From 1fbc5fd1d3e29b6b95e2613d10760e3bfd3e213f Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Mon, 5 Oct 2009 07:56:27 +0000 Subject: [PATCH] uffa --- helm/software/matita/nlibrary/sets/sets.ma | 44 ++++++++++++---------- 1 file changed, 24 insertions(+), 20 deletions(-) diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index 3cf65c118..623f676e9 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -138,11 +138,10 @@ unification hint 0 ≔ A:setoid, x, S; TT ≟ (mk_binary_morphism1 ??? (λx:setoid1_of_setoid ?.λS:ext_powerclass_setoid ?. x ∈ S) (prop21 ??? (mem_ext_powerclass_setoid_is_morph A))), - M1 ≟ ?, - M2 ≟ ?, - M3 ≟ ? + XX ≟ (ext_powerclass_setoid A) (*-------------------------------------*) ⊢ - fun21 M1 M2 M3 TT x S ≡ mem A SS x. + fun21 (setoid1_of_setoid A) XX CPROP TT x S + ≡ mem A SS x. nlemma subseteq_is_morph: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) CPROP. #A; @ @@ -193,14 +192,8 @@ unification hint 0 ≔ fun21 (powerclass_setoid A) (powerclass_setoid A) (powerclass_setoid A) R B C ≡ intersect ? B C. -ndefinition prop21_mem : - ∀A,C.∀f:binary_morphism1 (setoid1_of_setoid A) (ext_powerclass_setoid A) C. - ∀a,a':setoid1_of_setoid A. - ∀b,b':ext_powerclass_setoid A.a = a' → b = b' → f a b = f a' b'. -#A; #C; #f; #a; #a'; #b; #b'; #H1; #H2; napply prop21; nassumption; -nqed. - -interpretation "prop21 mem" 'prop2 l r = (prop21_mem ??????? l r). +interpretation "prop21 mem" 'prop2 l r = (prop21 (setoid1_of_setoid ?) (ext_powerclass_setoid ?) ? ???? l r). +interpretation "prop21 ext" 'prop2 l r = (prop21 (ext_powerclass_setoid ?) (ext_powerclass_setoid ?) ? ???? l r). nlemma intersect_is_ext_morph: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A). @@ -225,19 +218,30 @@ unification hint 1 ≔ intersect (carr A) BB CC. (* +alias symbol "hint_decl" = "hint_decl_Type2". +unification hint 0 ≔ + A : setoid, B,C : 𝛀^A ; + CC ≟ (ext_carr ? C), + BB ≟ (ext_carr ? B), + C1 ≟ (carr1 (powerclass_setoid (carr A))), + C2 ≟ (carr1 (ext_powerclass_setoid A)) + ⊢ + eq_rel1 C1 (eq1 (powerclass_setoid (carr A))) BB CC ≡ + eq_rel1 C2 (eq1 (ext_powerclass_setoid A)) B C. + +unification hint 0 ≔ + A, B : CPROP ⊢ iff A B ≡ eq_rel1 ? (eq1 CPROP) A B. +*) - -nlemma test: ∀U.∀A,B:qpowerclass U. A ∩ B = A → +nlemma test: ∀U.∀A,B:𝛀^U. A ∩ B = A → ∀x,y. x=y → x ∈ A → y ∈ A ∩ B. - #U; #A; #B; #H; #x; #y; #K; #K2; napply (. #‡(?)); -##[ nchange with (A ∩ B = ?); - napply (prop21 ??? (mk_binary_morphism1 … (λS,S'.S ∩ S') (prop21 … (intersect_ok' U))) A A B B ##); - #H; napply H; + #U; #A; #B; #H; #x; #y; #K; #K2; +napply (. (prop21 ??? ? ???? K^-1 (H^-1‡#))); nassumption; nqed. -(* -nlemma intersect_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) (qpowerclass_setoid A). + +nlemma intersect_ok: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A). #A; @ [ #S; #S'; @ [ napply (S ∩ S') -- 2.39.2