From 1a38559f48a24075673b363d992c5699e3ef5212 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Thu, 4 Sep 2008 14:30:32 +0000 Subject: [PATCH] restored --- .../matita/library/demo/formal_topology.ma | 158 ++++++++++++++++++ 1 file changed, 158 insertions(+) create mode 100644 helm/software/matita/library/demo/formal_topology.ma diff --git a/helm/software/matita/library/demo/formal_topology.ma b/helm/software/matita/library/demo/formal_topology.ma new file mode 100644 index 000000000..67f0ffa54 --- /dev/null +++ b/helm/software/matita/library/demo/formal_topology.ma @@ -0,0 +1,158 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "datatypes/subsets.ma". + +record axiom_set : Type ≝ { + A:> Type; + i: A → Type; + C: ∀a:A. i a → Ω \sup A +}. + +inductive for_all (A: axiom_set) (U,V: Ω \sup A) (covers: A → CProp) : CProp ≝ + iter: (∀a:A.a ∈ V → covers a) → for_all A U V covers. + +inductive covers (A: axiom_set) (U: \Omega \sup A) : A → CProp ≝ + refl: ∀a:A. a ∈ U → covers A U a + | infinity: ∀a:A. ∀j: i ? a. for_all A U (C ? a j) (covers A U) → covers A U a. + +notation "hvbox(a break ◃ b)" non associative with precedence 45 +for @{ 'covers $a $b }. (* a \ltri b *) + +interpretation "coversl" 'covers A U = (for_all _ U A (covers _ U)). +interpretation "covers" 'covers a U = (covers _ U a). + +definition covers_elim ≝ + λA:axiom_set.λU: \Omega \sup A.λP:\Omega \sup A. + λH1: U ⊆ P. + λH2:∀a:A.∀j:i ? a. C ? a j ◃ U → C ? a j ⊆ P → a ∈ P. + let rec aux (a:A) (p:a ◃ U) on p : a ∈ P ≝ + match p return λaa.λ_:aa ◃ U.aa ∈ P with + [ refl a q ⇒ H1 a q + | infinity a j q ⇒ + H2 a j q + match q return λ_:(C ? a j) ◃ U. C ? a j ⊆ P with + [ iter f ⇒ λb.λr. aux b (f b r) ]] + in + aux. + +inductive ex_such (A : axiom_set) (U,V : \Omega \sup A) (fish: A → CProp) : CProp ≝ + found : ∀a. a ∈ V → fish a → ex_such A U V fish. + +coinductive fish (A:axiom_set) (U: \Omega \sup A) : A → CProp ≝ + mk_fish: ∀a:A. a ∈ U → (∀j: i ? a. ex_such A U (C ? a j) (fish A U)) → fish A U a. + +notation "hvbox(a break ⋉ b)" non associative with precedence 45 +for @{ 'fish $a $b }. (* a \ltimes b *) + +interpretation "fishl" 'fish A U = (ex_such _ U A (fish _ U)). +interpretation "fish" 'fish a U = (fish _ U a). + +let corec fish_rec (A:axiom_set) (U: \Omega \sup A) + (P: Ω \sup A) (H1: P ⊆ U) + (H2: ∀a:A. a ∈ P → ∀j: i ? a. C ? a j ≬ P): + ∀a:A. ∀p: a ∈ P. a ⋉ U ≝ + λa,p. + mk_fish A U a + (H1 ? p) + (λj: i ? a. + match H2 a p j with + [ ex_introT2 (y: A) (HyC : y ∈ C ? a j) (HyP : y ∈ P) ⇒ + found ???? y HyC (fish_rec A U P H1 H2 y HyP) + ]). + +theorem reflexivity: ∀A:axiom_set.∀a:A.∀V. a ∈ V → a ◃ V. + intros; + apply refl; + assumption. +qed. + +theorem transitivity: ∀A:axiom_set.∀a:A.∀U,V. a ◃ U → U ◃ V → a ◃ V. + intros; + apply (covers_elim ?? {a | a ◃ V} ??? H); simplify; intros; + [ cases H1 in H2; apply H2; + | apply infinity; + [ assumption + | constructor 1; + assumption]] +qed. + +theorem coreflexivity: ∀A:axiom_set.∀a:A.∀V. a ⋉ V → a ∈ V. + intros; + cases H; + assumption. +qed. + +theorem cotransitivity: + ∀A:axiom_set.∀a:A.∀U,V. a ⋉ U → (∀b:A. b ⋉ U → b ∈ V) → a ⋉ V. + intros; + apply (fish_rec ?? {a|a ⋉ U} ??? H); simplify; intros; + [ apply H1; apply H2; + | cases H2 in j; clear H2; intro i; + cases (H4 i); clear H4; exists[apply a3] assumption] +qed. + +theorem compatibility: ∀A:axiom_set.∀a:A.∀U,V. a ⋉ V → a ◃ U → U ⋉ V. + intros; + generalize in match H; clear H; + apply (covers_elim ?? {a|a ⋉ V → U ⋉ V} ??? H1); + clear H1; simplify; intros; + [ exists [apply a1] assumption + | cases H2 in j H H1; clear H2 a1; intros; + cases (H1 i); clear H1; apply (H3 a1); assumption] +qed. + +definition leq ≝ λA:axiom_set.λa,b:A. a ◃ {b}. + +interpretation "covered by one" 'leq a b = (leq _ a b). + +theorem leq_refl: ∀A:axiom_set.∀a:A. a ≤ a. + intros; + apply refl; + normalize; + reflexivity. +qed. + +theorem leq_trans: ∀A:axiom_set.∀a,b,c:A. a ≤ b → b ≤ c → a ≤ c. + intros; + unfold in H H1 ⊢ %; + apply (transitivity ???? H); + constructor 1; + intros; + normalize in H2; + rewrite < H2; + assumption. +qed. + +definition uparrow ≝ λA:axiom_set.λa:A.mk_powerset ? (λb:A. a ≤ b). + +notation "↑a" with precedence 80 for @{ 'uparrow $a }. + +interpretation "uparrow" 'uparrow a = (uparrow _ a). + +definition downarrow ≝ λA:axiom_set.λU:Ω \sup A.mk_powerset ? (λa:A. ↑a ≬ U). + +notation "↓a" with precedence 80 for @{ 'downarrow $a }. + +interpretation "downarrow" 'downarrow a = (downarrow _ a). + +definition fintersects ≝ λA:axiom_set.λU,V:Ω \sup A.↓U ∩ ↓V. + +interpretation "fintersects" 'fintersects U V = (fintersects _ U V). + +record convergent_generated_topology : Type ≝ + { AA:> axiom_set; + convergence: ∀a:AA.∀U,V:Ω \sup AA. a ◃ U → a ◃ V → a ◃ U ↓ V + }. + -- 2.39.2