From 20132867497f74bc0e2a2831fc7077b3678ae6a0 Mon Sep 17 00:00:00 2001 From: acondolu Date: Mon, 16 Jul 2018 10:19:07 +0100 Subject: [PATCH] Prime definizioni, verso prova correttezza nostro algoritmo --- macros.tex | 2 +- notes.tex | 69 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 70 insertions(+), 1 deletion(-) diff --git a/macros.tex b/macros.tex index d647af6..b9ac79d 100644 --- a/macros.tex +++ b/macros.tex @@ -4,7 +4,7 @@ \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} % \newtheorem{prop}[thm]{Proposition} -% \newtheorem*{cor}{Corollary} +\newtheorem{corollary}{Corollary} \theoremstyle{definition} \newtheorem{definition}{Definition} diff --git a/notes.tex b/notes.tex index 489869f..142ea4d 100644 --- a/notes.tex +++ b/notes.tex @@ -247,5 +247,74 @@ % % Where $\Pacman \equiv \lambda\_.\,\Pacman$. % % \end{example} +\clearpage +\section{Tentativi $\mathbf X$--separability (July, 15$^{\mathbf{th}}\div\infty$)} +\newcommand{\perm}{\pi} +\newcommand{\Perm}[2]{\pi[#1,#2]} +\newcommand{\xK}{\kappa} +\newcommand{\xN}{n} +\newcommand{\LAM}[2]{\Lambda_{#2,#1}} +\newcommand{\LAMNK}{\LAM\xN\xK} +\newcommand{\Apply}[2]{(#1\mapsto#2)} +\newcommand{\kn}{$(\kappa,n)$} +\newcommand{\knnf}{\kn{}-nf} +\newcommand{\Lams}[1]{\operatorname{lams}(#1)} +\newcommand{\Args}[1]{\operatorname{args}(#1)} +\newcommand{\Head}[1]{\operatorname{head}(#1)} +\begin{definition}[$\Lams\cdot,\Args\cdot,\Head\cdot$] + \[\Lams{\lambda\vec\var.\,\vartwo\,\vec\tm} \defeq |\vec\var| \] + \[\Args{\lambda\vec\var.\,\vartwo\,\vec\tm} \defeq |\vec\tm| \] + \[\Head{\lambda\vec\var.\,\vartwo\,\vec\tm} \defeq \vartwo \] +\end{definition} + +\begin{definition}[\kn{}-normal forms] + First recall that terms in normal form have the shape + $\lambda\vec\var.\,\vartwo\,\vec\tm$, where the terms $\vec\tm$ are in normal form too. + + We define inductively the set of \knnf s (for $\xK,\xN$ natural numbers): + $\lambda\vec\var.\,\vartwo\,\vec\tm$ is a \knnf{} iff + $|\vec\var|\leq\xK$, $|\vec\tm|\leq\xN$, and every term in $\vec\tm$ is a \knnf{}. +\end{definition} + +\begin{definition}[Permutator $\Perm\cdot\cdot$]~ + \[\Perm i j \defeq \lambda\vec\var\vartwo.\,\vartwo\, \vec\alpha\,\vec\var\,\vartwo\] + where $\vec\var$, $\vec\alpha$ and $\vartwo$ are fresh variables, + with $|\vec\var| = i$ and $|\vec\alpha| = j$. +\end{definition} + +\begin{definition}{$\Apply\cdot\cdot$} + We denote by $\tmtwo\Apply\var\tm$ the normal form of $\tmtwo\Subst\var\tm$ in normal form -- + if it has one. +\end{definition} + +\begin{lemma} + Let $\tm$ a \knnf, and $\Head\tm=\var$. + If $A\leq \Args\tm$ and $B \geq \xK + A + 1$, + let $\tmtwo\defeq\tm\Apply\var{\Perm{A}{B}}$ in: + $\Lams\tm=\Lams\tmtwo$ and $\tmtwo\in\LAM ? ?$ +\end{lemma} +\begin{proof} + By induction on the normal form structure of $\tm$. + Let $\tm=\lambda\vec\var.\,\vartwo\,\vec\tmtwo$: + \begin{itemize} + \item if $\vartwo=\var$, then + $\tm\Apply\var\perm = \lambda\var_1\ldots\var_{???}.\,\var\,\vec\tmthree$ + \item if $\vartwo\neq\var$, then $\tm\Apply\var\perm = \lambda\vec\var.\,\vartwo\,\vec\tmthree$ + where $\vec\tmthree\defeq \vec\tmtwo\Apply\var\perm$. + Conclude by inductive hypothesis. + \end{itemize} +\end{proof} +\begin{corollary} + Let $\tm \defeq \var\,f_1\cdots f_m$ a \knnf. + If $A\leq m$ and $B \geq A + \xK$, + then $\tm\Apply\var{\Perm{A}{B}}$ is an inert. +\end{corollary} + +\begin{lemma} + For every $\tm,\tmtwo$ be \knnf{s}, + every fresh variable $\var$, + $\perm\defeq\Perm{i}{i+k+1}$ permutator, + $\tm\EtaEq\tmtwo$ iff $\tm\Apply\var\perm\EtaEq\tmtwo\Apply\var\perm$. +\end{lemma} \end{document} -- 2.39.2