From 1e57037a061bbac4c60f6bf0850be5b4878e6a0a Mon Sep 17 00:00:00 2001 From: Andrea Asperti Date: Thu, 23 Nov 2006 13:46:27 +0000 Subject: [PATCH] paramodulation removed --- .../library/paramodulation/paramodulation.ma | 201 ------------------ 1 file changed, 201 deletions(-) delete mode 100644 matita/library/paramodulation/paramodulation.ma diff --git a/matita/library/paramodulation/paramodulation.ma b/matita/library/paramodulation/paramodulation.ma deleted file mode 100644 index 17cd3199a..000000000 --- a/matita/library/paramodulation/paramodulation.ma +++ /dev/null @@ -1,201 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -set "baseuri" "cic:/matita/paramodulation/". - -include "nat/nat.ma". -include "datatypes/bool.ma". - -inductive List (U:Type) : nat \to Type \def - | Nil : List U O - | Cons : \forall n.U \to List U n \to List U (S n). - -(* -definition mk_T \def \lambda U:Type.\lambda n:nat.List U n \to Prop. - -definition app_T' \def - \lambda n:nat. - \lambda U:Type. - \lambda a:U. - \lambda t:mk_T U (S n). - \lambda l:List U n.t (Cons U n a l). - -let rec mk_Arrow' (n:nat) (U:Type) on n \def - match n return \lambda x.\forall t:mk_T U x.Prop with - [ O ⇒ - \lambda t:mk_T U O.t (Nil U) - | (S m) ⇒ - \lambda t:mk_T U (S m).\forall a.mk_Arrow' m U (app_T' m U a t)]. - -theorem leaf': - \forall U:Type. - \forall n:nat. - \forall actual_params:List U n. - \forall pred:mk_T U n. - \forall H:mk_Arrow' n U pred. - pred actual_params. - intros 3. - elim actual_params; - [ exact H. - | simplify in H1. - unfold app_T' in H1. - lapply (H1 t). - apply H. - assumption - ] -qed. -*) - -definition mk_Tside \def \lambda U:Type.\lambda n:nat.List U n \to U. - -definition app_T \def - \lambda n:nat. - \lambda U:Type. - \lambda a:U. - \lambda side:mk_Tside U (S n). - \lambda args:List U n.side (Cons U n a args). - -let rec mk_Arrow (n:nat) (U:Type) (eq:\forall T:Type.T\to T\to Prop) on n \def - match n return \lambda x.\forall l:mk_Tside U x.\forall r:mk_Tside U x.Prop with - [ O ⇒ - \lambda l:mk_Tside U O.\lambda r:mk_Tside U O.eq U (l (Nil U)) (r (Nil U)) - | (S m) ⇒ - \lambda l:mk_Tside U (S m).\lambda r:mk_Tside U (S m).\forall a. - mk_Arrow m U eq (app_T m U a l) (app_T m U a r)]. - -definition sym \def - \lambda eq:\forall T:Type.T\to T\to Prop. - \lambda U:Type. - \lambda l,r:U. - \lambda b:bool. - match b with - [ true ⇒ eq U r l - | false ⇒ eq U l r]. - -let rec mk_TsideArr (n:nat) (U:Type) on n \def - match n with - [ O ⇒ U - | (S m) ⇒ U \to mk_TsideArr m U]. - -let rec mk_Statement - (n:nat) (U:Type) (eq:\forall T:Type.T\to T\to Prop) (b:bool) - (context:U \to U) on n -\def - match n return \lambda x.\forall l:mk_TsideArr x U.\forall r:mk_TsideArr x U.Prop with - [ O ⇒ - \lambda predl:mk_TsideArr O U. - \lambda predr:mk_TsideArr O U. - sym eq U (context predl) (context predr) b - | (S m) ⇒ - \lambda predl:mk_TsideArr (S m) U.\lambda predr:mk_TsideArr (S m) U. - \forall a:U. - mk_Statement m U eq b context (predl a) (predr a)]. - -theorem eq_f_to_mk_Statement: - \forall eq:\forall T:Type.T\to T\to Prop. - \forall sym_eq: \forall T:Type.\forall l,r:T.eq T l r \to eq T r l. - \forall eq_f : - \forall U,U1:Type. - \forall f:U \to U1.\forall x,y:U. eq U x y \to eq U1 (f x) (f y). - \forall b:bool. - \forall U:Type. - \forall context: U \to U. - \forall n:nat. - \forall predl:mk_TsideArr n U. - \forall predr:mk_TsideArr n U. - \forall H:mk_Statement n U eq false (\lambda x.x) predl predr. - mk_Statement n U eq b context predl predr. - intros 7. - elim n; - [ simplify in H2. - elim b; - [ simplify. - apply H1. - apply H. - assumption. - | simplify. - apply H1. - assumption. - ] - | generalize in match H2. - clear H2. - elim b; - [ simplify. - intro. - apply H2. - simplify in H3. - apply H3. - | simplify. - intro. - apply H2. - simplify in H3. - apply H3. - ] - ] -qed. - -variant rewrite : - \forall eq:\forall T:Type.T\to T\to Prop. - \forall sym_eq: \forall T:Type.\forall l,r:T.eq T l r \to eq T r l. - \forall eq_f : - \forall U,U1:Type. - \forall f:U \to U1.\forall x,y:U. eq U x y \to eq U1 (f x) (f y). - \forall b:bool. - \forall U:Type. - \forall context: U \to U. - \forall n:nat. - \forall predl:mk_TsideArr n U. - \forall predr:mk_TsideArr n U. - \forall H:mk_Statement n U eq false (\lambda x.x) predl predr. - mk_Statement n U eq b context predl predr -\def - eq_f_to_mk_Statement. - -(* - -definition make_eqs_smart' \def - \lambda Univ:Type. - \lambda length:nat. - \lambda initial:Univ. - let rec aux (p:Univ) (n:nat) on n : Prop \def - match n with - [ O \Rightarrow \forall a:Univ. p = a \to initial = a - | (S n) \Rightarrow \forall a:Univ. p = a \to aux a n - ] - in - aux initial length. - -theorem transl_smart' : - \forall Univ:Type.\forall n:nat.\forall initial:Univ. - make_eqs_smart' Univ n initial. - intros. - unfold make_eqs_smart'. - elim n - [ simplify.intros.assumption - | simplify.intros.rewrite < H1.assumption - ] -qed. - -theorem prova': - \forall Univ:Type. - \forall a,b:Univ. - \forall plus: Univ \to Univ \to Univ. - \forall H:\forall x,y:Univ.plus x y = plus y x. - \forall H1:plus b a = plus b b. - plus a b = plus b b. - intros. - apply (transl_smart' ? (S O) ? ? (H a b) ? H1). -qed. - -*) \ No newline at end of file -- 2.39.2