From 22d8d52f5b9a6fa95ab31d585423af6a0b0a9e8c Mon Sep 17 00:00:00 2001 From: acondolu Date: Tue, 12 Jun 2018 12:27:25 +0200 Subject: [PATCH] New ac's attempt at defining distinction with garbage --- notes.tex | 72 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) diff --git a/notes.tex b/notes.tex index 084c9e2..4c1dd4f 100644 --- a/notes.tex +++ b/notes.tex @@ -43,10 +43,24 @@ \clearpage \section*{Separation} +% Paths: +\newcommand{\PathEmpty}{\epsilon} +\newcommand{\PathAbs}[1]{\mathtt{abs}(#1)} +\newcommand{\PathArg}[3]{\mathtt{arg}_{#1}^{#2}(#3)} +\newcommand{\PathHd}{\mathtt{hd}} + +\newcommand{\GarbageOf}[1]{\operatorname{Garb}(#1)} \newcommand{\HeadOf}[1]{\operatorname{head}(#1)} \newcommand{\FstOf}[1]{\operatorname{fst}(#1)} \newcommand{\DegOf}[1]{\operatorname{deg}(#1)} \newcommand{\SubtmOf}[2]{#1\preceq #2} +\newcommand{\OfHead}[2]{#1_{{\mid}#2}} +\newcommand{\SubtmsOf}[1]{\operatorname{Sub}(#1)} +\newcommand{\Div}{\mathtt{d}} +\newcommand{\Conv}{\mathtt{c}} +\newcommand{\Const}{\mathtt{K}} +\newcommand{\NamedBoundVar}[1]{\texttt{bvar(}#1\texttt{)}} +\newcommand{\AC}[1]{{\color{violet}#1}} \begin{itemize} % \item \textbf{$\boldsymbol\sigma$-separation.} % \textcolor{red}{come definirlo? con le variabili? con i termini? @@ -60,6 +74,7 @@ % (in deep normal form) \item \textbf{Subterm:} $\SubtmOf\tm\tmtwo$ means that $\tm$ is an ($\eta/\Omega$)-subterm of $\tmtwo$. \item \textbf{Subterm at position $\boldsymbol\pi$:} TODO + \item $\boldsymbol\sim_{\boldsymbol\pi}$ \item \textbf{Distinction:} Let $\var\defeq \HeadOf D$. Let $T_{\var} \defeq \{\tm \preceq T \mid \HeadOf{\tm} = \var \}$. $C_{\var}$ is $D$--\emph{distinct} iff it is empty, or there exists path $\pi$ s.t.: \begin{itemize} @@ -69,6 +84,63 @@ \item $\{\tm\in C_\var \mid \tm \sim_\pi D\}$ is $D$--distinct. \end{itemize} +\clearpage + \item $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ + $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ + $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ + \texttt{ prove di nuove definizioni di ac:} + + \item \textbf{Set of subterms:} %$\SubtmsOf{\tm} \defeq \{ \tmtwo \mid \SubtmOf\tmtwo\tm \}$ + \[\begin{array}{ll} + \SubtmsOf{\var} & \defeq \{\var\} \\ + \SubtmsOf{\tm\,\tmtwo} & \defeq \SubtmsOf\tm \cup \SubtmsOf\tmtwo \cup \{\tm\,\tmtwo\} \\ + \SubtmsOf{\lambda \var.\, \vec\tm} & \defeq \{\tmtwo\{\Const/\var\} \mid \tmtwo \in\SubtmsOf{\vec\tm}\} \\ + \end{array}\] + \AC{Note: $\SubtmsOf\cdot$ replaces bound variables with $\Const$ when going under abstractions.} + \item \textbf{Subterm at position:} + \[\begin{array}{ll} + \text{Paths: } \pi & ::= \PathEmpty \mid \PathHd \mid \PathArg i \var \pi \mid \PathAbs\pi + \end{array}\] + \AC{ + Given a path, one can retrieve from a term (if possible) the subterm at that position. + + Since the path may go through abstraction, bound variables that become free + are renamed to variables of the form $\NamedBoundVar\pi$ + (where $\pi$ is the path in the original inert leading to the abstraction binding that variable). + } + \[\begin{array}{ll} + \tm_\pi & \defeq \tm_\pi^{\Box} \\ + t_{\PathEmpty}^{-} & \defeq t \\ + (x\,t_1\cdots t_n)_{\PathHd}^{-} & \defeq x \\ + (x\,t_1\cdots t_n)_{\PathArg i \var \pi}^{\rho} & \defeq + (t_i)_\pi^{\rho[\PathArg i \var \Box]} \mbox{(if } 1 \leq i\leq n \mbox{)} \\ + (\lambda x.\, t)_{\PathAbs \pi}^{\rho} & \defeq t_\pi^{\rho[\PathAbs\Box]} \{\var\mapsto\NamedBoundVar{\rho[\PathEmpty]}\} \\ + (t)_{\PathAbs \pi}^{\rho} & \defeq (\lambda x.\, t\, x)_{\PathAbs \pi}^{\rho} \text{ (with } x \text{ fresh) (eta)}\\ + % \Omega_-^- & \defeq \Omega \\ + \end{array}\] + \item \textbf{Head restriction:} $\OfHead T \var \defeq \{\tm \in T \mid \HeadOf{\tm} (\defeq \tm_{\PathHd}) = \var \}$ + \item \textbf{Distinction:} \underline{$S,R$ is $\Div$--distinct} iff: + $S$ is empty, or there exists a path $\pi$ \emph{effective} for $\{\Div\}\cup \OfHead{\GarbageOf\Div}{\HeadOf\Div}$, s.t. EITHER: + \begin{itemize} + \item $\forall \tm\in \OfHead{\SubtmsOf{\Div}}{\HeadOf\Div}$, $\tm_\pi$ is defined; + % \item 1. $\exists s\in S$ s.t. $s \not\sim_\pi \Div$; + \item $\{s\in S \mid s \sim_\pi \Div\},R$ is $\Div$--distinct. + \end{itemize} + OR: +\begin{itemize} + \item $\Div_\pi = \lambda\var.\, -, g$ + (note that $\Div$ has recursively only one garbage); + % \item $\Div_\pi \neq \Omega$ + \item there is $\Div'\in\SubtmsOf g$ s.t. + $S',R'$ is $\Div'$--distinct, where: + $R'\defeq R\cup \bigcup\{\text{subtms of } s \text{ along } \pi \mid s\in S\}$ and + $S' \defeq \OfHead{R'}{\HeadOf{\Div'}}$. + \end{itemize} + + \item \textbf{Semi-$\sigma$-separability: } $(\Div,\Conv)$ are semi-$\sigma$-separable + IF $\OfHead{\SubtmsOf{\Conv}}{\HeadOf{\Div'}}, \SubtmsOf{\Conv}$ is $\Div'$--distinct for some $\Div'\in\SubtmsOf\Div$. + + \clearpage \item $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ -- 2.39.2