ∨ ¬ b2. + intros; + elim b1; + simplify; + reflexivity. +qed. + +theorem demorgan2: ∀b1,b2:bool. (¬ (b1 ∨ b2)) = ¬ b1 ∧ ¬ b2. + intros; + elim b1; + simplify; + reflexivity. +qed. + +theorem eq_notb_notb_b_b: ∀b:bool. (¬ ¬ b) = b. + intro; + elim b; + reflexivity. +qed. + +theorem eq_eval_elim_not_eval: + ∀i,F. eval i (elim_not F) = eval i F ∧ eval i (negate F) = eval i (FNot F). + intros; + elim F; + [1,2,3: split; reflexivity + |4,5: + simplify; + elim H; clear H; + elim H1; clear H1; + split; + [1,3: autobatch + |replace with ((eval i (FNot f) ∨ eval i (FNot f1)) = ¬ (eval i f ∧ eval i f1)); + [ simplify; + autobatch + | autobatch + ] + |replace with ((eval i (FNot f) ∧ eval i (FNot f1)) = ¬ (eval i f ∨ eval i f1)); + [ simplify; + autobatch + | autobatch + ] + ] + |elim H; clear H; + split; + [ assumption + | change with (eval i (elim_not f) = ¬ ¬ eval i f); + autobatch + ] + ] +qed. + +definition sequent ≝ (list Formula) × (list Formula). + +inductive derive: sequent → Prop ≝ + ExchangeL: ∀l,l1,l2,f. derive 〈f::l1@l2,l〉 → derive 〈l1 @ [f] @ l2,l〉 + | ExchangeR: ∀l,l1,l2,f. derive 〈l,f::l1@l2〉 → derive 〈l,l1 @ [f] @ l2〉 + | Axiom: ∀l1,l2,f. derive 〈f::l1, f::l2〉 + | TrueR: ∀l1,l2. derive 〈l1,FTrue::l2〉 + | FalseL: ∀l1,l2. derive 〈FFalse::l1,l2〉 + | AndR: ∀l1,l2,f1,f2. + derive 〈l1,f1::l2〉 → derive 〈l1,f2::l2〉 → + derive 〈l1,FAnd f1 f2::l2〉 + | AndL: ∀l1,l2,f1,f2. + derive 〈f1 :: f2 :: l1,l2〉 → derive 〈FAnd f1 f2 :: l1,l2〉 + | OrL: ∀l1,l2,f1,f2. + derive 〈f1::l1,l2〉 → derive 〈f2::l1,l2〉 → + derive 〈FOr f1 f2 :: l1,l2〉 + | OrR: ∀l1,l2,f1,f2. + derive 〈l1,f1 :: f2 :: l2〉 → derive 〈l1,FOr f1 f2 :: l2〉 + | NotR: ∀l1,l2,f. + derive 〈f::l1,l2〉 → derive 〈l1,FNot f :: l2〉 + | NotL: ∀l1,l2,f. + derive 〈l1,f::l2〉 → derive 〈FNot f :: l1,l2〉. + +alias id "Nil" = "cic:/matita/list/list.ind#xpointer(1/1/1)". +let rec and_of_list l ≝ + match l with + [ Nil ⇒ FTrue + | Cons F l' ⇒ FAnd F (and_of_list l') + ]. + +let rec or_of_list l ≝ + match l with + [ Nil ⇒ FFalse + | Cons F l' ⇒ FOr F (or_of_list l') + ]. + +definition formula_of_sequent ≝ + λs.match s with [pair l1 l2 ⇒ FOr (FNot (and_of_list l1)) (or_of_list l2)]. + +definition is_tautology ≝ + λF. ∀i. eval i F = true. + +axiom assoc_orb: associative ? orb. +axiom symm_orb: symmetric ? orb. +axiom orb_not_b_b: ∀b:bool. (¬b ∨ b) = true. +axiom distributive_orb_andb: distributive ? orb andb. +axiom symm_andb: symmetric ? andb. +axiom associative_andb: associative ? andb. +axiom distributive_andb_orb: distributive ? andb orb. + +lemma and_of_list_permut: + ∀i,f,l1,l2. eval i (and_of_list (l1 @ (f::l2))) = eval i (and_of_list (f :: l1 @ l2)). + intros; + elim l1; + [ simplify; + reflexivity + | simplify in H ⊢ %; + rewrite > H; + autobatch paramodulation + ] +qed. + +lemma or_of_list_permut: + ∀i,f,l1,l2. eval i (or_of_list (l1 @ (f::l2))) = eval i (or_of_list (f :: l1 @ l2)). + intros; + elim l1; + [ simplify; + reflexivity + | simplify in H ⊢ %; + rewrite > H; + autobatch paramodulation + ] +qed. + +theorem soundness: ∀F. derive F → is_tautology (formula_of_sequent F). + intros; + elim H; + [ simplify in H2 ⊢ %; + intros; + lapply (H2 i); clear H2; + rewrite > and_of_list_permut; + simplify; + autobatch + | simplify in H2 ⊢ %; + intros; + lapply (H2 i); clear H2; + rewrite > or_of_list_permut; + simplify; + autobatch + | simplify; + intro; + rewrite > demorgan1; + rewrite < assoc_orb; + rewrite > assoc_orb in ⊢ (? ? (? % ?) ?); + rewrite > symm_orb in ⊢ (? ? (? (? ? %) ?) ?); + rewrite < assoc_orb; + rewrite > orb_not_b_b; + reflexivity + | simplify; + intros; + rewrite > symm_orb; + reflexivity + | simplify; + intros; + reflexivity + | simplify in H2 H4 ⊢ %; + intros; + lapply (H2 i); clear H2; + lapply (H4 i); clear H4; + rewrite > symm_orb in ⊢ (? ? (? ? %) ?); + rewrite > distributive_orb_andb; + autobatch paramodulation + | simplify in H2 ⊢ %; + intros; + lapply (H2 i); clear H2; + autobatch + | simplify in H2 H4 ⊢ %; + intros; + lapply (H2 i); clear H2; + lapply (H4 i); clear H4; + rewrite > symm_andb; + rewrite > distributive_andb_orb; + rewrite > demorgan2; + rewrite > symm_orb; + rewrite > distributive_orb_andb; + autobatch paramodulation + | simplify in H2 ⊢ %; + intros; + lapply (H2 i); clear H2; + autobatch + | simplify in H2 ⊢ %; + intros; + lapply (H2 i); clear H2; + autobatch paramodulation + | simplify in H2 ⊢ %; + intros; + lapply (H2 i); clear H2; + autobatch paramodulation + ] +qed. + +alias num (instance 0) = "natural number". +alias symbol "plus" = "natural plus". +let rec size F ≝ + match F with + [ FTrue ⇒ 0 + | FFalse ⇒ 0 + | FAtom n ⇒ 0 + | FAnd f1 f2 ⇒ S (size f1 + size f2) + | FOr f1 f2 ⇒ S (size f1 + size f2) + | FNot f ⇒ S (size f) + ]. + +let rec sizel l ≝ + match l with + [ Nil ⇒ 0 + | Cons F l' ⇒ size F + sizel l' + ]. + +definition size_of_sequent ≝ + λS.match S with [ pair l r ⇒ sizel l + sizel r]. + +axiom weakeningR: + ∀l1,l2,F. derive 〈l1,l2〉 → derive 〈l1,F::l2〉. + +definition same_atom : Formula → Formula → bool. + intros; + elim f; + [3: elim f1; + [3: apply (eqb n n1) + |*: apply false + ] + |*: apply false + ] +qed. + +definition symmetricb ≝ + λA:Type.λeq:A → A → bool. + ∀x,y. eq x y = eq y x. + +theorem symmetricb_eqb: symmetricb ? eqb. + intro; + elim x; + elim y; + [1,2,3: reflexivity + | simplify; + autobatch + ] +qed. + +theorem symmetricb_same_atom: symmetricb ? same_atom. + intro; + elim x; + [3: + elim y; + [3: + simplify; + apply symmetricb_eqb + |*: reflexivity + ] + |*: elim y; reflexivity + ] +qed. + +definition transitiveb ≝ + λA:Type.λeq:A → A → bool. + ∀x,y,z. eq x y = true → eq y z = eq x z. + +theorem transitiveb_same_atom: transitiveb ? same_atom. + intro; + elim x 0; + [3: + intros 2; + elim y 0; + [3: + intros 3; + simplify in H; + rewrite > (eqb_true_to_eq ? ? H); + reflexivity + |1,2: + intros; + simplify in H; + destruct H + |4,5: + intros; + simplify in H2; + destruct H2 + | intros; + simplify in H1; + destruct H1 + ] + |1,2: + intros; + simplify in H; + destruct H + |4,5: + intros; + simplify in H2; + destruct H2 + | intros; + simplify in H1; + destruct H1 + ] +qed. + +theorem eq_to_eq_mem: + ∀A.∀eq: A → A → bool.transitiveb ? eq → + ∀x,y,l.eq x y = true → mem ? eq x l = mem ? eq y l. + intros; + elim l; + [ reflexivity + | simplify; + rewrite > (H ? ? ? H1); + rewrite > H2; + reflexivity + ] +qed. + +theorem mem_to_exists_l1_l2: + ∀A,eq,n,l. (∀x,y. eq x y = true → x = y) → mem A eq n l = true → ∃l1,l2. l = l1 @ (n :: l2). + intros 4; + elim l; + [ simplify in H1; + destruct H1 + | simplify in H2; + apply (bool_elim ? (eq n t)); + intro; + [ apply (ex_intro ? ? []); + apply (ex_intro ? ? l1); + simplify; + rewrite > (H1 ? ? H3); + reflexivity + | rewrite > H3 in H2; + simplify in H2; + elim (H H1 H2); + elim H4; + rewrite > H5; + apply (ex_intro ? ? (t::a)); + apply (ex_intro ? ? a1); + simplify; + reflexivity + ] + ] +qed. + +lemma same_atom_to_eq: ∀f1,f2. same_atom f1 f2 = true → f1=f2. + intro; + elim f1; + [1,2: + simplify in H; + destruct H + | generalize in match H; clear H; + elim f2; + [1,2: + simplify in H; + destruct H + | simplify in H; + rewrite > (eqb_true_to_eq ? ? H); + reflexivity + |4,5: + simplify in H2; + destruct H2 + | simplify in H2; + destruct H1 + ] + |4,5: + simplify in H2; + destruct H2 + |6: + simplify in H1; + destruct H1 + ] +qed. + +lemma same_atom_to_exists: ∀f1,f2. same_atom f1 f2 = true → ∃n. f1 = FAtom n. + intro; + elim f1; + [1,2: + simplify in H; + destruct H + | autobatch + |4,5: + simplify in H2; + destruct H2 + | simplify in H1; + destruct H1 + ] +qed. + +lemma mem_same_atom_to_exists: + ∀f,l. mem ? same_atom f l = true → ∃n. f = FAtom n. + intros 2; + elim l; + [ simplify in H; + destruct H + | simplify in H1; + apply (bool_elim ? (same_atom f t)); + intros; + [ elim (same_atom_to_exists ? ? H2); + autobatch + | rewrite > H2 in H1; + simplify in H1; + elim (H H1); + autobatch + ] + ] +qed. + +lemma look_for_axiom: + ∀l1,l2. + (∃n,ll1,ll2,lr1,lr2. l1 = ll1 @ (FAtom n :: ll2) ∧ l2 = lr1 @ (FAtom n :: lr2)) + ∨ ∀n1. (mem ? same_atom (FAtom n1) l1 ∧ mem ? same_atom (FAtom n1) l2) = false. + intro; + elim l1 1; clear l1; + [ intros; + right; + intros; + simplify; + reflexivity + | intros; + generalize in match (refl_eq ? (mem ? same_atom t l2)); + elim (mem ? same_atom t l2) in ⊢ (? ? ? %→?); + [ left; + elim (mem_to_exists_l1_l2 ? ? ? ? same_atom_to_eq H1); + elim H2; clear H2; + elim (mem_same_atom_to_exists ? ? H1); + rewrite > H2 in H3; + apply (ex_intro ? ? a2); + rewrite > H2; + apply (ex_intro ? ? []); + simplify; + autobatch depth=5 + | elim (H l2); + [ left; + decompose; + apply (ex_intro ? ? a); + apply (ex_intro ? ? (t::a1)); + simplify; + apply (ex_intro ? ? a2); + apply (ex_intro ? ? a3); + autobatch + | right; + intro; + apply (bool_elim ? (same_atom t (FAtom n1))); + [ intro; + rewrite > (eq_to_eq_mem ? ? transitiveb_same_atom ? ? ? H3) in H1; + rewrite > H1; + autobatch + | intro; + change in ⊢ (? ? (? % ?) ?) with + (match same_atom (FAtom n1) t with + [true ⇒ true + |false ⇒ mem ? same_atom (FAtom n1) l + ]); + rewrite > symmetricb_same_atom; + rewrite > H3; + simplify; + apply H2 + ] + ] + ] + ] +qed. + +lemma eq_plus_n_m_O_to_eq_m_O: ∀n,m.n+m=0 → m=0. + intros 2; + elim n; + [ assumption + | simplify in H1; + destruct H1 + ] +qed. + +lemma not_eq_nil_append_cons: ∀A.∀l1,l2.∀x:A.¬ [] = l1 @ (x :: l2). + intros; + elim l1; + simplify; + intro; + [ destruct H + | destruct H1 + ] +qed. + +(*lemma foo: ∀x,l. + (¬eval + (λn:nat + .match eqb n x with  + [true⇒true|false⇒mem Formula same_atom (FAtom n) l]) (and_of_list l)) = + (¬eval + (λn:nat.mem Formula same_atom (FAtom n) l) (and_of_list l)). + intros; + elim l; + [ reflexivity + | simplify in ⊢ (? ? (? (? ? %)) ?); + change in ⊢ (? ? (? %) ?) with + (eval (λn:nat + .match eqb n x in bool return λb:bool.bool with  + [true⇒true|false⇒mem Formula same_atom (FAtom n) (t::l1)]) t + ∧ + eval (λn:nat + .match eqb n x in bool return λb:bool.bool with  + [true⇒true|false⇒mem Formula same_atom (FAtom n) (t::l1)]) + (and_of_list l1)); + + + ] +qed.*) + +axiom daemon: False. + +lemma sizel_0_no_axiom_is_tautology: + ∀l1,l2. size_of_sequent 〈l1,l2〉 = 0 → is_tautology (formula_of_sequent 〈l1,l2〉) → + (∀n. (mem ? same_atom (FAtom n) l1 ∧ mem ? same_atom (FAtom n) l2) = false) → + (∃ll1,ll2. l1 = ll1 @ (FFalse :: ll2)) ∨ (∃ll1,ll2. l2 = ll1 @ (FTrue :: ll2)). + intros; + lapply (H1 (λn.mem ? same_atom (FAtom n) l1)); clear H1; + simplify in Hletin; + generalize in match Hletin; clear Hletin; + generalize in match H2; clear H2; + generalize in match H; clear H; + elim l1 0; + [ intros; + simplify in H2; + generalize in match H2; clear H2; + generalize in match H1; clear H1; + generalize in match H; clear H; + elim l2 0; + [ intros; + simplify in H2; + destruct H2 + | simplify; + intro; + elim t; + [ right; + apply (ex_intro ? ? []); + simplify; + autobatch + | simplify in H3; + simplify in H1; + elim H; + [ elim H4; + elim H5; + elim (not_eq_nil_append_cons ? ? ? ? H6) + | elim H4; + right; + apply (ex_intro ? ? (FFalse::a)); + simplify; + elim H5; + apply (ex_intro ? ? a1); + autobatch + |3,4: autobatch + | assumption + ] + | simplify in H1 H3; + elim (H H1 H2 H3); clear H; + [ elim H4; + elim H; + elim (not_eq_nil_append_cons ? ? ? ? H5) + | right; + elim H4; + apply (ex_intro ? ? (FAtom n::a)); + simplify; + elim H; + autobatch + ] + |4,5: + simplify in H3; + destruct H3 + | simplify in H2; + destruct H2 + ] + ] + | intro; + elim t; + [ elim H; + [ left; + elim H4; + apply (ex_intro ? ? (FTrue::a)); + simplify; + elim H5; + autobatch + | right; + assumption + | assumption + | lapply (H2 n); clear H2; + simplify in Hletin; + assumption + | simplify in H3; + assumption + ] + | left; + apply (ex_intro ? ? []); + simplify; + autobatch + | elim H; + [ left; + elim H4; + apply (ex_intro ? ? (FAtom n::a)); + simplify; + elim H5; + autobatch + | right; + assumption + | assumption + | lapply (H2 n1); clear H2; + simplify in Hletin; + generalize in match Hletin; clear Hletin; + elim (eqb n1 n); + [ simplify in H2; + rewrite > H2; + autobatch + | simplify in H2; + assumption + ] + | simplify in H2; + lapply (H2 n); clear H2; + rewrite > eqb_n_n in Hletin; + simplify in Hletin; + simplify in H3; + rewrite > eqb_n_n in H3; + simplify in H3; +(* + generalize in match H3; + generalize in match H1; clear H1; + generalize in match H; clear H; + elim l 0; + [ elim l2 0; + [ intros; + simplify in H2; + destruct H2 + | intros; + simplify in H4 ⊢ %; + simplify in H; + rewrite > H; + [ autobatch + | intros; + apply H1; + | simplify in H2; + apply (eq_plus_n_m_O_to_eq_m_O ? ? H2) + | + ] + + [ autobatch + | generalize in match H4; clear H4; + generalize in match H2; clear H2; + elim t1; + [ + | + | + |4,5: + simplify in H5; + destruct H5 + | simplify in H4; + destruct H4 + ] + ] + ] + | + ] +*) elim daemon + ] + |4,5: + simplify in H3; + destruct H3 + | simplify in H2; + destruct H2 + ] + ] +qed. + +lemma completeness_base: + ∀S. size_of_sequent S = 0 → is_tautology (formula_of_sequent S) → derive S. + intro; + elim S 1; clear S; + simplify in ⊢ (?→%→?); + intros; + elim (look_for_axiom t t1); + [ decompose; + rewrite > H2; clear H2; + rewrite > H4; clear H4; + apply (exchangeL ? a1 a2 (FAtom a)); + apply (exchangeR ? a3 a4 (FAtom a)); + apply axiom + | elim (sizel_0_no_axiom_is_tautology t t1 H H1 H2); + [ decompose; + rewrite > H3; + apply (exchangeL ? a a1 FFalse); + apply falseL + | decompose; + rewrite > H3; + apply (exchangeR ? a a1 FTrue); + apply trueR + ] + ] +qed. + +(* +lemma completeness_step: + ∀l1,l2,n. size_of_sequent 〈l1,l2〉 = S n → + (∃ll1,ll2,f. l1 = ll1 @ (f::ll2) ∧ size f > 0) ∨ + (∃ll1,ll2,f. l2 = ll1 @ (f::ll2) ∧ size f > 0). + intros 3; + elim l1 0; + [ elim l2 0; + [ intros; + simplify in H; + destruct H + | intros 3; + elim t; + [ elim (H H1); + [ left; + assumption + | right; + decompose; + apply (ex_intro ? ? (FTrue::a)); + simplify; + autobatch depth=5 + ] + | elim (H H1); + [ left; + assumption + | right; + decompose; + apply (ex_intro ? ? (FFalse::a)); + simplify; + autobatch depth=5 + ] + | elim (H H1); + [ left; + assumption + | right; + decompose; + apply (ex_intro ? ? (FAtom n1::a)); + simplify; + autobatch depth=5 + ] + | right; + apply (ex_intro ? ? []); + simplify; + apply (ex_intro ? ? l); + apply (ex_intro ? ? (FAnd f f1)); + simplify; + split; + [ reflexivity + | unfold gt; + autobatch + ] + | right; + apply (ex_intro ? ? []); + simplify; + apply (ex_intro ? ? l); + apply (ex_intro ? ? (FOr f f1)); + simplify; + split; + [ reflexivity + | unfold gt; + autobatch + ] + | right; + apply (ex_intro ? ? []); + simplify; + apply (ex_intro ? ? l); + apply (ex_intro ? ? (FNot f)); + simplify; + split; + [ reflexivity + | unfold gt; + autobatch + ] + ] + ] + | intros 2; + elim t; + [1,2:(*,2,3:*) + elim (H H1); + decompose; + [ left; + autobatch depth=5 + | right; + autobatch depth=5 + ] + | left; + apply (ex_intro ? ? []); + simplify; + apply (ex_intro ? ? l); + apply (ex_intro ? ? (FAnd f f1)); + unfold gt; + simplify; + autobatch + | left; + apply (ex_intro ? ? []); + simplify; + apply (ex_intro ? ? l); + apply (ex_intro ? ? (FOr f f1)); + unfold gt; + simplify; + autobatch + | left; + apply (ex_intro ? ? []); + simplify; + apply (ex_intro ? ? l); + apply (ex_intro ? ? (FNot f)); + unfold gt; + simplify; + autobatch + ] + ] +qed. + +theorem completeness: ∀S. is_tautology (formula_of_sequent S) → derive S. + intro; + generalize in match (refl_eq ? (size_of_sequent S)); + elim (size_of_sequent S) in ⊢ (? ? ? %→?); + [ apply completeness_base; + assumption + | + ] +qed. + + elim F; + [ autobatch + | simplify in H; + lapply (H (λx.true)); + destruct Hletin + | simplify in H; + lapply (H (λx.false)); + destruct Hletin + | apply AndR; + [ apply H; + intro; + lapply (H2 i); clear H2; + simplify in Hletin; + autobatch + | apply H1; + intro; + lapply (H2 i); clear H2; + simplify in Hletin; + autobatch + ] + | apply OrR; + simplify in H2; + | apply NotR; + simplify in H1; +*) +*) -- 2.39.2