From 221472ea1597505d12677f5742e388125a15e2b9 Mon Sep 17 00:00:00 2001 From: Andrea Asperti Date: Mon, 1 Feb 2010 07:57:00 +0000 Subject: [PATCH] minus --- .../matita/nlibrary/arithmetics/nat.ma | 194 +++++++++++++++++- 1 file changed, 191 insertions(+), 3 deletions(-) diff --git a/helm/software/matita/nlibrary/arithmetics/nat.ma b/helm/software/matita/nlibrary/arithmetics/nat.ma index 3152b0dbe..0418444e3 100644 --- a/helm/software/matita/nlibrary/arithmetics/nat.ma +++ b/helm/software/matita/nlibrary/arithmetics/nat.ma @@ -76,7 +76,7 @@ ntheorem nat_elim2 : #R; #ROn; #RSO; #RSS; #n; nelim n;//; #n0; #Rn0m; #m; ncases m;/2/; nqed. -ntheorem decidable_eq_nat : \forall n,m:nat.decidable (n=m). +ntheorem decidable_eq_nat : ∀n,m:nat.decidable (n=m). napply nat_elim2; #n; ##[ ncases n; /2/; ##| /3/; @@ -260,7 +260,7 @@ ntheorem le_pred_n : ∀n:nat. pred n ≤ n. #n; nelim n; //; nqed. ntheorem monotonic_pred: monotonic ? le pred. -#n; #m; #lenm; nelim lenm; /2/; nqed. +#n; #m; #lenm; nelim lenm; //; /2/; nqed. ntheorem le_S_S_to_le: ∀n,m:nat. S n ≤ S m → n ≤ m. /2/; nqed. @@ -567,6 +567,39 @@ ntheorem le_plus_to_le: ∀a,n,m. a + n ≤ a + m → n ≤ m. ntheorem le_plus_to_le_r: ∀a,n,m. n + a ≤ m +a → n ≤ m. /2/; nqed. +(* plus & lt *) +ntheorem monotonic_lt_plus_r: +∀n:nat.monotonic nat lt (λm.n+m). +/2/; nqed. + +(* +variant lt_plus_r: \forall n,p,q:nat. p < q \to n + p < n + q \def +monotonic_lt_plus_r. *) + +ntheorem monotonic_lt_plus_l: +∀n:nat.monotonic nat lt (λm.m+n). +/2/;nqed. + +(* +variant lt_plus_l: \forall n,p,q:nat. p < q \to p + n < q + n \def +monotonic_lt_plus_l. *) + +ntheorem lt_plus: ∀n,m,p,q:nat. n < m → p < q → n + p < m + q. +#n; #m; #p; #q; #ltnm; #ltpq; +napply (transitive_lt ? (n+q));/2/; nqed. + +ntheorem lt_plus_to_lt_l :∀n,p,q:nat. p+n < q+n → p H2 in H1. + rewrite > (S_pred a) in H1 + [ apply False_ind. + apply (eq_to_not_lt O ((S (pred a))*(S m))) + [ apply sym_eq. + assumption + | apply lt_O_times_S_S + ] + | assumption + ] +] +qed. + +theorem O_lt_times_to_O_lt: \forall a,c:nat. +O \lt (a * c) \to O \lt a. +intros. +apply (nat_case1 a) +[ intros. + rewrite > H1 in H. + simplify in H. + assumption +| intros. + apply lt_O_S +] +qed. + +lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m. +intros. +elim (le_to_or_lt_eq O ? (le_O_n m)) + [assumption + |apply False_ind. + rewrite < H1 in H. + rewrite < times_n_O in H. + apply (not_le_Sn_O ? H) + ] +qed. *) + +(* +ntheorem monotonic_lt_times_r: +∀n:nat.monotonic nat lt (λm.(S n)*m). +/2/; +simplify. +intros.elim n. +simplify.rewrite < plus_n_O.rewrite < plus_n_O.assumption. +apply lt_plus.assumption.assumption. +qed. *) + +ntheorem monotonic_lt_times_l: + ∀c:nat. O < c → monotonic nat lt (λt.(t*c)). +#c; #posc; #n; #m; #ltnm; +nelim ltnm; nnormalize; + ##[napplyS monotonic_lt_plus_l;//; + ##|#a; #_; #lt1; napply (transitive_le ??? lt1);//; + ##] +nqed. + +ntheorem monotonic_lt_times_r: + ∀c:nat. O < c → monotonic nat lt (λt.(c*t)). +(* /2/ lentissimo *) +#c; #posc; #n; #m; #ltnm; +(* why?? napplyS (monotonic_lt_times_l c posc n m ltnm); *) +nrewrite > (symmetric_times c n); +nrewrite > (symmetric_times c m); +napply monotonic_lt_times_l;//; +nqed. + +ntheorem lt_to_le_to_lt_times: +∀n,m,p,q:nat. n < m → p ≤ q → O < q → n*p < m*q. +#n; #m; #p; #q; #ltnm; #lepq; #posq; +napply (le_to_lt_to_lt ? (n*q)); + ##[napply monotonic_le_times_r;//; + ##|napply monotonic_lt_times_l;//; + ##] +nqed. + +ntheorem lt_times:∀n,m,p,q:nat. n nat_compare_n_n.reflexivity. +intro.apply nat_compare_elim.intro. +absurd (p