From 196d60526aaf4a10d0eaaf79cf8919c108b27a10 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Mon, 21 Jan 2008 18:05:11 +0000 Subject: [PATCH] snapshot --- helm/software/matita/dama/depends | 3 +- helm/software/matita/dama/excess.ma | 205 +++++++++++++-------------- helm/software/matita/dama/lattice.ma | 184 +++++++++++++++--------- 3 files changed, 215 insertions(+), 177 deletions(-) diff --git a/helm/software/matita/dama/depends b/helm/software/matita/dama/depends index 81e17aafc..e96472aa9 100644 --- a/helm/software/matita/dama/depends +++ b/helm/software/matita/dama/depends @@ -1,4 +1,4 @@ -metric_lattice.ma lattice.ma metric_space.ma +metric_lattice.ma excess.ma lattice.ma metric_space.ma metric_space.ma ordered_divisible_group.ma sandwich.ma metric_lattice.ma nat/orders.ma nat/plus.ma sequence.ma premetric_lattice.ma lattice.ma metric_space.ma @@ -7,6 +7,7 @@ divisible_group.ma group.ma nat/orders.ma ordered_divisible_group.ma divisible_group.ma nat/orders.ma nat/times.ma ordered_group.ma sequence.ma excess.ma nat/orders.ma ordered_group.ma constructive_connectives.ma logic/connectives.ma +lattice.TF.ma excess.ma lattice.ma nat/nat.ma group.ma excess.ma prevalued_lattice.ma ordered_group.ma excess.ma constructive_connectives.ma constructive_higher_order_relations.ma higher_order_defs/relations.ma nat/plus.ma diff --git a/helm/software/matita/dama/excess.ma b/helm/software/matita/dama/excess.ma index 0f236dd06..959e866fd 100644 --- a/helm/software/matita/dama/excess.ma +++ b/helm/software/matita/dama/excess.ma @@ -19,29 +19,14 @@ include "nat/plus.ma". include "constructive_higher_order_relations.ma". include "constructive_connectives.ma". -record excess : Type ≝ { +record excess_base : Type ≝ { exc_carr:> Type; - exc_relation: exc_carr → exc_carr → Type; - exc_coreflexive: coreflexive ? exc_relation; - exc_cotransitive: cotransitive ? exc_relation + exc_excess: exc_carr → exc_carr → Type; + exc_coreflexive: coreflexive ? exc_excess; + exc_cotransitive: cotransitive ? exc_excess }. -interpretation "excess" 'nleq a b = - (cic:/matita/excess/exc_relation.con _ a b). - -definition le ≝ λE:excess.λa,b:E. ¬ (a ≰ b). - -interpretation "ordered sets less or equal than" 'leq a b = - (cic:/matita/excess/le.con _ a b). - -lemma le_reflexive: ∀E.reflexive ? (le E). -intros (E); unfold; cases E; simplify; intros (x); apply (H x); -qed. - -lemma le_transitive: ∀E.transitive ? (le E). -intros (E); unfold; cases E; simplify; unfold Not; intros (x y z Rxy Ryz H2); -cases (c x z y H2) (H4 H5); clear H2; [exact (Rxy H4)|exact (Ryz H5)] -qed. +interpretation "excess" 'nleq a b = (cic:/matita/excess/exc_excess.con _ a b). record apartness : Type ≝ { ap_carr:> Type; @@ -52,15 +37,10 @@ record apartness : Type ≝ { }. notation "hvbox(a break # b)" non associative with precedence 50 for @{ 'apart $a $b}. -interpretation "apartness" 'apart x y = - (cic:/matita/excess/ap_apart.con _ x y). +interpretation "apartness" 'apart x y = (cic:/matita/excess/ap_apart.con _ x y). -definition strong_ext ≝ λA:apartness.λop:A→A.∀x,y. op x # op y → x # y. - -definition apart ≝ λE:excess.λa,b:E. a ≰ b ∨ b ≰ a. - -definition apart_of_excess: excess → apartness. -intros (E); apply (mk_apartness E (apart E)); +definition apartness_of_excess_base: excess_base → apartness. +intros (E); apply (mk_apartness E (λa,b:E. a ≰ b ∨ b ≰ a)); [1: unfold; cases E; simplify; clear E; intros (x); unfold; intros (H1); apply (H x); cases H1; assumption; |2: unfold; intros(x y H); cases H; clear H; [right|left] assumption; @@ -69,7 +49,42 @@ intros (E); apply (mk_apartness E (apart E)); [left; left|right; left|right; right|left; right] assumption] qed. -coercion cic:/matita/excess/apart_of_excess.con. +record excess_ : Type ≝ { + exc_exc:> excess_base; + exc_ap: apartness; + exc_with: ap_carr exc_ap = exc_carr exc_exc +}. + +definition apart_of_excess_: excess_ → apartness. +intro E; apply (mk_apartness E); unfold Type_OF_excess_; +cases (exc_with E); simplify; +[apply (ap_apart (exc_ap E)); +|apply ap_coreflexive;|apply ap_symmetric;|apply ap_cotransitive] +qed. + +coercion cic:/matita/excess/apart_of_excess_.con. + +record excess : Type ≝ { + excess_carr:> excess_; + ap2exc: ∀y,x:excess_carr. y # x → y ≰ x ∨ x ≰ y; + exc2ap: ∀y,x:excess_carr.y ≰ x ∨ x ≰ y → y # x +}. + +definition strong_ext ≝ λA:apartness.λop:A→A.∀x,y. op x # op y → x # y. + +definition le ≝ λE:excess.λa,b:E. ¬ (a ≰ b). + +interpretation "ordered sets less or equal than" 'leq a b = + (cic:/matita/excess/le.con _ a b). + +lemma le_reflexive: ∀E.reflexive ? (le E). +unfold reflexive; intros 3 (E x H); apply (exc_coreflexive ?? H); +qed. + +lemma le_transitive: ∀E.transitive ? (le E). +unfold transitive; intros 7 (E x y z H1 H2 H3); cases (exc_cotransitive ??? y H3) (H4 H4); +[cases (H1 H4)|cases (H2 H4)] +qed. definition eq ≝ λA:apartness.λa,b:A. ¬ (a # b). @@ -82,12 +97,12 @@ intros (E); unfold; intros (x); apply ap_coreflexive; qed. lemma eq_sym_:∀E.symmetric ? (eq E). -intros (E); unfold; intros (x y Exy); unfold; unfold; intros (Ayx); apply Exy; -apply ap_symmetric; assumption; +unfold symmetric; intros 5 (E x y H H1); cases (H (ap_symmetric ??? H1)); qed. lemma eq_sym:∀E:apartness.∀x,y:E.x ≈ y → y ≈ x ≝ eq_sym_. +(* SETOID REWRITE *) coercion cic:/matita/excess/eq_sym.con. lemma eq_trans_: ∀E.transitive ? (eq E). @@ -99,23 +114,18 @@ qed. lemma eq_trans:∀E:apartness.∀x,z,y:E.x ≈ y → y ≈ z → x ≈ z ≝ λE,x,y,z.eq_trans_ E x z y. -notation > "'Eq'≈" non associative with precedence 50 for - @{'eqrewrite}. - -interpretation "eq_rew" 'eqrewrite = - (cic:/matita/excess/eq_trans.con _ _ _). +notation > "'Eq'≈" non associative with precedence 50 for @{'eqrewrite}. +interpretation "eq_rew" 'eqrewrite = (cic:/matita/excess/eq_trans.con _ _ _). -(* BUG: vedere se ricapita *) alias id "antisymmetric" = "cic:/matita/constructive_higher_order_relations/antisymmetric.con". lemma le_antisymmetric: ∀E.antisymmetric ? (le E) (eq ?). -intros 5 (E x y Lxy Lyx); intro H; -cases H; [apply Lxy;|apply Lyx] assumption; +intros 5 (E x y Lxy Lyx); intro H; +cases (ap2exc ??? H); [apply Lxy;|apply Lyx] assumption; qed. definition lt ≝ λE:excess.λa,b:E. a ≤ b ∧ a # b. -interpretation "ordered sets less than" 'lt a b = - (cic:/matita/excess/lt.con _ a b). +interpretation "ordered sets less than" 'lt a b = (cic:/matita/excess/lt.con _ a b). lemma lt_coreflexive: ∀E.coreflexive ? (lt E). intros 2 (E x); intro H; cases H (_ ABS); @@ -125,43 +135,32 @@ qed. lemma lt_transitive: ∀E.transitive ? (lt E). intros (E); unfold; intros (x y z H1 H2); cases H1 (Lxy Axy); cases H2 (Lyz Ayz); split; [apply (le_transitive ???? Lxy Lyz)] clear H1 H2; -cases Axy (H1 H1); cases Ayz (H2 H2); [1:cases (Lxy H1)|3:cases (Lyz H2)] +elim (ap2exc ??? Axy) (H1 H1); elim (ap2exc ??? Ayz) (H2 H2); [1:cases (Lxy H1)|3:cases (Lyz H2)] clear Axy Ayz;lapply (exc_cotransitive E) as c; unfold cotransitive in c; lapply (exc_coreflexive E) as r; unfold coreflexive in r; -[1: lapply (c ?? y H1) as H3; cases H3 (H4 H4); [cases (Lxy H4)|cases (r ? H4)] -|2: lapply (c ?? x H2) as H3; cases H3 (H4 H4); [right; assumption|cases (Lxy H4)]] +[1: lapply (c ?? y H1) as H3; elim H3 (H4 H4); [cases (Lxy H4)|cases (r ? H4)] +|2: lapply (c ?? x H2) as H3; elim H3 (H4 H4); [apply exc2ap; right; assumption|cases (Lxy H4)]] qed. theorem lt_to_excess: ∀E:excess.∀a,b:E. (a < b) → (b ≰ a). -intros (E a b Lab); cases Lab (LEab Aab); -cases Aab (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *) -qed. - -lemma unfold_apart: ∀E:excess. ∀x,y:E. x ≰ y ∨ y ≰ x → x # y. -intros; assumption; +intros (E a b Lab); elim Lab (LEab Aab); +elim (ap2exc ??? Aab) (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *) qed. lemma le_rewl: ∀E:excess.∀z,y,x:E. x ≈ y → x ≤ z → y ≤ z. intros (E z y x Exy Lxz); apply (le_transitive ???? ? Lxz); -intro Xyz; apply Exy; apply unfold_apart; right; assumption; +intro Xyz; apply Exy; apply exc2ap; right; assumption; qed. lemma le_rewr: ∀E:excess.∀z,y,x:E. x ≈ y → z ≤ x → z ≤ y. intros (E z y x Exy Lxz); apply (le_transitive ???? Lxz); -intro Xyz; apply Exy; apply unfold_apart; left; assumption; +intro Xyz; apply Exy; apply exc2ap; left; assumption; qed. -notation > "'Le'≪" non associative with precedence 50 for - @{'lerewritel}. - -interpretation "le_rewl" 'lerewritel = - (cic:/matita/excess/le_rewl.con _ _ _). - -notation > "'Le'≫" non associative with precedence 50 for - @{'lerewriter}. - -interpretation "le_rewr" 'lerewriter = - (cic:/matita/excess/le_rewr.con _ _ _). +notation > "'Le'≪" non associative with precedence 50 for @{'lerewritel}. +interpretation "le_rewl" 'lerewritel = (cic:/matita/excess/le_rewl.con _ _ _). +notation > "'Le'≫" non associative with precedence 50 for @{'lerewriter}. +interpretation "le_rewr" 'lerewriter = (cic:/matita/excess/le_rewr.con _ _ _). lemma ap_rewl: ∀A:apartness.∀x,z,y:A. x ≈ y → y # z → x # z. intros (A x z y Exy Ayz); cases (ap_cotransitive ???x Ayz); [2:assumption] @@ -173,39 +172,25 @@ intros (A x z y Exy Azy); apply ap_symmetric; apply (ap_rewl ???? Exy); apply ap_symmetric; assumption; qed. -notation > "'Ap'≪" non associative with precedence 50 for - @{'aprewritel}. - -interpretation "ap_rewl" 'aprewritel = - (cic:/matita/excess/ap_rewl.con _ _ _). - -notation > "'Ap'≫" non associative with precedence 50 for - @{'aprewriter}. - -interpretation "ap_rewr" 'aprewriter = - (cic:/matita/excess/ap_rewr.con _ _ _). +notation > "'Ap'≪" non associative with precedence 50 for @{'aprewritel}. +interpretation "ap_rewl" 'aprewritel = (cic:/matita/excess/ap_rewl.con _ _ _). +notation > "'Ap'≫" non associative with precedence 50 for @{'aprewriter}. +interpretation "ap_rewr" 'aprewriter = (cic:/matita/excess/ap_rewr.con _ _ _). lemma exc_rewl: ∀A:excess.∀x,z,y:A. x ≈ y → y ≰ z → x ≰ z. intros (A x z y Exy Ayz); elim (exc_cotransitive ???x Ayz); [2:assumption] -cases Exy; right; assumption; +cases Exy; apply exc2ap; right; assumption; qed. lemma exc_rewr: ∀A:excess.∀x,z,y:A. x ≈ y → z ≰ y → z ≰ x. intros (A x z y Exy Azy); elim (exc_cotransitive ???x Azy); [assumption] -elim (Exy); left; assumption; +elim (Exy); apply exc2ap; left; assumption; qed. -notation > "'Ex'≪" non associative with precedence 50 for - @{'excessrewritel}. - -interpretation "exc_rewl" 'excessrewritel = - (cic:/matita/excess/exc_rewl.con _ _ _). - -notation > "'Ex'≫" non associative with precedence 50 for - @{'excessrewriter}. - -interpretation "exc_rewr" 'excessrewriter = - (cic:/matita/excess/exc_rewr.con _ _ _). +notation > "'Ex'≪" non associative with precedence 50 for @{'excessrewritel}. +interpretation "exc_rewl" 'excessrewritel = (cic:/matita/excess/exc_rewl.con _ _ _). +notation > "'Ex'≫" non associative with precedence 50 for @{'excessrewriter}. +interpretation "exc_rewr" 'excessrewriter = (cic:/matita/excess/exc_rewr.con _ _ _). lemma lt_rewr: ∀A:excess.∀x,z,y:A. x ≈ y → z < y → z < x. intros (A x y z E H); split; elim H; @@ -217,51 +202,53 @@ intros (A x y z E H); split; elim H; [apply (Le≪ ? (eq_sym ??? E));| apply (Ap≪ ? E);] assumption; qed. -notation > "'Lt'≪" non associative with precedence 50 for - @{'ltrewritel}. - -interpretation "lt_rewl" 'ltrewritel = - (cic:/matita/excess/lt_rewl.con _ _ _). - -notation > "'Lt'≫" non associative with precedence 50 for - @{'ltrewriter}. - -interpretation "lt_rewr" 'ltrewriter = - (cic:/matita/excess/lt_rewr.con _ _ _). +notation > "'Lt'≪" non associative with precedence 50 for @{'ltrewritel}. +interpretation "lt_rewl" 'ltrewritel = (cic:/matita/excess/lt_rewl.con _ _ _). +notation > "'Lt'≫" non associative with precedence 50 for @{'ltrewriter}. +interpretation "lt_rewr" 'ltrewriter = (cic:/matita/excess/lt_rewr.con _ _ _). lemma lt_le_transitive: ∀A:excess.∀x,y,z:A.x < y → y ≤ z → x < z. intros (A x y z LT LE); cases LT (LEx APx); split; [apply (le_transitive ???? LEx LE)] -whd in LE LEx APx; cases APx (EXx EXx); [cases (LEx EXx)] +apply exc2ap; cases (ap2exc ??? APx) (EXx EXx); [cases (LEx EXx)] cases (exc_cotransitive ??? z EXx) (EXz EXz); [cases (LE EXz)] right; assumption; qed. lemma le_lt_transitive: ∀A:excess.∀x,y,z:A.x ≤ y → y < z → x < z. intros (A x y z LE LT); cases LT (LEx APx); split; [apply (le_transitive ???? LE LEx)] -whd in LE LEx APx; cases APx (EXx EXx); [cases (LEx EXx)] -cases (exc_cotransitive ??? x EXx) (EXz EXz); [right; assumption] +elim (ap2exc ??? APx) (EXx EXx); [cases (LEx EXx)] +elim (exc_cotransitive ??? x EXx) (EXz EXz); [apply exc2ap; right; assumption] cases LE; assumption; qed. lemma le_le_eq: ∀E:excess.∀a,b:E. a ≤ b → b ≤ a → a ≈ b. -intros (E x y L1 L2); intro H; cases H; [apply L1|apply L2] assumption; +intros (E x y L1 L2); intro H; cases (ap2exc ??? H); [apply L1|apply L2] assumption; qed. lemma eq_le_le: ∀E:excess.∀a,b:E. a ≈ b → a ≤ b ∧ b ≤ a. -intros (E x y H); unfold apart_of_excess in H; unfold apart in H; -simplify in H; split; intro; apply H; [left|right] assumption. +intros (E x y H); whd in H; +split; intro; apply H; apply exc2ap; [left|right] assumption. qed. lemma ap_le_to_lt: ∀E:excess.∀a,c:E.c # a → c ≤ a → c < a. intros; split; assumption; qed. -definition total_order_property : ∀E:excess. Type ≝ +definition total_order_property : ∀E:excess. Type ≝ λE:excess. ∀a,b:E. a ≰ b → b < a. +(* E(#,≰) → E(#,sym(≰)) *) lemma dual_exc: excess→ excess. -intro E; apply mk_excess; -[apply (exc_carr E);|apply (λx,y:E.y≰x);|apply exc_coreflexive; -|unfold cotransitive; simplify;intros;cases (exc_cotransitive E ??z e); - [right|left]assumption] +intro E; apply mk_excess; +[1: apply mk_excess_; + [1: apply (mk_excess_base (exc_carr (excess_carr E))); + [ apply (λx,y:E.y≰x);|apply exc_coreflexive; + | unfold cotransitive; simplify; intros (x y z H); + cases (exc_cotransitive E ??z H);[right|left]assumption] + |2: apply (exc_ap E); + |3: apply (exc_with E);] +|2: simplify; intros (y x H); fold simplify (y#x) in H; + apply ap2exc; apply ap_symmetric; apply H; +|3: simplify; intros; fold simplify (y#x); apply exc2ap; + cases o; [right|left]assumption] qed. diff --git a/helm/software/matita/dama/lattice.ma b/helm/software/matita/dama/lattice.ma index 1f605c257..83d138526 100644 --- a/helm/software/matita/dama/lattice.ma +++ b/helm/software/matita/dama/lattice.ma @@ -14,114 +14,164 @@ include "excess.ma". -record directed : Type ≝ { - dir_carr: apartness; - dir_op: dir_carr → dir_carr → dir_carr; - dir_op_refl: ∀x.dir_op x x ≈ x; - dir_op_comm: ∀x,y:dir_carr. dir_op x y ≈ dir_op y x; - dir_op_assoc: ∀x,y,z:dir_carr. dir_op x (dir_op y z) ≈ dir_op (dir_op x y) z; - dir_strong_extop: ∀x.strong_ext ? (dir_op x) +record semi_lattice_base : Type ≝ { + sl_carr:> apartness; + sl_op: sl_carr → sl_carr → sl_carr; + sl_op_refl: ∀x.sl_op x x ≈ x; + sl_op_comm: ∀x,y:sl_carr. sl_op x y ≈ sl_op y x; + sl_op_assoc: ∀x,y,z:sl_carr. sl_op x (sl_op y z) ≈ sl_op (sl_op x y) z; + sl_strong_extop: ∀x.strong_ext ? (sl_op x) }. -definition excl ≝ - λl:directed.λa,b:dir_carr l.ap_apart (dir_carr l) a (dir_op l a b). - -lemma excess_of_directed: directed → excess. -intro l; apply (mk_excess (dir_carr l) (excl l)); -[ intro x; unfold; intro H; unfold in H; apply (ap_coreflexive (dir_carr l) x); - apply (ap_rewr ??? (dir_op l x x) (dir_op_refl ? x)); assumption; -| intros 3 (x y z); unfold excl; intro H; - cases (ap_cotransitive ??? (dir_op l (dir_op l x z) y) H) (H1 H2); [2: - left; apply ap_symmetric; apply (dir_strong_extop ? y); - apply (ap_rewl ???? (dir_op_comm ???)); - apply (ap_rewr ???? (dir_op_comm ???)); - assumption] - cases (ap_cotransitive ??? (dir_op l x z) H1) (H2 H3); [left; assumption] - right; apply (dir_strong_extop ? x); apply (ap_rewr ???? (dir_op_assoc ????)); - assumption] +notation "a \cross b" left associative with precedence 50 for @{ 'op $a $b }. +interpretation "semi lattice base operation" 'op a b = (cic:/matita/lattice/sl_op.con _ a b). + +lemma excess_of_semi_lattice_base: semi_lattice_base → excess. +intro l; +apply mk_excess; +[1: apply mk_excess_; + [1: + + apply (mk_excess_base (sl_carr l)); + [1: apply (λa,b:sl_carr l.a # (a ✗ b)); + |2: unfold; intros 2 (x H); simplify in H; + lapply (Ap≪ ? (sl_op_refl ??) H) as H1; clear H; + apply (ap_coreflexive ?? H1); + |3: unfold; simplify; intros (x y z H1); + cases (ap_cotransitive ??? ((x ✗ z) ✗ y) H1) (H2 H2);[2: + lapply (Ap≪ ? (sl_op_comm ???) H2) as H21; + lapply (Ap≫ ? (sl_op_comm ???) H21) as H22; clear H21 H2; + lapply (sl_strong_extop ???? H22); clear H22; + left; apply ap_symmetric; assumption;] + cases (ap_cotransitive ??? (x ✗ z) H2) (H3 H3);[left;assumption] + right; lapply (Ap≫ ? (sl_op_assoc ????) H3) as H31; + apply (sl_strong_extop ???? H31);] + + |2: + apply apartness_of_excess_base; + + apply (mk_excess_base (sl_carr l)); + [1: apply (λa,b:sl_carr l.a # (a ✗ b)); + |2: unfold; intros 2 (x H); simplify in H; + lapply (Ap≪ ? (sl_op_refl ??) H) as H1; clear H; + apply (ap_coreflexive ?? H1); + |3: unfold; simplify; intros (x y z H1); + cases (ap_cotransitive ??? ((x ✗ z) ✗ y) H1) (H2 H2);[2: + lapply (Ap≪ ? (sl_op_comm ???) H2) as H21; + lapply (Ap≫ ? (sl_op_comm ???) H21) as H22; clear H21 H2; + lapply (sl_strong_extop ???? H22); clear H22; + left; apply ap_symmetric; assumption;] + cases (ap_cotransitive ??? (x ✗ z) H2) (H3 H3);[left;assumption] + right; lapply (Ap≫ ? (sl_op_assoc ????) H3) as H31; + apply (sl_strong_extop ???? H31);] + + |3: apply refl_eq;] +|2,3: intros (x y H); assumption;] qed. -record prelattice : Type ≝ { - pl_carr:> excess; - meet: pl_carr → pl_carr → pl_carr; +record semi_lattice : Type ≝ { + sl_exc:> excess; + meet: sl_exc → sl_exc → sl_exc; meet_refl: ∀x.meet x x ≈ x; - meet_comm: ∀x,y:pl_carr. meet x y ≈ meet y x; - meet_assoc: ∀x,y,z:pl_carr. meet x (meet y z) ≈ meet (meet x y) z; + meet_comm: ∀x,y. meet x y ≈ meet y x; + meet_assoc: ∀x,y,z. meet x (meet y z) ≈ meet (meet x y) z; strong_extm: ∀x.strong_ext ? (meet x); le_to_eqm: ∀x,y.x ≤ y → x ≈ meet x y; lem: ∀x,y.(meet x y) ≤ y }. -interpretation "prelattice meet" 'and a b = - (cic:/matita/lattice/meet.con _ a b). +interpretation "semi lattice meet" 'and a b = (cic:/matita/lattice/meet.con _ a b). -lemma feq_ml: ∀ml:prelattice.∀a,b,c:ml. a ≈ b → (c ∧ a) ≈ (c ∧ b). +lemma feq_ml: ∀ml:semi_lattice.∀a,b,c:ml. a ≈ b → (c ∧ a) ≈ (c ∧ b). intros (l a b c H); unfold eq in H ⊢ %; unfold Not in H ⊢ %; intro H1; apply H; clear H; apply (strong_extm ???? H1); qed. -lemma feq_mr: ∀ml:prelattice.∀a,b,c:ml. a ≈ b → (a ∧ c) ≈ (b ∧ c). +lemma feq_mr: ∀ml:semi_lattice.∀a,b,c:ml. a ≈ b → (a ∧ c) ≈ (b ∧ c). intros (l a b c H); apply (Eq≈ ? (meet_comm ???)); apply (Eq≈ ?? (meet_comm ???)); apply feq_ml; assumption; qed. -lemma prelattice_of_directed: directed → prelattice. -intro l_; apply (mk_prelattice (excess_of_directed l_)); [apply (dir_op l_);] + +(* +lemma semi_lattice_of_semi_lattice_base: semi_lattice_base → semi_lattice. +intro slb; apply (mk_semi_lattice (excess_of_semi_lattice_base slb)); +[1: apply (sl_op slb); +|2: intro x; apply (eq_trans (excess_of_semi_lattice_base slb)); [2: + apply (sl_op_refl slb);|1:skip] (sl_op slb x x)); ? (sl_op_refl slb x)); + + unfold excess_of_semi_lattice_base; simplify; + intro H; elim H; + [ + + + lapply (ap_rewl (excess_of_semi_lattice_base slb) x ? (sl_op slb x x) + (eq_sym (excess_of_semi_lattice_base slb) ?? (sl_op_refl slb x)) t); + change in x with (sl_carr slb); + apply (Ap≪ (x ✗ x)); (sl_op_refl slb x)); + +whd in H; elim H; clear H; + [ apply (ap_coreflexive (excess_of_semi_lattice_base slb) (x ✗ x) t); + +prelattice (excess_of_directed l_)); [apply (sl_op l_);] unfold excess_of_directed; try unfold apart_of_excess; simplify; unfold excl; simplify; [intro x; intro H; elim H; clear H; - [apply (dir_op_refl l_ x); - lapply (Ap≫ ? (dir_op_comm ???) t) as H; clear t; - lapply (dir_strong_extop l_ ??? H); apply ap_symmetric; assumption - | lapply (Ap≪ ? (dir_op_refl ?x) t) as H; clear t; - lapply (dir_strong_extop l_ ??? H); apply (dir_op_refl l_ x); + [apply (sl_op_refl l_ x); + lapply (Ap≫ ? (sl_op_comm ???) t) as H; clear t; + lapply (sl_strong_extop l_ ??? H); apply ap_symmetric; assumption + | lapply (Ap≪ ? (sl_op_refl ?x) t) as H; clear t; + lapply (sl_strong_extop l_ ??? H); apply (sl_op_refl l_ x); apply ap_symmetric; assumption] |intros 3 (x y H); cases H (H1 H2); clear H; - [lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ x y)) H1) as H; clear H1; - lapply (dir_strong_extop l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (dir_op_comm ???) H1); apply (ap_coreflexive ?? Hletin); - |lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ y x)) H2) as H; clear H2; - lapply (dir_strong_extop l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (dir_op_comm ???) H1);apply (ap_coreflexive ?? Hletin);] + [lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ x y)) H1) as H; clear H1; + lapply (sl_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (sl_op_comm ???) H1); apply (ap_coreflexive ?? Hletin); + |lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ y x)) H2) as H; clear H2; + lapply (sl_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (sl_op_comm ???) H1);apply (ap_coreflexive ?? Hletin);] |intros 4 (x y z H); cases H (H1 H2); clear H; - [lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ x (dir_op l_ y z))) H1) as H; clear H1; - lapply (dir_strong_extop l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (eq_sym ??? (dir_op_assoc ?x y z)) H1) as H; clear H1; + [lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ x (sl_op l_ y z))) H1) as H; clear H1; + lapply (sl_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (eq_sym ??? (sl_op_assoc ?x y z)) H1) as H; clear H1; apply (ap_coreflexive ?? H); - |lapply (Ap≪ ? (dir_op_refl ? (dir_op l_ (dir_op l_ x y) z)) H2) as H; clear H2; - lapply (dir_strong_extop l_ ??? H) as H1; clear H; - lapply (Ap≪ ? (dir_op_assoc ?x y z) H1) as H; clear H1; + |lapply (Ap≪ ? (sl_op_refl ? (sl_op l_ (sl_op l_ x y) z)) H2) as H; clear H2; + lapply (sl_strong_extop l_ ??? H) as H1; clear H; + lapply (Ap≪ ? (sl_op_assoc ?x y z) H1) as H; clear H1; apply (ap_coreflexive ?? H);] |intros (x y z H); elim H (H1 H1); clear H; - lapply (Ap≪ ? (dir_op_refl ??) H1) as H; clear H1; - lapply (dir_strong_extop l_ ??? H) as H1; clear H; - lapply (dir_strong_extop l_ ??? H1) as H; clear H1; - cases (ap_cotransitive ??? (dir_op l_ y z) H);[left|right|right|left] try assumption; - [apply ap_symmetric;apply (Ap≪ ? (dir_op_comm ???)); - |apply (Ap≫ ? (dir_op_comm ???)); + lapply (Ap≪ ? (sl_op_refl ??) H1) as H; clear H1; + lapply (sl_strong_extop l_ ??? H) as H1; clear H; + lapply (sl_strong_extop l_ ??? H1) as H; clear H1; + cases (ap_cotransitive ??? (sl_op l_ y z) H);[left|right|right|left] try assumption; + [apply ap_symmetric;apply (Ap≪ ? (sl_op_comm ???)); + |apply (Ap≫ ? (sl_op_comm ???)); |apply ap_symmetric;] assumption; |intros 4 (x y H H1); apply H; clear H; elim H1 (H H); - lapply (Ap≪ ? (dir_op_refl ??) H) as H1; clear H; - lapply (dir_strong_extop l_ ??? H1) as H; clear H1;[2: apply ap_symmetric] + lapply (Ap≪ ? (sl_op_refl ??) H) as H1; clear H; + lapply (sl_strong_extop l_ ??? H1) as H; clear H1;[2: apply ap_symmetric] assumption |intros 3 (x y H); - cut (dir_op l_ x y ≈ dir_op l_ x (dir_op l_ y y)) as H1;[2: - intro; lapply (dir_strong_extop ???? a); apply (dir_op_refl l_ y); + cut (sl_op l_ x y ≈ sl_op l_ x (sl_op l_ y y)) as H1;[2: + intro; lapply (sl_strong_extop ???? a); apply (sl_op_refl l_ y); apply ap_symmetric; assumption;] - lapply (Ap≪ ? (eq_sym ??? H1) H); apply (dir_op_assoc l_ x y y); + lapply (Ap≪ ? (eq_sym ??? H1) H); apply (sl_op_assoc l_ x y y); assumption; ] qed. +*) + record lattice_ : Type ≝ { - latt_mcarr:> prelattice; - latt_jcarr_: prelattice; - latt_with: pl_carr latt_jcarr_ = dual_exc (pl_carr latt_mcarr) + latt_mcarr:> semi_lattice; + latt_jcarr_: semi_lattice; + latt_with: sl_exc latt_jcarr_ = dual_exc (sl_exc latt_mcarr) }. -lemma latt_jcarr : lattice_ → prelattice. +lemma latt_jcarr : lattice_ → semi_lattice. intro l; -apply (mk_prelattice (dual_exc l)); unfold excess_OF_lattice_; +apply (mk_semi_lattice (dual_exc l)); +unfold excess_OF_lattice_; cases (latt_with l); simplify; [apply meet|apply meet_refl|apply meet_comm|apply meet_assoc| apply strong_extm| apply le_to_eqm|apply lem] -- 2.39.2