From 247ec86cf6e8ba95843b408453afd57f7cf2d075 Mon Sep 17 00:00:00 2001 From: Wilmer Ricciotti Date: Thu, 18 Jan 2007 11:51:05 +0000 Subject: [PATCH] new version, using new tacticals --- helm/software/matita/library/Fsub/defn.ma | 674 ++++++++------------ helm/software/matita/library/Fsub/part1a.ma | 144 +---- helm/software/matita/library/Fsub/util.ma | 133 ++++ 3 files changed, 419 insertions(+), 532 deletions(-) create mode 100644 helm/software/matita/library/Fsub/util.ma diff --git a/helm/software/matita/library/Fsub/defn.ma b/helm/software/matita/library/Fsub/defn.ma index 7f2154893..8ff30ce1f 100644 --- a/helm/software/matita/library/Fsub/defn.ma +++ b/helm/software/matita/library/Fsub/defn.ma @@ -18,24 +18,7 @@ include "nat/nat.ma". include "datatypes/bool.ma". include "nat/compare.ma". include "list/list.ma". - -(*** useful definitions and lemmas not really related to Fsub ***) - -lemma eqb_case : \forall x,y.(eqb x y) = true \lor (eqb x y) = false. -intros;elim (eqb x y);auto; -qed. - -lemma eq_eqb_case : \forall x,y.((x = y) \land (eqb x y) = true) \lor - ((x \neq y) \land (eqb x y) = false). -intros;lapply (eqb_to_Prop x y);elim (eqb_case x y) - [rewrite > H in Hletin;simplify in Hletin;left;auto - |rewrite > H in Hletin;simplify in Hletin;right;auto] -qed. - -let rec max m n \def - match (leb m n) with - [true \Rightarrow n - |false \Rightarrow m]. +include "Fsub/util.ma". (*** representation of Fsub types ***) inductive Typ : Set \def @@ -70,7 +53,7 @@ definition TCons \def \lambda G,X,T.((mk_bound true X T) :: G). definition env_append : Env \to Env \to Env \def \lambda G,H.(H @ G). -notation "hvbox(\Forall S. break T)" +(* notation "hvbox(\Forall S. break T)" non associative with precedence 90 for @{ 'forall $S $T}. @@ -102,7 +85,7 @@ interpretation "bound tvar" 'tvar x = (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/ interpretation "bound tname" 'tname x = (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/2) x). -interpretation "arrow type" 'arrow S T = (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/4) S T). +interpretation "arrow type" 'arrow S T = (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/4) S T). *) (*** Various kinds of substitution, not all will be used probably ***) @@ -170,104 +153,6 @@ let rec t_len T \def |(Arrow T1 T2) \Rightarrow (S (max (t_len T1) (t_len T2))) |(Forall T1 T2) \Rightarrow (S (max (t_len T1) (t_len T2)))]. -(* -let rec fresh_name G n \def - match G with - [ nil \Rightarrow n - | (cons b H) \Rightarrow match (leb (fresh_name H n) (name b)) with - [ true \Rightarrow (S (name b)) - | false \Rightarrow (fresh_name H n) ]]. - -lemma freshname_Gn_geq_n : \forall G,n.((fresh_name G n) >= n). -intro;elim G - [simplify;unfold;constructor 1 - |simplify;cut ((leb (fresh_name l n) (name s)) = true \lor - (leb (fresh_name l n) (name s) = false)) - [elim Hcut - [lapply (leb_to_Prop (fresh_name l n) (name s));rewrite > H1 in Hletin; - simplify in Hletin;rewrite > H1;simplify;lapply (H n); - unfold in Hletin1;unfold; - apply (trans_le ? ? ? Hletin1); - apply (trans_le ? ? ? Hletin);constructor 2;constructor 1 - |rewrite > H1;simplify;apply H] - |elim (leb (fresh_name l n) (name s)) [left;reflexivity|right;reflexivity]]] -qed. - -lemma freshname_consGX_gt_X : \forall G,X,T,b,n. - (fresh_name (cons ? (mk_bound b X T) G) n) > X. -intros.unfold.unfold.simplify.cut ((leb (fresh_name G n) X) = true \lor - (leb (fresh_name G n) X) = false) - [elim Hcut - [rewrite > H;simplify;constructor 1 - |rewrite > H;simplify;lapply (leb_to_Prop (fresh_name G n) X); - rewrite > H in Hletin;simplify in Hletin; - lapply (not_le_to_lt ? ? Hletin);unfold in Hletin1;assumption] - |elim (leb (fresh_name G n) X) [left;reflexivity|right;reflexivity]] -qed. - -lemma freshname_case : \forall G,X,T,b,n. - (fresh_name ((mk_bound b X T) :: G) n) = (fresh_name G n) \lor - (fresh_name ((mk_bound b X T) :: G) n) = (S X). -intros.simplify.cut ((leb (fresh_name G n) X) = true \lor - (leb (fresh_name G n) X) = false) - [elim Hcut - [rewrite > H;simplify;right;reflexivity - |rewrite > H;simplify;left;reflexivity] - |elim (leb (fresh_name G n) X) - [left;reflexivity|right;reflexivity]] -qed. - -lemma freshname_monotone_n : \forall G,m,n.(m \leq n) \to - ((fresh_name G m) \leq (fresh_name G n)). -intros.elim G - [simplify;assumption - |simplify;cut ((leb (fresh_name l m) (name s)) = true \lor - (leb (fresh_name l m) (name s)) = false) - [cut ((leb (fresh_name l n) (name s)) = true \lor - (leb (fresh_name l n) (name s)) = false) - [elim Hcut - [rewrite > H2;simplify;elim Hcut1 - [rewrite > H3;simplify;constructor 1 - |rewrite > H3;simplify; - lapply (leb_to_Prop (fresh_name l n) (name s)); - rewrite > H3 in Hletin;simplify in Hletin; - lapply (not_le_to_lt ? ? Hletin);unfold in Hletin1;assumption] - |rewrite > H2;simplify;elim Hcut1 - [rewrite > H3;simplify; - lapply (leb_to_Prop (fresh_name l m) (name s)); - rewrite > H2 in Hletin;simplify in Hletin; - lapply (not_le_to_lt ? ? Hletin);unfold in Hletin1; - lapply (leb_to_Prop (fresh_name l n) (name s)); - rewrite > H3 in Hletin2; - simplify in Hletin2;lapply (trans_le ? ? ? Hletin1 H1); - lapply (trans_le ? ? ? Hletin3 Hletin2); - absurd ((S (name s)) \leq (name s)) - [assumption|apply not_le_Sn_n] - |rewrite > H3;simplify;assumption]] - |elim (leb (fresh_name l n) (name s)) - [left;reflexivity|right;reflexivity]] - |elim (leb (fresh_name l m) (name s)) [left;reflexivity|right;reflexivity]]] -qed. - -lemma freshname_monotone_G : \forall G,X,T,b,n. - (fresh_name G n) \leq (fresh_name ((mk_bound b X T) :: G) n). -intros.simplify.cut ((leb (fresh_name G n) X) = true \lor - (leb (fresh_name G n) X) = false) - [elim Hcut - [rewrite > H;simplify;lapply (leb_to_Prop (fresh_name G n) X); - rewrite > H in Hletin;simplify in Hletin;constructor 2;assumption - |rewrite > H;simplify;constructor 1] - |elim (leb (fresh_name G n) X) - [left;reflexivity|right;reflexivity]] -qed.*) - -lemma subst_O_nat : \forall T,U.((subst_type_O T U) = (subst_type_nat T U O)). -intros;elim T;simplify;reflexivity; -qed. - -(* FIXME: these definitions shouldn't be part of the poplmark challenge - - use destruct instead, when hopefully it will get fixed... *) - definition head \def \lambda G:(list bound).match G with [ nil \Rightarrow (mk_bound false O Top) @@ -278,43 +163,12 @@ definition head_nat \def [ nil \Rightarrow O | (cons n H) \Rightarrow n]. -lemma inj_head : \forall h1,h2:bound.\forall t1,t2:Env. - ((h1::t1) = (h2::t2)) \to (h1 = h2). -intros.lapply (eq_f ? ? head ? ? H).simplify in Hletin.assumption. -qed. - -lemma inj_head_nat : \forall h1,h2:nat.\forall t1,t2:(list nat). - ((h1::t1) = (h2::t2)) \to (h1 = h2). -intros.lapply (eq_f ? ? head_nat ? ? H).simplify in Hletin.assumption. -qed. - -lemma inj_tail : \forall A.\forall h1,h2:A.\forall t1,t2:(list A). - ((h1::t1) = (h2::t2)) \to (t1 = t2). -intros.lapply (eq_f ? ? (tail ?) ? ? H).simplify in Hletin.assumption. -qed. - -(* end of fixme *) - -(*** definitions and theorems about lists ***) - -inductive in_list (A : Set) : A \to (list A) \to Prop \def - | in_Base : \forall x:A.\forall l:(list A). - (in_list A x (x :: l)) - | in_Skip : \forall x,y:A.\forall l:(list A). - (in_list A x l) \to (in_list A x (y :: l)). +(*** definitions about lists ***) (* var binding is in env judgement *) definition var_bind_in_env : bound \to Env \to Prop \def \lambda b,G.(in_list bound b G). -(* FIXME: use the map in library/list (when there will be one) *) -definition map : \forall A,B,f.((list A) \to (list B)) \def - \lambda A,B,f.let rec map (l : (list A)) : (list B) \def - match l in list return \lambda l0:(list A).(list B) with - [nil \Rightarrow (nil B) - |(cons (a:A) (t:(list A))) \Rightarrow - (cons B (f a) (map t))] in map. - definition fv_env : (list bound) \to (list nat) \def \lambda G.(map ? ? (\lambda b.match b with [(mk_bound B X T) \Rightarrow X]) G). @@ -326,9 +180,6 @@ definition var_in_env : nat \to Env \to Prop \def definition var_type_in_env : nat \to Env \to Prop \def \lambda x,G.\exists T.(var_bind_in_env (mk_bound true x T) G). -definition incl : \forall A.(list A) \to (list A) \to Prop \def - \lambda A,l,m.\forall x.(in_list A x l) \to (in_list A x m). - let rec fv_type T \def match T with [(TVar n) \Rightarrow [] @@ -337,25 +188,126 @@ let rec fv_type T \def |(Arrow U V) \Rightarrow ((fv_type U) @ (fv_type V)) |(Forall U V) \Rightarrow ((fv_type U) @ (fv_type V))]. -lemma var_notinbG_notinG : \forall G,x,b. - (\lnot (var_in_env x (b::G))) - \to \lnot (var_in_env x G). -intros 3.elim b.unfold.intro.elim H.unfold.simplify.constructor 2.exact H1. +(*** Type Well-Formedness judgement ***) + +inductive WFType : Env \to Typ \to Prop \def + | WFT_TFree : \forall X,G.(in_list ? X (fv_env G)) + \to (WFType G (TFree X)) + | WFT_Top : \forall G.(WFType G Top) + | WFT_Arrow : \forall G,T,U.(WFType G T) \to (WFType G U) \to + (WFType G (Arrow T U)) + | WFT_Forall : \forall G,T,U.(WFType G T) \to + (\forall X:nat. + (\lnot (in_list ? X (fv_env G))) \to + (\lnot (in_list ? X (fv_type U))) \to + (WFType ((mk_bound true X T) :: G) + (subst_type_O U (TFree X)))) \to + (WFType G (Forall T U)). + +(*** Environment Well-Formedness judgement ***) + +inductive WFEnv : Env \to Prop \def + | WFE_Empty : (WFEnv Empty) + | WFE_cons : \forall B,X,T,G.(WFEnv G) \to + \lnot (in_list ? X (fv_env G)) \to + (WFType G T) \to (WFEnv ((mk_bound B X T) :: G)). + +(*** Subtyping judgement ***) +inductive JSubtype : Env \to Typ \to Typ \to Prop \def + | SA_Top : \forall G:Env.\forall T:Typ.(WFEnv G) \to + (WFType G T) \to (JSubtype G T Top) + | SA_Refl_TVar : \forall G:Env.\forall X:nat.(WFEnv G) \to (var_in_env X G) + \to (JSubtype G (TFree X) (TFree X)) + | SA_Trans_TVar : \forall G:Env.\forall X:nat.\forall T:Typ. + \forall U:Typ. + (var_bind_in_env (mk_bound true X U) G) \to + (JSubtype G U T) \to (JSubtype G (TFree X) T) + | SA_Arrow : \forall G:Env.\forall S1,S2,T1,T2:Typ. + (JSubtype G T1 S1) \to (JSubtype G S2 T2) \to + (JSubtype G (Arrow S1 S2) (Arrow T1 T2)) + | SA_All : \forall G:Env.\forall S1,S2,T1,T2:Typ. + (JSubtype G T1 S1) \to + (\forall X:nat.\lnot (var_in_env X G) \to + (JSubtype ((mk_bound true X T1) :: G) + (subst_type_O S2 (TFree X)) (subst_type_O T2 (TFree X)))) \to + (JSubtype G (Forall S1 S2) (Forall T1 T2)). + +(*** Typing judgement ***) +inductive JType : Env \to Term \to Typ \to Prop \def + | T_Var : \forall G:Env.\forall x:nat.\forall T:Typ. + (WFEnv G) \to (var_bind_in_env (mk_bound false x T) G) \to + (JType G (Free x) T) + | T_Abs : \forall G.\forall T1,T2:Typ.\forall t2:Term. + \forall x:nat. + (JType ((mk_bound false x T1)::G) (subst_term_O t2 (Free x)) T2) \to + (JType G (Abs T1 t2) (Arrow T1 T2)) + | T_App : \forall G.\forall t1,t2:Term.\forall T2:Typ. + \forall T1:Typ.(JType G t1 (Arrow T1 T2)) \to (JType G t2 T1) \to + (JType G (App t1 t2) T2) + | T_TAbs : \forall G:Env.\forall T1,T2:Typ.\forall t2:Term. + \forall X:nat. + (JType ((mk_bound true X T1)::G) + (subst_term_tO t2 (TFree X)) (subst_type_O T2 (TFree X))) + \to (JType G (TAbs T1 t2) (Forall T1 T2)) + | T_TApp : \forall G:Env.\forall t1:Term.\forall T2,T12:Typ. + \forall X:nat.\forall T11:Typ. + (JType G t1 (Forall T11 (subst_type_tfree_type T12 X (TVar O)))) \to + (JSubtype G T2 T11) + \to (JType G (TApp t1 T2) (subst_type_tfree_type T12 X T2)) + | T_Sub : \forall G:Env.\forall t:Term.\forall T:Typ. + \forall S:Typ.(JType G t S) \to (JSubtype G S T) \to (JType G t T). + +(*** definitions about swaps ***) + +let rec swap_Typ u v T on T \def + match T with + [(TVar n) \Rightarrow (TVar n) + |(TFree X) \Rightarrow (TFree (swap u v X)) + |Top \Rightarrow Top + |(Arrow T1 T2) \Rightarrow (Arrow (swap_Typ u v T1) (swap_Typ u v T2)) + |(Forall T1 T2) \Rightarrow (Forall (swap_Typ u v T1) (swap_Typ u v T2))]. + +definition swap_bound : nat \to nat \to bound \to bound \def + \lambda u,v,b.match b with + [(mk_bound B X T) \Rightarrow (mk_bound B (swap u v X) (swap_Typ u v T))]. + +definition swap_Env : nat \to nat \to Env \to Env \def + \lambda u,v,G.(map ? ? (\lambda b.(swap_bound u v b)) G). + +(****** PROOFS ********) + +lemma subst_O_nat : \forall T,U.((subst_type_O T U) = (subst_type_nat T U O)). +intros;elim T;simplify;reflexivity; qed. -lemma in_list_nil : \forall A,x.\lnot (in_list A x []). -intros.unfold.intro.inversion H - [intros;lapply (sym_eq ? ? ? H2);absurd (a::l = []) - [assumption|apply nil_cons] - |intros;lapply (sym_eq ? ? ? H4);absurd (a1::l = []) - [assumption|apply nil_cons]] +(*** theorems about lists ***) + +(* FIXME: these definitions shouldn't be part of the poplmark challenge + - use destruct instead, when hopefully it will get fixed... *) + +lemma inj_head : \forall h1,h2:bound.\forall t1,t2:Env. + ((h1::t1) = (h2::t2)) \to (h1 = h2). +intros. +lapply (eq_f ? ? head ? ? H).simplify in Hletin.assumption. qed. -lemma notin_cons : \forall A,x,y,l.\lnot (in_list A x (y::l)) \to - (y \neq x) \land \lnot (in_list A x l). -intros.split - [unfold;intro;apply H;rewrite > H1;constructor 1 - |unfold;intro;apply H;constructor 2;assumption] +lemma inj_head_nat : \forall h1,h2:nat.\forall t1,t2:(list nat). + ((h1::t1) = (h2::t2)) \to (h1 = h2). +intros. +lapply (eq_f ? ? head_nat ? ? H).simplify in Hletin.assumption. +qed. + +lemma inj_tail : \forall A.\forall h1,h2:A.\forall t1,t2:(list A). + ((h1::t1) = (h2::t2)) \to (t1 = t2). +intros.lapply (eq_f ? ? (tail ?) ? ? H).simplify in Hletin.assumption. +qed. + +(* end of fixme *) + +lemma var_notinbG_notinG : \forall G,x,b. + (\lnot (var_in_env x (b::G))) + \to \lnot (var_in_env x G). +intros 3.elim b.unfold.intro.elim H.unfold.simplify.constructor 2.exact H1. qed. lemma boundinenv_natinfv : \forall x,G. @@ -509,75 +461,6 @@ intros.generalize in match H.elim H [apply a2|apply ex_intro [apply (a1 :: a3)|simplify;reflexivity]]] qed. -(*** Type Well-Formedness judgement ***) - -inductive WFType : Env \to Typ \to Prop \def - | WFT_TFree : \forall X,G.(in_list ? X (fv_env G)) - \to (WFType G (TFree X)) - | WFT_Top : \forall G.(WFType G Top) - | WFT_Arrow : \forall G,T,U.(WFType G T) \to (WFType G U) \to - (WFType G (Arrow T U)) - | WFT_Forall : \forall G,T,U.(WFType G T) \to - (\forall X:nat. - (\lnot (in_list ? X (fv_env G))) \to - (\lnot (in_list ? X (fv_type U))) \to - (WFType ((mk_bound true X T) :: G) - (subst_type_O U (TFree X)))) \to - (WFType G (Forall T U)). - -(*** Environment Well-Formedness judgement ***) - -inductive WFEnv : Env \to Prop \def - | WFE_Empty : (WFEnv Empty) - | WFE_cons : \forall B,X,T,G.(WFEnv G) \to - \lnot (in_list ? X (fv_env G)) \to - (WFType G T) \to (WFEnv ((mk_bound B X T) :: G)). - -(*** Subtyping judgement ***) -inductive JSubtype : Env \to Typ \to Typ \to Prop \def - | SA_Top : \forall G:Env.\forall T:Typ.(WFEnv G) \to - (WFType G T) \to (JSubtype G T Top) - | SA_Refl_TVar : \forall G:Env.\forall X:nat.(WFEnv G) \to (var_in_env X G) - \to (JSubtype G (TFree X) (TFree X)) - | SA_Trans_TVar : \forall G:Env.\forall X:nat.\forall T:Typ. - \forall U:Typ. - (var_bind_in_env (mk_bound true X U) G) \to - (JSubtype G U T) \to (JSubtype G (TFree X) T) - | SA_Arrow : \forall G:Env.\forall S1,S2,T1,T2:Typ. - (JSubtype G T1 S1) \to (JSubtype G S2 T2) \to - (JSubtype G (Arrow S1 S2) (Arrow T1 T2)) - | SA_All : \forall G:Env.\forall S1,S2,T1,T2:Typ. - (JSubtype G T1 S1) \to - (\forall X:nat.\lnot (var_in_env X G) \to - (JSubtype ((mk_bound true X T1) :: G) - (subst_type_O S2 (TFree X)) (subst_type_O T2 (TFree X)))) \to - (JSubtype G (Forall S1 S2) (Forall T1 T2)). - -(*** Typing judgement ***) -inductive JType : Env \to Term \to Typ \to Prop \def - | T_Var : \forall G:Env.\forall x:nat.\forall T:Typ. - (WFEnv G) \to (var_bind_in_env (mk_bound false x T) G) \to - (JType G (Free x) T) - | T_Abs : \forall G.\forall T1,T2:Typ.\forall t2:Term. - \forall x:nat. - (JType ((mk_bound false x T1)::G) (subst_term_O t2 (Free x)) T2) \to - (JType G (Abs T1 t2) (Arrow T1 T2)) - | T_App : \forall G.\forall t1,t2:Term.\forall T2:Typ. - \forall T1:Typ.(JType G t1 (Arrow T1 T2)) \to (JType G t2 T1) \to - (JType G (App t1 t2) T2) - | T_TAbs : \forall G:Env.\forall T1,T2:Typ.\forall t2:Term. - \forall X:nat. - (JType ((mk_bound true X T1)::G) - (subst_term_tO t2 (TFree X)) (subst_type_O T2 (TFree X))) - \to (JType G (TAbs T1 t2) (Forall T1 T2)) - | T_TApp : \forall G:Env.\forall t1:Term.\forall T2,T12:Typ. - \forall X:nat.\forall T11:Typ. - (JType G t1 (Forall T11 (subst_type_tfree_type T12 X (TVar O)))) \to - (JSubtype G T2 T11) - \to (JType G (TApp t1 T2) (subst_type_tfree_type T12 X T2)) - | T_Sub : \forall G:Env.\forall t:Term.\forall T:Typ. - \forall S:Typ.(JType G t S) \to (JSubtype G S T) \to (JType G t T). - lemma WFT_env_incl : \forall G,T.(WFType G T) \to \forall H.(incl ? (fv_env G) (fv_env H)) \to (WFType H T). @@ -593,79 +476,42 @@ intros 4.generalize in match H1.elim H |simplify;apply (incl_nat_cons ? ? ? H6)]]] qed. -(*** definitions and theorems about swaps ***) - -definition swap : nat \to nat \to nat \to nat \def - \lambda u,v,x.match (eqb x u) with - [true \Rightarrow v - |false \Rightarrow match (eqb x v) with - [true \Rightarrow u - |false \Rightarrow x]]. - -lemma swap_left : \forall x,y.(swap x y x) = y. -intros;unfold swap;rewrite > eqb_n_n;simplify;reflexivity; +lemma fv_env_extends : \forall H,x,B,C,T,U,G. + (fv_env (H @ ((mk_bound B x T) :: G))) = + (fv_env (H @ ((mk_bound C x U) :: G))). +intros;elim H + [simplify;reflexivity + |elim s;simplify;rewrite > H1;reflexivity] qed. -lemma swap_right : \forall x,y.(swap x y y) = x. -intros;unfold swap;elim (eq_eqb_case y x) - [elim H;rewrite > H2;simplify;rewrite > H1;reflexivity - |elim H;rewrite > H2;simplify;rewrite > eqb_n_n;simplify;reflexivity] +lemma lookup_env_extends : \forall G,H,B,C,D,T,U,V,x,y. + (in_list ? (mk_bound D y V) (H @ ((mk_bound C x U) :: G))) \to + (y \neq x) \to + (in_list ? (mk_bound D y V) (H @ ((mk_bound B x T) :: G))). +intros 10;elim H + [simplify in H1;(*FIXME*)generalize in match H1;intro;inversion H1 + [intros;lapply (inj_head ? ? ? ? H5);rewrite < H4 in Hletin; + destruct Hletin;absurd (y = x) [symmetry;assumption|assumption] + |intros;simplify;lapply (inj_tail ? ? ? ? ? H7);rewrite > Hletin; + apply in_Skip;assumption] + |(*FIXME*)generalize in match H2;intro;inversion H2 + [intros;simplify in H6;lapply (inj_head ? ? ? ? H6);rewrite > Hletin; + simplify;apply in_Base + |simplify;intros;lapply (inj_tail ? ? ? ? ? H8);rewrite > Hletin in H1; + rewrite > H7 in H1;apply in_Skip;apply (H1 H5 H3)]] qed. -lemma swap_other : \forall x,y,z.(z \neq x) \to (z \neq y) \to (swap x y z) = z. -intros;unfold swap;elim (eq_eqb_case z x) - [elim H2;lapply (H H3);elim Hletin - |elim H2;rewrite > H4;simplify;elim (eq_eqb_case z y) - [elim H5;lapply (H1 H6);elim Hletin - |elim H5;rewrite > H7;simplify;reflexivity]] -qed. - -lemma swap_inv : \forall u,v,x.(swap u v (swap u v x)) = x. -intros;unfold in match (swap u v x);elim (eq_eqb_case x u) - [elim H;rewrite > H2;simplify;rewrite > H1;apply swap_right - |elim H;rewrite > H2;simplify;elim (eq_eqb_case x v) - [elim H3;rewrite > H5;simplify;rewrite > H4;apply swap_left - |elim H3;rewrite > H5;simplify;apply (swap_other ? ? ? H1 H4)]] -qed. - -lemma swap_inj : \forall u,v,x,y.(swap u v x) = (swap u v y) \to x = y. -intros;unfold swap in H;elim (eq_eqb_case x u) - [elim H1;elim (eq_eqb_case y u) - [elim H4;rewrite > H5;assumption - |elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H; - elim (eq_eqb_case y v) - [elim H7;rewrite > H9 in H;simplify in H;rewrite > H in H8; - lapply (H5 H8);elim Hletin - |elim H7;rewrite > H9 in H;simplify in H;elim H8;symmetry;assumption]] - |elim H1;elim (eq_eqb_case y u) - [elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H; - elim (eq_eqb_case x v) - [elim H7;rewrite > H9 in H;simplify in H;rewrite < H in H8; - elim H2;assumption - |elim H7;rewrite > H9 in H;simplify in H;elim H8;assumption] - |elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H; - elim (eq_eqb_case x v) - [elim H7;rewrite > H9 in H;elim (eq_eqb_case y v) - [elim H10;rewrite > H11;assumption - |elim H10;rewrite > H12 in H;simplify in H;elim H5;symmetry; - assumption] - |elim H7;rewrite > H9 in H;elim (eq_eqb_case y v) - [elim H10;rewrite > H12 in H;simplify in H;elim H2;assumption - |elim H10;rewrite > H12 in H;simplify in H;assumption]]]] -qed. +(*** theorems about swaps ***) + lemma fv_subst_type_nat : \forall x,T,y,n.(in_list ? x (fv_type T)) \to (in_list ? x (fv_type (subst_type_nat T (TFree y) n))). intros 3;elim T 0 [intros;simplify in H;elim (in_list_nil ? ? H) - |simplify;intros;assumption - |simplify;intros;assumption - |intros;simplify in H2;elim (nat_in_list_case ? ? ? H2) - [simplify;apply natinG_or_inH_to_natinGH;left;apply (H1 ? H3) - |simplify;apply natinG_or_inH_to_natinGH;right;apply (H ? H3)] - |intros;simplify in H2;elim (nat_in_list_case ? ? ? H2) - [simplify;apply natinG_or_inH_to_natinGH;left;apply (H1 ? H3) - |simplify;apply natinG_or_inH_to_natinGH;right;apply (H ? H3)]] + |2,3:simplify;intros;assumption + |*:intros;simplify in H2;elim (nat_in_list_case ? ? ? H2) + [1,3:simplify;apply natinG_or_inH_to_natinGH;left;apply (H1 ? H3) + |*:simplify;apply natinG_or_inH_to_natinGH;right;apply (H ? H3)]] qed. lemma fv_subst_type_O : \forall x,T,y.(in_list ? x (fv_type T)) \to @@ -673,51 +519,31 @@ lemma fv_subst_type_O : \forall x,T,y.(in_list ? x (fv_type T)) \to intros;rewrite > subst_O_nat;apply (fv_subst_type_nat ? ? ? ? H); qed. -let rec swap_Typ u v T on T \def - match T with - [(TVar n) \Rightarrow (TVar n) - |(TFree X) \Rightarrow (TFree (swap u v X)) - |Top \Rightarrow Top - |(Arrow T1 T2) \Rightarrow (Arrow (swap_Typ u v T1) (swap_Typ u v T2)) - |(Forall T1 T2) \Rightarrow (Forall (swap_Typ u v T1) (swap_Typ u v T2))]. - lemma swap_Typ_inv : \forall u,v,T.(swap_Typ u v (swap_Typ u v T)) = T. intros;elim T - [simplify;reflexivity + [1,3:simplify;reflexivity |simplify;rewrite > swap_inv;reflexivity - |simplify;reflexivity - |simplify;rewrite > H;rewrite > H1;reflexivity - |simplify;rewrite > H;rewrite > H1;reflexivity] + |*:simplify;rewrite > H;rewrite > H1;reflexivity] qed. lemma swap_Typ_not_free : \forall u,v,T.\lnot (in_list ? u (fv_type T)) \to \lnot (in_list ? v (fv_type T)) \to (swap_Typ u v T) = T. intros 3;elim T 0 - [intros;simplify;reflexivity + [1,3:intros;simplify;reflexivity |simplify;intros;cut (n \neq u \land n \neq v) [elim Hcut;rewrite > (swap_other ? ? ? H2 H3);reflexivity |split [unfold;intro;apply H;rewrite > H2;apply in_Base |unfold;intro;apply H1;rewrite > H2;apply in_Base]] - |simplify;intros;reflexivity - |simplify;intros;cut ((\lnot (in_list ? u (fv_type t)) \land - \lnot (in_list ? u (fv_type t1))) \land - (\lnot (in_list ? v (fv_type t)) \land - \lnot (in_list ? v (fv_type t1)))) - [elim Hcut;elim H4;elim H5;clear Hcut H4 H5;rewrite > (H H6 H8); - rewrite > (H1 H7 H9);reflexivity - |split - [split;unfold;intro;apply H2;apply natinG_or_inH_to_natinGH;auto - |split;unfold;intro;apply H3;apply natinG_or_inH_to_natinGH;auto]] - |simplify;intros;cut ((\lnot (in_list ? u (fv_type t)) \land + |*:simplify;intros;cut ((\lnot (in_list ? u (fv_type t)) \land \lnot (in_list ? u (fv_type t1))) \land (\lnot (in_list ? v (fv_type t)) \land \lnot (in_list ? v (fv_type t1)))) - [elim Hcut;elim H4;elim H5;clear Hcut H4 H5;rewrite > (H H6 H8); + [1,3:elim Hcut;elim H4;elim H5;clear Hcut H4 H5;rewrite > (H H6 H8); rewrite > (H1 H7 H9);reflexivity - |split - [split;unfold;intro;apply H2;apply natinG_or_inH_to_natinGH;auto - |split;unfold;intro;apply H3;apply natinG_or_inH_to_natinGH;auto]]] + |*:split + [1,3:split;unfold;intro;apply H2;apply natinG_or_inH_to_natinGH;auto + |*:split;unfold;intro;apply H3;apply natinG_or_inH_to_natinGH;auto]]] qed. lemma subst_type_nat_swap : \forall u,v,T,X,m. @@ -725,10 +551,8 @@ lemma subst_type_nat_swap : \forall u,v,T,X,m. (subst_type_nat (swap_Typ u v T) (TFree (swap u v X)) m). intros 4;elim T [simplify;elim (eqb_case n m);rewrite > H;simplify;reflexivity - |simplify;reflexivity - |simplify;reflexivity - |simplify;rewrite > H;rewrite > H1;reflexivity - |simplify;rewrite > H;rewrite > H1;reflexivity] + |2,3:simplify;reflexivity + |*:simplify;rewrite > H;rewrite > H1;reflexivity] qed. lemma subst_type_O_swap : \forall u,v,T,X. @@ -744,7 +568,7 @@ lemma in_fv_type_swap : \forall u,v,x,T.((in_list ? x (fv_type T)) \to (in_list ? x (fv_type T))). intros;split [elim T 0 - [simplify;intros;elim (in_list_nil ? ? H) + [1,3:simplify;intros;elim (in_list_nil ? ? H) |simplify;intros;cut (x = n) [rewrite > Hcut;apply in_Base |inversion H @@ -752,15 +576,11 @@ intros;split reflexivity |intros;lapply (inj_tail ? ? ? ? ? H4);rewrite < Hletin in H1; elim (in_list_nil ? ? H1)]] - |simplify;intro;elim (in_list_nil ? ? H) - |simplify;intros;elim (nat_in_list_case ? ? ? H2) - [apply natinG_or_inH_to_natinGH;left;apply (H1 H3) - |apply natinG_or_inH_to_natinGH;right;apply (H H3)] - |simplify;intros;elim (nat_in_list_case ? ? ? H2) - [apply natinG_or_inH_to_natinGH;left;apply (H1 H3) - |apply natinG_or_inH_to_natinGH;right;apply (H H3)]] + |*:simplify;intros;elim (nat_in_list_case ? ? ? H2) + [1,3:apply natinG_or_inH_to_natinGH;left;apply (H1 H3) + |*:apply natinG_or_inH_to_natinGH;right;apply (H H3)]] |elim T 0 - [simplify;intros;elim (in_list_nil ? ? H) + [1,3:simplify;intros;elim (in_list_nil ? ? H) |simplify;intros;cut ((swap u v x) = (swap u v n)) [lapply (swap_inj ? ? ? ? Hcut);rewrite > Hletin;apply in_Base |inversion H @@ -768,22 +588,11 @@ intros;split reflexivity |intros;lapply (inj_tail ? ? ? ? ? H4);rewrite < Hletin in H1; elim (in_list_nil ? ? H1)]] - |simplify;intro;elim (in_list_nil ? ? H) - |simplify;intros;elim (nat_in_list_case ? ? ? H2) - [apply natinG_or_inH_to_natinGH;left;apply (H1 H3) - |apply natinG_or_inH_to_natinGH;right;apply (H H3)] - |simplify;intros;elim (nat_in_list_case ? ? ? H2) - [apply natinG_or_inH_to_natinGH;left;apply (H1 H3) - |apply natinG_or_inH_to_natinGH;right;apply (H H3)]]] + |*:simplify;intros;elim (nat_in_list_case ? ? ? H2) + [1,3:apply natinG_or_inH_to_natinGH;left;apply (H1 H3) + |*:apply natinG_or_inH_to_natinGH;right;apply (H H3)]]] qed. -definition swap_bound : nat \to nat \to bound \to bound \def - \lambda u,v,b.match b with - [(mk_bound B X T) \Rightarrow (mk_bound B (swap u v X) (swap_Typ u v T))]. - -definition swap_Env : nat \to nat \to Env \to Env \def - \lambda u,v,G.(map ? ? (\lambda b.(swap_bound u v b)) G). - lemma lookup_swap : \forall x,u,v,T,B,G.(in_list ? (mk_bound B x T) G) \to (in_list ? (mk_bound B (swap u v x) (swap_Typ u v T)) (swap_Env u v G)). intros 6;elim G 0 @@ -804,16 +613,11 @@ intros 3;elim T [assumption|apply nil_cons] |intros;lapply (sym_eq ? ? ? H4);absurd (a1::l = []) [assumption|apply nil_cons]] - |simplify;simplify in H;assumption - |simplify in H;simplify;assumption - |simplify in H2;simplify;apply natinG_or_inH_to_natinGH; + |2,3:simplify;simplify in H;assumption + |*:simplify in H2;simplify;apply natinG_or_inH_to_natinGH; lapply (nat_in_list_case ? ? ? H2);elim Hletin - [left;apply (H1 ? H3) - |right;apply (H ? H3)] - |simplify in H2;simplify;apply natinG_or_inH_to_natinGH; - lapply (nat_in_list_case ? ? ? H2);elim Hletin - [left;apply (H1 ? H3) - |right;apply (H ? H3)]] + [1,3:left;apply (H1 ? H3) + |*:right;apply (H ? H3)]] qed. lemma in_dom_swap : \forall u,v,x,G. @@ -949,6 +753,17 @@ inversion H |intros;lapply (inj_tail ? ? ? ? ? H5);rewrite > Hletin;assumption] qed. +(* silly, but later useful *) + +lemma env_append_weaken : \forall G,H.(WFEnv (H @ G)) \to + (incl ? G (H @ G)). +intros 2;elim H + [simplify;unfold;intros;assumption + |simplify in H2;simplify;unfold;intros;apply in_Skip;apply H1 + [apply (WFE_consG_WFE_G ? ? H2) + |assumption]] +qed. + lemma WFT_swap : \forall u,v,G,T.(WFType G T) \to (WFType (swap_Env u v G) (swap_Typ u v T)). intros.elim H @@ -997,40 +812,21 @@ qed. (*** some exotic inductions and related lemmas ***) -(* TODO : relocate the following 3 lemmas *) - -lemma max_case : \forall m,n.(max m n) = match (leb m n) with - [ false \Rightarrow n - | true \Rightarrow m ]. -intros;elim m;simplify;reflexivity; -qed. - lemma not_t_len_lt_SO : \forall T.\lnot (t_len T) < (S O). intros;elim T - [simplify;unfold;intro;unfold in H;elim (not_le_Sn_n ? H) - |simplify;unfold;intro;unfold in H;elim (not_le_Sn_n ? H) - |simplify;unfold;intro;unfold in H;elim (not_le_Sn_n ? H) - |simplify;unfold;rewrite > max_case;elim (leb (t_len t) (t_len t1)) - [simplify in H2;apply H1;apply (trans_lt ? ? ? ? H2);unfold;constructor 1 - |simplify in H2;apply H;apply (trans_lt ? ? ? ? H2);unfold;constructor 1] - |simplify;unfold;rewrite > max_case;elim (leb (t_len t) (t_len t1)) - [simplify in H2;apply H1;apply (trans_lt ? ? ? ? H2);unfold;constructor 1 - |simplify in H2;apply H;apply (trans_lt ? ? ? ? H2);unfold;constructor 1]] + [1,2,3:simplify;unfold;intro;unfold in H;elim (not_le_Sn_n ? H) + |*:simplify;unfold;rewrite > max_case;elim (leb (t_len t) (t_len t1)) + [1,3:simplify in H2;apply H1;apply (trans_lt ? ? ? ? H2);unfold;constructor 1 + |*:simplify in H2;apply H;apply (trans_lt ? ? ? ? H2);unfold;constructor 1]] qed. lemma t_len_gt_O : \forall T.(t_len T) > O. intro;elim T - [simplify;unfold;unfold;constructor 1 - |simplify;unfold;unfold;constructor 1 - |simplify;unfold;unfold;constructor 1 - |simplify;lapply (max_case (t_len t) (t_len t1));rewrite > Hletin; - elim (leb (t_len t) (t_len t1)) - [simplify;unfold;unfold;constructor 2;unfold in H1;unfold in H1;assumption - |simplify;unfold;unfold;constructor 2;unfold in H;unfold in H;assumption] - |simplify;lapply (max_case (t_len t) (t_len t1));rewrite > Hletin; + [1,2,3:simplify;unfold;unfold;constructor 1 + |*:simplify;lapply (max_case (t_len t) (t_len t1));rewrite > Hletin; elim (leb (t_len t) (t_len t1)) - [simplify;unfold;unfold;constructor 2;unfold in H1;unfold in H1;assumption - |simplify;unfold;unfold;constructor 2;unfold in H;unfold in H;assumption]] + [1,3:simplify;unfold;unfold;constructor 2;unfold in H1;unfold in H1;assumption + |*:simplify;unfold;unfold;constructor 2;unfold in H;unfold in H;assumption]] qed. lemma Typ_len_ind : \forall P:Typ \to Prop. @@ -1044,15 +840,10 @@ cut (\forall P:Typ \to Prop. [intros;apply (Hcut ? H ? (t_len T));reflexivity |intros 4;generalize in match T;apply (nat_elim1 n);intros; generalize in match H2;elim t - [apply H;intros;simplify in H4;elim (not_t_len_lt_SO ? H4) - |apply H;intros;simplify in H4;elim (not_t_len_lt_SO ? H4) - |apply H;intros;simplify in H4;elim (not_t_len_lt_SO ? H4) - |apply H;intros;apply (H1 (t_len V)) - [rewrite > H5;assumption - |reflexivity] - |apply H;intros;apply (H1 (t_len V)) - [rewrite > H5;assumption - |reflexivity]]] + [1,2,3:apply H;intros;simplify in H4;elim (not_t_len_lt_SO ? H4) + |*:apply H;intros;apply (H1 (t_len V)) + [1,3:rewrite > H5;assumption + |*:reflexivity]]] qed. lemma t_len_arrow1 : \forall T1,T2.(t_len T1) < (t_len (Arrow T1 T2)). @@ -1124,11 +915,8 @@ qed. lemma eq_t_len_TFree_subst : \forall T,n,X.(t_len T) = (t_len (subst_type_nat T (TFree X) n)). intro.elim T - [simplify;elim (eqb n n1) - [simplify;reflexivity - |simplify;reflexivity] - |simplify;reflexivity - |simplify;reflexivity + [simplify;elim (eqb n n1);simplify;reflexivity + |2,3:simplify;reflexivity |simplify;lapply (H n X);lapply (H1 n X);rewrite < Hletin;rewrite < Hletin1; reflexivity |simplify;lapply (H n X);lapply (H1 (S n) X);rewrite < Hletin; @@ -1155,7 +943,7 @@ intros 3.elim G 0 |unfold;intro;apply H5;apply (fv_WFT ? ? ? Hletin3 H8)]] qed. -(*** alternative "constructor" for universal types' well-formedness ***) +(*** alternate "constructor" for universal types' well-formedness ***) lemma WFT_Forall2 : \forall G,X,T,T1,T2. (WFEnv G) \to @@ -1266,7 +1054,7 @@ cut (in_list ? y (fv_env ((mk_bound B x T1) :: G))) apply fv_subst_type_O;assumption] qed. -(*** alternative "constructor" for subtyping between universal types ***) +(*** alternate "constructor" for subtyping between universal types ***) lemma SA_All2 : \forall G,S1,S2,T1,T2,X.(JSubtype G T1 S1) \to \lnot (in_list ? X (fv_env G)) \to @@ -1324,3 +1112,73 @@ lapply (decidable_eq_nat X X1);elim Hletin elim Hletin3] |rewrite > subst_O_nat;apply in_FV_subst;assumption]]] qed. + +lemma WFE_Typ_subst : \forall H,x,B,C,T,U,G. + (WFEnv (H @ ((mk_bound B x T) :: G))) \to (WFType G U) \to + (WFEnv (H @ ((mk_bound C x U) :: G))). +intros 7;elim H 0 + [simplify;intros;(*FIXME*)generalize in match H1;intro;inversion H1 + [intros;lapply (nil_cons ? G (mk_bound B x T));lapply (Hletin H4); + elim Hletin1 + |intros;lapply (inj_tail ? ? ? ? ? H8);lapply (inj_head ? ? ? ? H8); + destruct Hletin1;rewrite < Hletin in H6;rewrite < Hletin in H4; + rewrite < Hcut1 in H6;apply (WFE_cons ? ? ? ? H4 H6 H2)] + |intros;simplify;generalize in match H2;elim s;simplify in H4; + inversion H4 + [intros;absurd (mk_bound b n t::l@(mk_bound B x T::G)=Empty) + [assumption + |apply nil_cons] + |intros;lapply (inj_tail ? ? ? ? ? H9);lapply (inj_head ? ? ? ? H9); + destruct Hletin1;apply WFE_cons + [apply H1 + [rewrite > Hletin;assumption + |assumption] + |rewrite > Hcut1;generalize in match H7;rewrite < Hletin; + rewrite > (fv_env_extends ? x B C T U);intro;assumption + |rewrite < Hletin in H8;rewrite > Hcut2; + apply (WFT_env_incl ? ? H8);rewrite > (fv_env_extends ? x B C T U); + unfold;intros;assumption]]] +qed. + +lemma t_len_pred: \forall T,m.(S (t_len T)) \leq m \to (t_len T) \leq (pred m). +intros 2;elim m + [elim (not_le_Sn_O ? H) + |simplify;apply (le_S_S_to_le ? ? H1)] +qed. + +lemma pred_m_lt_m : \forall m,T.(t_len T) \leq m \to (pred m) < m. +intros 2;elim m 0 + [elim T + [4,5:simplify in H2;elim (not_le_Sn_O ? H2) + |*:simplify in H;elim (not_le_Sn_n ? H)] + |intros;simplify;unfold;constructor 1] +qed. + +lemma WFE_bound_bound : \forall B,x,T,U,G. (WFEnv G) \to + (in_list ? (mk_bound B x T) G) \to + (in_list ? (mk_bound B x U) G) \to T = U. +intros 6;elim H + [lapply (in_list_nil ? ? H1);elim Hletin + |inversion H6 + [intros;rewrite < H7 in H8;lapply (inj_head ? ? ? ? H8); + rewrite > Hletin in H5;inversion H5 + [intros;rewrite < H9 in H10;lapply (inj_head ? ? ? ? H10); + destruct Hletin1;symmetry;assumption + |intros;lapply (inj_tail ? ? ? ? ? H12);rewrite < Hletin1 in H9; + rewrite < H11 in H9;lapply (boundinenv_natinfv x e) + [destruct Hletin;rewrite < Hcut1 in Hletin2;lapply (H3 Hletin2); + elim Hletin3 + |apply ex_intro + [apply B|apply ex_intro [apply T|assumption]]]] + |intros;lapply (inj_tail ? ? ? ? ? H10);rewrite < H9 in H7; + rewrite < Hletin in H7;(*FIXME*)generalize in match H5;intro;inversion H5 + [intros;rewrite < H12 in H13;lapply (inj_head ? ? ? ? H13); + destruct Hletin1;rewrite < Hcut1 in H7; + lapply (boundinenv_natinfv n e) + [lapply (H3 Hletin2);elim Hletin3 + |apply ex_intro + [apply B|apply ex_intro [apply U|assumption]]] + |intros;apply (H2 ? H7);rewrite > H14;lapply (inj_tail ? ? ? ? ? H15); + rewrite > Hletin1;assumption]]] +qed. + diff --git a/helm/software/matita/library/Fsub/part1a.ma b/helm/software/matita/library/Fsub/part1a.ma index 21fa35aa0..e12a64be4 100644 --- a/helm/software/matita/library/Fsub/part1a.ma +++ b/helm/software/matita/library/Fsub/part1a.ma @@ -17,32 +17,31 @@ include "logic/equality.ma". include "nat/nat.ma". include "datatypes/bool.ma". include "nat/compare.ma". +include "Fsub/util.ma". include "Fsub/defn.ma". +(*** Lemma A.1 (Reflexivity) ***) + theorem JS_Refl : \forall T,G.(WFType G T) \to (WFEnv G) \to (JSubtype G T T). apply Typ_len_ind;intro;elim U [(* FIXME *) generalize in match H1;intro;inversion H1 [intros;destruct H6 |intros;destruct H5 - |intros;destruct H9 - |intros;destruct H9] + |*:intros;destruct H9] |apply (SA_Refl_TVar ? ? H2);(*FIXME*)generalize in match H1;intro; inversion H1 [intros;destruct H6;rewrite > Hcut;assumption |intros;destruct H5 - |intros;destruct H9 - |intros;destruct H9] + |*:intros;destruct H9] |apply (SA_Top ? ? H2 H1) |cut ((WFType G t) \land (WFType G t1)) [elim Hcut;apply SA_Arrow [apply H2 [apply t_len_arrow1 - |assumption - |assumption] + |*:assumption] |apply H2 [apply t_len_arrow2 - |assumption - |assumption]] + |*:assumption]] |(*FIXME*)generalize in match H3;intro;inversion H3 [intros;destruct H8 |intros;destruct H7 @@ -55,8 +54,7 @@ apply Typ_len_ind;intro;elim U [apply (SA_All2 ? ? ? ? ? a ? H7 H6 H6) [apply H2 [apply t_len_forall1 - |assumption - |assumption] + |*:assumption] |apply H2 [rewrite > subst_O_nat;rewrite < eq_t_len_TFree_subst; apply t_len_forall2 @@ -76,15 +74,12 @@ apply Typ_len_ind;intro;elim U |split;unfold;intro;apply H5;apply natinG_or_inH_to_natinGH;auto]] qed. -lemma env_append_weaken : \forall G,H.(WFEnv (H @ G)) \to - (incl ? G (H @ G)). -intros 2;elim H - [simplify;unfold;intros;assumption - |simplify in H2;simplify;unfold;intros;apply in_Skip;apply H1 - [apply (WFE_consG_WFE_G ? ? H2) - |assumption]] -qed. - +(* + * A slightly more general variant to lemma A.2.2, where weakening isn't + * defined as concatenation of any two disjoint environments, but as + * set inclusion. + *) + lemma JS_weakening : \forall G,T,U.(JSubtype G T U) \to \forall H.(WFEnv H) \to (incl ? G H) \to (JSubtype H T U). intros 4;elim H @@ -99,8 +94,7 @@ intros 4;elim H |lapply (H2 ? H6 H7);apply (SA_All ? ? ? ? ? Hletin);intros;apply H4 [unfold;intro;apply H8;lapply (incl_bound_fv ? ? H7);apply (Hletin1 ? H9) |apply WFE_cons - [assumption - |assumption + [1,2:assumption |lapply (incl_bound_fv ? ? H7);apply (WFT_env_incl ? ? ? ? Hletin1); apply (JS_to_WFT1 ? ? ? H1)] |unfold;intros;inversion H9 @@ -109,102 +103,7 @@ intros 4;elim H apply in_Skip;apply (H7 ? H10)]]] qed. -lemma fv_env_extends : \forall H,x,B,C,T,U,G. - (fv_env (H @ ((mk_bound B x T) :: G))) = - (fv_env (H @ ((mk_bound C x U) :: G))). -intros;elim H - [simplify;reflexivity - |elim s;simplify;rewrite > H1;reflexivity] -qed. - -lemma WFE_Typ_subst : \forall H,x,B,C,T,U,G. - (WFEnv (H @ ((mk_bound B x T) :: G))) \to (WFType G U) \to - (WFEnv (H @ ((mk_bound C x U) :: G))). -intros 7;elim H 0 - [simplify;intros;(*FIXME*)generalize in match H1;intro;inversion H1 - [intros;lapply (nil_cons ? G (mk_bound B x T));lapply (Hletin H4); - elim Hletin1 - |intros;lapply (inj_tail ? ? ? ? ? H8);lapply (inj_head ? ? ? ? H8); - destruct Hletin1;rewrite < Hletin in H6;rewrite < Hletin in H4; - rewrite < Hcut1 in H6;apply (WFE_cons ? ? ? ? H4 H6 H2)] - |intros;simplify;generalize in match H2;elim s;simplify in H4; - inversion H4 - [intros;absurd (mk_bound b n t::l@(mk_bound B x T::G)=Empty) - [assumption - |apply nil_cons] - |intros;lapply (inj_tail ? ? ? ? ? H9);lapply (inj_head ? ? ? ? H9); - destruct Hletin1;apply WFE_cons - [apply H1 - [rewrite > Hletin;assumption - |assumption] - |rewrite > Hcut1;generalize in match H7;rewrite < Hletin; - rewrite > (fv_env_extends ? x B C T U);intro;assumption - |rewrite < Hletin in H8;rewrite > Hcut2; - apply (WFT_env_incl ? ? H8);rewrite > (fv_env_extends ? x B C T U); - unfold;intros;assumption]]] -qed. - -lemma lookup_env_extends : \forall G,H,B,C,D,T,U,V,x,y. - (in_list ? (mk_bound D y V) (H @ ((mk_bound C x U) :: G))) \to - (y \neq x) \to - (in_list ? (mk_bound D y V) (H @ ((mk_bound B x T) :: G))). -intros 10;elim H - [simplify in H1;(*FIXME*)generalize in match H1;intro;inversion H1 - [intros;lapply (inj_head ? ? ? ? H5);rewrite < H4 in Hletin; - destruct Hletin;absurd (y = x) [symmetry;assumption|assumption] - |intros;simplify;lapply (inj_tail ? ? ? ? ? H7);rewrite > Hletin; - apply in_Skip;assumption] - |(*FIXME*)generalize in match H2;intro;inversion H2 - [intros;simplify in H6;lapply (inj_head ? ? ? ? H6);rewrite > Hletin; - simplify;apply in_Base - |simplify;intros;lapply (inj_tail ? ? ? ? ? H8);rewrite > Hletin in H1; - rewrite > H7 in H1;apply in_Skip;apply (H1 H5 H3)]] -qed. - -lemma t_len_pred: \forall T,m.(S (t_len T)) \leq m \to (t_len T) \leq (pred m). -intros 2;elim m - [elim (not_le_Sn_O ? H) - |simplify;apply (le_S_S_to_le ? ? H1)] -qed. - -lemma pred_m_lt_m : \forall m,T.(t_len T) \leq m \to (pred m) < m. -intros 2;elim m 0 - [elim T - [simplify in H;elim (not_le_Sn_n ? H) - |simplify in H;elim (not_le_Sn_n ? H) - |simplify in H;elim (not_le_Sn_n ? H) - |simplify in H2;elim (not_le_Sn_O ? H2) - |simplify in H2;elim (not_le_Sn_O ? H2)] - |intros;simplify;unfold;constructor 1] -qed. - -lemma WFE_bound_bound : \forall B,x,T,U,G. (WFEnv G) \to - (in_list ? (mk_bound B x T) G) \to - (in_list ? (mk_bound B x U) G) \to T = U. -intros 6;elim H - [lapply (in_list_nil ? ? H1);elim Hletin - |inversion H6 - [intros;rewrite < H7 in H8;lapply (inj_head ? ? ? ? H8); - rewrite > Hletin in H5;inversion H5 - [intros;rewrite < H9 in H10;lapply (inj_head ? ? ? ? H10); - destruct Hletin1;symmetry;assumption - |intros;lapply (inj_tail ? ? ? ? ? H12);rewrite < Hletin1 in H9; - rewrite < H11 in H9;lapply (boundinenv_natinfv x e) - [destruct Hletin;rewrite < Hcut1 in Hletin2;lapply (H3 Hletin2); - elim Hletin3 - |apply ex_intro - [apply B|apply ex_intro [apply T|assumption]]]] - |intros;lapply (inj_tail ? ? ? ? ? H10);rewrite < H9 in H7; - rewrite < Hletin in H7;(*FIXME*)generalize in match H5;intro;inversion H5 - [intros;rewrite < H12 in H13;lapply (inj_head ? ? ? ? H13); - destruct Hletin1;rewrite < Hcut1 in H7; - lapply (boundinenv_natinfv n e) - [lapply (H3 Hletin2);elim Hletin3 - |apply ex_intro - [apply B|apply ex_intro [apply U|assumption]]] - |intros;apply (H2 ? H7);rewrite > H14;lapply (inj_tail ? ? ? ? ? H15); - rewrite > Hletin1;assumption]]] -qed. +(* Lemma A.3 (Transitivity and Narrowing) *) lemma JS_trans_narrow : \forall n. (\forall G,T,Q,U. @@ -283,8 +182,7 @@ cut (\forall G,T,Q.(JSubtype G T Q) \to [intros;rewrite < H8;apply (SA_Top ? ? H2 H3) |intros;destruct H9 |intros;destruct H10 - |intros;destruct H11 - |intros;destruct H11] + |*:intros;destruct H11] |assumption |apply (SA_Trans_TVar ? ? ? ? H2);apply (H4 ? H5 H6) |inversion H7 @@ -324,10 +222,7 @@ cut (\forall G,T,Q.(JSubtype G T Q) \to apply (H15 ? ? ? ? ? H8 H2);lapply (t_len_forall1 t2 t3); unfold in Hletin;lapply (trans_le ? ? ? Hletin H6); apply (t_len_pred ? ? Hletin1) - |assumption - |assumption - |assumption - |lapply (H10 ? H20);rewrite > H12 in H5; + |5:lapply (H10 ? H20);rewrite > H12 in H5; lapply (H5 ? H20 (subst_type_O t5 (TFree a))) [apply (H15 ? ? ? ? ? ? Hletin) [rewrite < Hcut1;rewrite > subst_O_nat; @@ -348,7 +243,8 @@ cut (\forall G,T,Q.(JSubtype G T Q) \to |rewrite > Hcut1;rewrite > H12 in H4; lapply (H4 ? H20);rewrite < Hcut1;apply JS_Refl [apply (JS_to_WFT2 ? ? ? Hletin1) - |apply (JS_to_WFE ? ? ? Hletin1)]]] + |apply (JS_to_WFE ? ? ? Hletin1)]] + |*:assumption] |split [split [unfold;intro;apply H17; diff --git a/helm/software/matita/library/Fsub/util.ma b/helm/software/matita/library/Fsub/util.ma new file mode 100644 index 000000000..8b111e3f2 --- /dev/null +++ b/helm/software/matita/library/Fsub/util.ma @@ -0,0 +1,133 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/Fsub/util". +include "logic/equality.ma". +include "nat/compare.ma". +include "list/list.ma". + +(*** useful definitions and lemmas not really related to Fsub ***) + +lemma eqb_case : \forall x,y.(eqb x y) = true \lor (eqb x y) = false. +intros;elim (eqb x y);auto; +qed. + +lemma eq_eqb_case : \forall x,y.((x = y) \land (eqb x y) = true) \lor + ((x \neq y) \land (eqb x y) = false). +intros;lapply (eqb_to_Prop x y);elim (eqb_case x y) + [rewrite > H in Hletin;simplify in Hletin;left;auto + |rewrite > H in Hletin;simplify in Hletin;right;auto] +qed. + +let rec max m n \def + match (leb m n) with + [true \Rightarrow n + |false \Rightarrow m]. + +inductive in_list (A : Set) : A \to (list A) \to Prop \def + | in_Base : \forall x:A.\forall l:(list A). + (in_list A x (x :: l)) + | in_Skip : \forall x,y:A.\forall l:(list A). + (in_list A x l) \to (in_list A x (y :: l)). + +definition incl : \forall A.(list A) \to (list A) \to Prop \def + \lambda A,l,m.\forall x.(in_list A x l) \to (in_list A x m). + +(* FIXME: use the map in library/list (when there will be one) *) +definition map : \forall A,B,f.((list A) \to (list B)) \def + \lambda A,B,f.let rec map (l : (list A)) : (list B) \def + match l in list return \lambda l0:(list A).(list B) with + [nil \Rightarrow (nil B) + |(cons (a:A) (t:(list A))) \Rightarrow + (cons B (f a) (map t))] in map. + +definition swap : nat \to nat \to nat \to nat \def + \lambda u,v,x.match (eqb x u) with + [true \Rightarrow v + |false \Rightarrow match (eqb x v) with + [true \Rightarrow u + |false \Rightarrow x]]. + +lemma in_list_nil : \forall A,x.\lnot (in_list A x []). +intros.unfold.intro.inversion H + [intros;lapply (sym_eq ? ? ? H2);absurd (a::l = []) + [assumption|apply nil_cons] + |intros;lapply (sym_eq ? ? ? H4);absurd (a1::l = []) + [assumption|apply nil_cons]] +qed. + +lemma notin_cons : \forall A,x,y,l.\lnot (in_list A x (y::l)) \to + (y \neq x) \land \lnot (in_list A x l). +intros.split + [unfold;intro;apply H;rewrite > H1;constructor 1 + |unfold;intro;apply H;constructor 2;assumption] +qed. + +lemma swap_left : \forall x,y.(swap x y x) = y. +intros;unfold swap;rewrite > eqb_n_n;simplify;reflexivity; +qed. + +lemma swap_right : \forall x,y.(swap x y y) = x. +intros;unfold swap;elim (eq_eqb_case y x) + [elim H;rewrite > H2;simplify;rewrite > H1;reflexivity + |elim H;rewrite > H2;simplify;rewrite > eqb_n_n;simplify;reflexivity] +qed. + +lemma swap_other : \forall x,y,z.(z \neq x) \to (z \neq y) \to (swap x y z) = z. +intros;unfold swap;elim (eq_eqb_case z x) + [elim H2;lapply (H H3);elim Hletin + |elim H2;rewrite > H4;simplify;elim (eq_eqb_case z y) + [elim H5;lapply (H1 H6);elim Hletin + |elim H5;rewrite > H7;simplify;reflexivity]] +qed. + +lemma swap_inv : \forall u,v,x.(swap u v (swap u v x)) = x. +intros;unfold in match (swap u v x);elim (eq_eqb_case x u) + [elim H;rewrite > H2;simplify;rewrite > H1;apply swap_right + |elim H;rewrite > H2;simplify;elim (eq_eqb_case x v) + [elim H3;rewrite > H5;simplify;rewrite > H4;apply swap_left + |elim H3;rewrite > H5;simplify;apply (swap_other ? ? ? H1 H4)]] +qed. + +lemma swap_inj : \forall u,v,x,y.(swap u v x) = (swap u v y) \to x = y. +intros;unfold swap in H;elim (eq_eqb_case x u) + [elim H1;elim (eq_eqb_case y u) + [elim H4;rewrite > H5;assumption + |elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H; + elim (eq_eqb_case y v) + [elim H7;rewrite > H9 in H;simplify in H;rewrite > H in H8; + lapply (H5 H8);elim Hletin + |elim H7;rewrite > H9 in H;simplify in H;elim H8;symmetry;assumption]] + |elim H1;elim (eq_eqb_case y u) + [elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H; + elim (eq_eqb_case x v) + [elim H7;rewrite > H9 in H;simplify in H;rewrite < H in H8; + elim H2;assumption + |elim H7;rewrite > H9 in H;simplify in H;elim H8;assumption] + |elim H4;rewrite > H3 in H;rewrite > H6 in H;simplify in H; + elim (eq_eqb_case x v) + [elim H7;rewrite > H9 in H;elim (eq_eqb_case y v) + [elim H10;rewrite > H11;assumption + |elim H10;rewrite > H12 in H;simplify in H;elim H5;symmetry; + assumption] + |elim H7;rewrite > H9 in H;elim (eq_eqb_case y v) + [elim H10;rewrite > H12 in H;simplify in H;elim H2;assumption + |elim H10;rewrite > H12 in H;simplify in H;assumption]]]] +qed. + +lemma max_case : \forall m,n.(max m n) = match (leb m n) with + [ false \Rightarrow n + | true \Rightarrow m ]. +intros;elim m;simplify;reflexivity; +qed. \ No newline at end of file -- 2.39.2