From 2496d3bb79095a571d9d986d79a49feab01ad416 Mon Sep 17 00:00:00 2001 From: Cristian Armentano Date: Fri, 20 Apr 2007 10:03:20 +0000 Subject: [PATCH] initial import --- matita/library_auto/Q/q.ma | 523 ++++++ matita/library_auto/Z/compare.ma | 234 +++ matita/library_auto/Z/orders.ma | 188 +++ matita/library_auto/Z/plus.ma | 470 ++++++ matita/library_auto/Z/times.ma | 352 ++++ matita/library_auto/Z/z.ma | 251 +++ matita/library_auto/nat/chinese_reminder.ma | 364 +++++ matita/library_auto/nat/compare.ma | 320 ++++ matita/library_auto/nat/congruence.ma | 258 +++ matita/library_auto/nat/count.ma | 347 ++++ matita/library_auto/nat/div_and_mod.ma | 423 +++++ matita/library_auto/nat/euler_theorem.ma | 329 ++++ matita/library_auto/nat/exp.ma | 154 ++ matita/library_auto/nat/factorial.ma | 105 ++ matita/library_auto/nat/factorization.ma | 973 +++++++++++ .../library_auto/nat/fermat_little_theorem.ma | 463 ++++++ matita/library_auto/nat/gcd.ma | 1124 +++++++++++++ matita/library_auto/nat/le_arith.ma | 135 ++ matita/library_auto/nat/lt_arith.ma | 329 ++++ matita/library_auto/nat/map_iter_p.ma | 1279 +++++++++++++++ matita/library_auto/nat/minimization.ma | 406 +++++ matita/library_auto/nat/minus.ma | 514 ++++++ matita/library_auto/nat/nat.ma | 151 ++ matita/library_auto/nat/nth_prime.ma | 279 ++++ matita/library_auto/nat/ord.ma | 388 +++++ matita/library_auto/nat/orders.ma | 568 +++++++ matita/library_auto/nat/permutation.ma | 1432 +++++++++++++++++ matita/library_auto/nat/plus.ma | 97 ++ matita/library_auto/nat/primes.ma | 1007 ++++++++++++ matita/library_auto/nat/relevant_equations.ma | 57 + matita/library_auto/nat/sigma_and_pi.ma | 139 ++ matita/library_auto/nat/times.ma | 131 ++ matita/library_auto/nat/totient.ma | 172 ++ 33 files changed, 13962 insertions(+) create mode 100644 matita/library_auto/Q/q.ma create mode 100644 matita/library_auto/Z/compare.ma create mode 100644 matita/library_auto/Z/orders.ma create mode 100644 matita/library_auto/Z/plus.ma create mode 100644 matita/library_auto/Z/times.ma create mode 100644 matita/library_auto/Z/z.ma create mode 100644 matita/library_auto/nat/chinese_reminder.ma create mode 100644 matita/library_auto/nat/compare.ma create mode 100644 matita/library_auto/nat/congruence.ma create mode 100644 matita/library_auto/nat/count.ma create mode 100644 matita/library_auto/nat/div_and_mod.ma create mode 100644 matita/library_auto/nat/euler_theorem.ma create mode 100644 matita/library_auto/nat/exp.ma create mode 100644 matita/library_auto/nat/factorial.ma create mode 100644 matita/library_auto/nat/factorization.ma create mode 100644 matita/library_auto/nat/fermat_little_theorem.ma create mode 100644 matita/library_auto/nat/gcd.ma create mode 100644 matita/library_auto/nat/le_arith.ma create mode 100644 matita/library_auto/nat/lt_arith.ma create mode 100644 matita/library_auto/nat/map_iter_p.ma create mode 100644 matita/library_auto/nat/minimization.ma create mode 100644 matita/library_auto/nat/minus.ma create mode 100644 matita/library_auto/nat/nat.ma create mode 100644 matita/library_auto/nat/nth_prime.ma create mode 100644 matita/library_auto/nat/ord.ma create mode 100644 matita/library_auto/nat/orders.ma create mode 100644 matita/library_auto/nat/permutation.ma create mode 100644 matita/library_auto/nat/plus.ma create mode 100644 matita/library_auto/nat/primes.ma create mode 100644 matita/library_auto/nat/relevant_equations.ma create mode 100644 matita/library_auto/nat/sigma_and_pi.ma create mode 100644 matita/library_auto/nat/times.ma create mode 100644 matita/library_auto/nat/totient.ma diff --git a/matita/library_auto/Q/q.ma b/matita/library_auto/Q/q.ma new file mode 100644 index 000000000..cf60105b9 --- /dev/null +++ b/matita/library_auto/Q/q.ma @@ -0,0 +1,523 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/Q/q". + +include "Z/compare.ma". +include "Z/plus.ma". + +(* a fraction is a list of Z-coefficients for primes, in natural +order. The last coefficient must eventually be different from 0 *) + +inductive fraction : Set \def + pp : nat \to fraction +| nn: nat \to fraction +| cons : Z \to fraction \to fraction. + +inductive ratio : Set \def + one : ratio + | frac : fraction \to ratio. + +(* a rational number is either O or a ratio with a sign *) +inductive Q : Set \def + OQ : Q + | Qpos : ratio \to Q + | Qneg : ratio \to Q. + +(* double elimination principles *) +theorem fraction_elim2: +\forall R:fraction \to fraction \to Prop. +(\forall n:nat.\forall g:fraction.R (pp n) g) \to +(\forall n:nat.\forall g:fraction.R (nn n) g) \to +(\forall x:Z.\forall f:fraction.\forall m:nat.R (cons x f) (pp m)) \to +(\forall x:Z.\forall f:fraction.\forall m:nat.R (cons x f) (nn m)) \to +(\forall x,y:Z.\forall f,g:fraction.R f g \to R (cons x f) (cons y g)) \to +\forall f,g:fraction. R f g. +intros 7. +elim f +[ apply H +| apply H1 +| elim g + [ apply H2 + | apply H3 + | auto + (*apply H4. + apply H5*) + ] +] +qed. + +(* boolean equality *) +let rec eqfb f g \def +match f with +[ (pp n) \Rightarrow + match g with + [ (pp m) \Rightarrow eqb n m + | (nn m) \Rightarrow false + | (cons y g1) \Rightarrow false] +| (nn n) \Rightarrow + match g with + [ (pp m) \Rightarrow false + | (nn m) \Rightarrow eqb n m + | (cons y g1) \Rightarrow false] +| (cons x f1) \Rightarrow + match g with + [ (pp m) \Rightarrow false + | (nn m) \Rightarrow false + | (cons y g1) \Rightarrow andb (eqZb x y) (eqfb f1 g1)]]. + +(* discrimination *) +definition aux \def + \lambda f. match f with + [ (pp n) \Rightarrow n + | (nn n) \Rightarrow n + | (cons x f) \Rightarrow O]. + +definition fhd \def +\lambda f. match f with + [ (pp n) \Rightarrow (pos n) + | (nn n) \Rightarrow (neg n) + | (cons x f) \Rightarrow x]. + +definition ftl \def +\lambda f. match f with + [ (pp n) \Rightarrow (pp n) + | (nn n) \Rightarrow (nn n) + | (cons x f) \Rightarrow f]. + +theorem injective_pp : injective nat fraction pp. +unfold injective. +intros. +change with ((aux(pp x)) = (aux (pp y))). +auto. +(*apply eq_f. +assumption.*) +qed. + +theorem injective_nn : injective nat fraction nn. +unfold injective. +intros. +change with ((aux (nn x)) = (aux (nn y))). +auto. +(*apply eq_f. +assumption.*) +qed. + +theorem eq_cons_to_eq1: \forall f,g:fraction.\forall x,y:Z. +(cons x f) = (cons y g) \to x = y. +intros. +change with ((fhd (cons x f)) = (fhd (cons y g))). +auto. +(*apply eq_f.assumption.*) +qed. + +theorem eq_cons_to_eq2: \forall x,y:Z.\forall f,g:fraction. +(cons x f) = (cons y g) \to f = g. +intros. +change with ((ftl (cons x f)) = (ftl (cons y g))). +auto. +(*apply eq_f.assumption.*) +qed. + +theorem not_eq_pp_nn: \forall n,m:nat. pp n \neq nn m. +intros. +unfold Not. +intro. +change with match (pp n) with +[ (pp n) \Rightarrow False +| (nn n) \Rightarrow True +| (cons x f) \Rightarrow True]. +rewrite > H. +simplify. +exact I. +qed. + +theorem not_eq_pp_cons: +\forall n:nat.\forall x:Z. \forall f:fraction. +pp n \neq cons x f. +intros. +unfold Not. +intro. +change with match (pp n) with +[ (pp n) \Rightarrow False +| (nn n) \Rightarrow True +| (cons x f) \Rightarrow True]. +rewrite > H. +simplify. +exact I. +qed. + +theorem not_eq_nn_cons: +\forall n:nat.\forall x:Z. \forall f:fraction. +nn n \neq cons x f. +intros. +unfold Not. +intro. +change with match (nn n) with +[ (pp n) \Rightarrow True +| (nn n) \Rightarrow False +| (cons x f) \Rightarrow True]. +rewrite > H. +simplify. +exact I. +qed. + +theorem decidable_eq_fraction: \forall f,g:fraction. +decidable (f = g). +intros. +unfold decidable. +apply (fraction_elim2 (\lambda f,g. f=g \lor (f=g \to False))) +[ intros. + elim g1 + [ elim ((decidable_eq_nat n n1) : n=n1 \lor (n=n1 \to False)) + [ auto + (*left. + apply eq_f. + assumption*) + | right. + intro. + auto + (*apply H. + apply injective_pp. + assumption*) + ] + | auto + (*right. + apply not_eq_pp_nn*) + | auto + (*right. + apply not_eq_pp_cons*) + ] +| intros. + elim g1 + [ right. + intro. + apply (not_eq_pp_nn n1 n). + auto + (*apply sym_eq. + assumption*) + | elim ((decidable_eq_nat n n1) : n=n1 \lor (n=n1 \to False)) + [ auto + (*left. + apply eq_f. + assumption*) + | right. + intro. + auto + (*apply H. + apply injective_nn. + assumption*) + ] + | auto + (*right. + apply not_eq_nn_cons*) + ] +| intros. + right. + intro. + apply (not_eq_pp_cons m x f1). + auto + (*apply sym_eq. + assumption*) +| intros. + right. + intro. + apply (not_eq_nn_cons m x f1). + auto + (*apply sym_eq. + assumption*) +| intros. + elim H + [ elim ((decidable_eq_Z x y) : x=y \lor (x=y \to False)) + [ auto + (*left. + apply eq_f2; + assumption*) + | right. + intro. + auto + (*apply H2. + apply (eq_cons_to_eq1 f1 g1). + assumption*) + ] + | right. + intro. + auto + (*apply H1. + apply (eq_cons_to_eq2 x y f1 g1). + assumption*) + ] +] +qed. + +theorem eqfb_to_Prop: \forall f,g:fraction. +match (eqfb f g) with +[true \Rightarrow f=g +|false \Rightarrow f \neq g]. +intros. +apply (fraction_elim2 +(\lambda f,g.match (eqfb f g) with +[true \Rightarrow f=g +|false \Rightarrow f \neq g])) +[ intros. + elim g1 + [ simplify. + apply eqb_elim + [ intro. + simplify. + auto + (*apply eq_f. + assumption*) + | intro. + simplify. + unfold Not. + intro. + auto + (*apply H. + apply injective_pp. + assumption*) + ] + | simplify. + apply not_eq_pp_nn + | simplify. + apply not_eq_pp_cons + ] +| intros. + elim g1 + [ simplify. + unfold Not. + intro. + apply (not_eq_pp_nn n1 n). + auto + (*apply sym_eq. + assumption*) + | simplify. + apply eqb_elim + [ intro. + simplify. + auto + (*apply eq_f. + assumption*) + | intro. + simplify. + unfold Not. + intro. + auto + (*apply H. + apply injective_nn. + assumption*) + ] + | simplify. + apply not_eq_nn_cons + ] +| intros. + simplify. + unfold Not. + intro. + apply (not_eq_pp_cons m x f1). + auto + (*apply sym_eq. + assumption*) +| intros. + simplify. + unfold Not. + intro. + apply (not_eq_nn_cons m x f1). + auto + (*apply sym_eq. + assumption*) +| intros. + simplify. + apply eqZb_elim + [ intro. + generalize in match H. + elim (eqfb f1 g1) + [ simplify. + apply eq_f2 + [ assumption + | (*qui auto non chiude il goal*) + apply H2 + ] + | simplify. + unfold Not. + intro. + apply H2. + auto + (*apply (eq_cons_to_eq2 x y). + assumption*) + ] + | intro. + simplify. + unfold Not. + intro. + auto + (*apply H1. + apply (eq_cons_to_eq1 f1 g1). + assumption*) + ] +] +qed. + +let rec finv f \def + match f with + [ (pp n) \Rightarrow (nn n) + | (nn n) \Rightarrow (pp n) + | (cons x g) \Rightarrow (cons (Zopp x) (finv g))]. + +definition Z_to_ratio :Z \to ratio \def +\lambda x:Z. match x with +[ OZ \Rightarrow one +| (pos n) \Rightarrow frac (pp n) +| (neg n) \Rightarrow frac (nn n)]. + +let rec ftimes f g \def + match f with + [ (pp n) \Rightarrow + match g with + [(pp m) \Rightarrow Z_to_ratio (pos n + pos m) + | (nn m) \Rightarrow Z_to_ratio (pos n + neg m) + | (cons y g1) \Rightarrow frac (cons (pos n + y) g1)] + | (nn n) \Rightarrow + match g with + [(pp m) \Rightarrow Z_to_ratio (neg n + pos m) + | (nn m) \Rightarrow Z_to_ratio (neg n + neg m) + | (cons y g1) \Rightarrow frac (cons (neg n + y) g1)] + | (cons x f1) \Rightarrow + match g with + [ (pp m) \Rightarrow frac (cons (x + pos m) f1) + | (nn m) \Rightarrow frac (cons (x + neg m) f1) + | (cons y g1) \Rightarrow + match ftimes f1 g1 with + [ one \Rightarrow Z_to_ratio (x + y) + | (frac h) \Rightarrow frac (cons (x + y) h)]]]. + +theorem symmetric2_ftimes: symmetric2 fraction ratio ftimes. +unfold symmetric2. +intros. +apply (fraction_elim2 (\lambda f,g.ftimes f g = ftimes g f)) +[ intros. + elim g + [ change with (Z_to_ratio (pos n + pos n1) = Z_to_ratio (pos n1 + pos n)). + auto + (*apply eq_f. + apply sym_Zplus*) + | change with (Z_to_ratio (pos n + neg n1) = Z_to_ratio (neg n1 + pos n)). + auto + (*apply eq_f. + apply sym_Zplus*) + | change with (frac (cons (pos n + z) f) = frac (cons (z + pos n) f)). + auto + (*rewrite < sym_Zplus. + reflexivity*) + ] +| intros. + elim g + [ change with (Z_to_ratio (neg n + pos n1) = Z_to_ratio (pos n1 + neg n)). + auto + (*apply eq_f. + apply sym_Zplus*) + | change with (Z_to_ratio (neg n + neg n1) = Z_to_ratio (neg n1 + neg n)). + auto + (*apply eq_f. + apply sym_Zplus*) + | change with (frac (cons (neg n + z) f) = frac (cons (z + neg n) f)). + auto + (*rewrite < sym_Zplus. + reflexivity*) + ] +| intros. + change with (frac (cons (x1 + pos m) f) = frac (cons (pos m + x1) f)). + auto + (*rewrite < sym_Zplus. + reflexivity*) +| intros. + change with (frac (cons (x1 + neg m) f) = frac (cons (neg m + x1) f)). + auto + (*rewrite < sym_Zplus. + reflexivity*) +| intros. + (*CSC: simplify does something nasty here because of a redex in Zplus *) + change with + (match ftimes f g with + [ one \Rightarrow Z_to_ratio (x1 + y1) + | (frac h) \Rightarrow frac (cons (x1 + y1) h)] = + match ftimes g f with + [ one \Rightarrow Z_to_ratio (y1 + x1) + | (frac h) \Rightarrow frac (cons (y1 + x1) h)]). + rewrite < H. + rewrite < sym_Zplus. + reflexivity +] +qed. + +theorem ftimes_finv : \forall f:fraction. ftimes f (finv f) = one. +intro. +elim f +[ change with (Z_to_ratio (pos n + - (pos n)) = one). + auto + (*rewrite > Zplus_Zopp. + reflexivity*) +| change with (Z_to_ratio (neg n + - (neg n)) = one). + auto + (*rewrite > Zplus_Zopp. + reflexivity*) +| + (*CSC: simplify does something nasty here because of a redex in Zplus *) + (* again: we would need something to help finding the right change *) + change with + (match ftimes f1 (finv f1) with + [ one \Rightarrow Z_to_ratio (z + - z) + | (frac h) \Rightarrow frac (cons (z + - z) h)] = one). + rewrite > H. + rewrite > Zplus_Zopp. + reflexivity +] +qed. + +definition rtimes : ratio \to ratio \to ratio \def +\lambda r,s:ratio. + match r with + [one \Rightarrow s + | (frac f) \Rightarrow + match s with + [one \Rightarrow frac f + | (frac g) \Rightarrow ftimes f g]]. + +theorem symmetric_rtimes : symmetric ratio rtimes. +change with (\forall r,s:ratio. rtimes r s = rtimes s r). +intros. +elim r +[ elim s;reflexivity +| elim s + [ reflexivity + | simplify. + apply symmetric2_ftimes + ] +] +qed. + +definition rinv : ratio \to ratio \def +\lambda r:ratio. + match r with + [one \Rightarrow one + | (frac f) \Rightarrow frac (finv f)]. + +theorem rtimes_rinv: \forall r:ratio. rtimes r (rinv r) = one. +intro. +elim r +[ reflexivity +| simplify. + apply ftimes_finv +] +qed. diff --git a/matita/library_auto/Z/compare.ma b/matita/library_auto/Z/compare.ma new file mode 100644 index 000000000..8a1a6e1f0 --- /dev/null +++ b/matita/library_auto/Z/compare.ma @@ -0,0 +1,234 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/Z/compare". + +include "Z/orders.ma". +include "nat/compare.ma". + +(* boolean equality *) +definition eqZb : Z \to Z \to bool \def +\lambda x,y:Z. + match x with + [ OZ \Rightarrow + match y with + [ OZ \Rightarrow true + | (pos q) \Rightarrow false + | (neg q) \Rightarrow false] + | (pos p) \Rightarrow + match y with + [ OZ \Rightarrow false + | (pos q) \Rightarrow eqb p q + | (neg q) \Rightarrow false] + | (neg p) \Rightarrow + match y with + [ OZ \Rightarrow false + | (pos q) \Rightarrow false + | (neg q) \Rightarrow eqb p q]]. + +theorem eqZb_to_Prop: +\forall x,y:Z. +match eqZb x y with +[ true \Rightarrow x=y +| false \Rightarrow x \neq y]. +intros. +elim x +[ elim y + [ simplify. + reflexivity + | simplify. + apply not_eq_OZ_pos + | simplify. + apply not_eq_OZ_neg + ] +| elim y + [ simplify. + unfold Not. + intro. + apply (not_eq_OZ_pos n). + auto + (*apply sym_eq. + assumption*) + | simplify. + apply eqb_elim + [ intro. + simplify. + auto + (*apply eq_f. + assumption*) + | intro. + simplify. + unfold Not. + intro. + auto + (*apply H. + apply inj_pos. + assumption*) + ] + | simplify. + apply not_eq_pos_neg + ] +| elim y + [ simplify. + unfold Not. + intro. + apply (not_eq_OZ_neg n). + auto + (*apply sym_eq. + assumption*) + | simplify. + unfold Not. + intro. + apply (not_eq_pos_neg n1 n). + auto + (*apply sym_eq. + assumption*) + | simplify. + apply eqb_elim + [ intro. + simplify. + auto + (*apply eq_f. + assumption*) + | intro. + simplify. + unfold Not. + intro. + auto + (*apply H. + apply inj_neg. + assumption*) + ] + ] +] +qed. + +theorem eqZb_elim: \forall x,y:Z.\forall P:bool \to Prop. +(x=y \to (P true)) \to (x \neq y \to (P false)) \to P (eqZb x y). +intros. +cut +(match (eqZb x y) with +[ true \Rightarrow x=y +| false \Rightarrow x \neq y] \to P (eqZb x y)) +[ apply Hcut. + (*NB qui auto non chiude il goal*) + apply eqZb_to_Prop +| elim (eqZb) + [ (*NB qui auto non chiude il goal*) + apply (H H2) + | (*NB qui auto non chiude il goal*) + apply (H1 H2) + ] +] +qed. + +definition Z_compare : Z \to Z \to compare \def +\lambda x,y:Z. + match x with + [ OZ \Rightarrow + match y with + [ OZ \Rightarrow EQ + | (pos m) \Rightarrow LT + | (neg m) \Rightarrow GT ] + | (pos n) \Rightarrow + match y with + [ OZ \Rightarrow GT + | (pos m) \Rightarrow (nat_compare n m) + | (neg m) \Rightarrow GT] + | (neg n) \Rightarrow + match y with + [ OZ \Rightarrow LT + | (pos m) \Rightarrow LT + | (neg m) \Rightarrow nat_compare m n ]]. + +theorem Z_compare_to_Prop : +\forall x,y:Z. match (Z_compare x y) with +[ LT \Rightarrow x < y +| EQ \Rightarrow x=y +| GT \Rightarrow y < x]. +intros. +elim x +[ elim y + [ simplify. + apply refl_eq + | simplify. + exact I + | simplify. + exact I + ] +| elim y + [ simplify. + exact I + | simplify. + cut (match (nat_compare n n1) with + [ LT \Rightarrow n Zplus_z_OZ. + reflexivity*) +| elim y + [ auto + (*simplify. + reflexivity*) + | simplify. + auto + (*rewrite < plus_n_Sm. + rewrite < plus_n_Sm. + rewrite < sym_plus. + reflexivity*) + | simplify. + rewrite > nat_compare_n_m_m_n. + simplify. + elim nat_compare;auto + (*[ simplify. + reflexivity + | simplify. + reflexivity + | simplify. + reflexivity + ]*) + ] +| elim y + [ auto + (*simplify. + reflexivity*) + | simplify. + rewrite > nat_compare_n_m_m_n. + simplify. + elim nat_compare;auto + (*[ simplify. + reflexivity + | simplify. + reflexivity + | simplify. + reflexivity + ]*) + | simplify. + auto + (*rewrite < plus_n_Sm. + rewrite < plus_n_Sm. + rewrite < sym_plus. + reflexivity*) + ] +] +qed. + +theorem Zpred_Zplus_neg_O : \forall z:Z. Zpred z = (neg O)+z. +intros. +elim z +[ auto + (*simplify. + reflexivity*) +| elim n;auto + (*[ simplify. + reflexivity + | simplify. + reflexivity + ]*) +| simplify. + reflexivity +] +qed. + +theorem Zsucc_Zplus_pos_O : \forall z:Z. Zsucc z = (pos O)+z. +intros. +elim z +[ auto + (*simplify. + reflexivity*) +| auto + (*simplify. + reflexivity*) +| elim n;auto + (*[ simplify. + reflexivity + | simplify. + reflexivity + ]*) +] +qed. + +theorem Zplus_pos_pos: +\forall n,m. (pos n)+(pos m) = (Zsucc (pos n))+(Zpred (pos m)). +intros. +elim n +[ elim m;auto + (*[ simplify. + reflexivity + | simplify. + reflexivity + ]*) +| elim m + [ auto + (*simplify. + rewrite < plus_n_Sm. + rewrite < plus_n_O. + reflexivity*) + | simplify. + auto + (*rewrite < plus_n_Sm. + rewrite < plus_n_Sm. + reflexivity*) + ] +] +qed. + +theorem Zplus_pos_neg: +\forall n,m. (pos n)+(neg m) = (Zsucc (pos n))+(Zpred (neg m)). +intros. +reflexivity. +qed. + +theorem Zplus_neg_pos : +\forall n,m. (neg n)+(pos m) = (Zsucc (neg n))+(Zpred (pos m)). +intros. +elim n +[ elim m;auto + (*[ simplify. + reflexivity + | simplify. + reflexivity + ]*) +| elim m;auto + (*[ simplify. + reflexivity + | simplify. + reflexivity + ]*) +] +qed. + +theorem Zplus_neg_neg: +\forall n,m. (neg n)+(neg m) = (Zsucc (neg n))+(Zpred (neg m)). +intros. +elim n +[ auto + (*elim m + [ simplify. + reflexivity + | simplify. + reflexivity + ]*) +| elim m + [ auto + (*simplify. + rewrite > plus_n_Sm. + reflexivity*) + | simplify. + auto + (*rewrite > plus_n_Sm. + reflexivity*) + ] +] +qed. + +theorem Zplus_Zsucc_Zpred: +\forall x,y. x+y = (Zsucc x)+(Zpred y). +intros. +elim x +[ auto + (*elim y + [ simplify. + reflexivity + | rewrite < Zsucc_Zplus_pos_O. + rewrite > Zsucc_Zpred. + reflexivity + | simplify. + reflexivity + ]*) +| elim y;auto + (*[ simplify. + reflexivity + | apply Zplus_pos_pos + | apply Zplus_pos_neg + ]*) +| elim y;auto + (*[ rewrite < sym_Zplus. + rewrite < (sym_Zplus (Zpred OZ)). + rewrite < Zpred_Zplus_neg_O. + rewrite > Zpred_Zsucc. + simplify. + reflexivity + | apply Zplus_neg_pos + | rewrite < Zplus_neg_neg. + reflexivity + ]*) +] +qed. + +theorem Zplus_Zsucc_pos_pos : +\forall n,m. (Zsucc (pos n))+(pos m) = Zsucc ((pos n)+(pos m)). +intros. +reflexivity. +qed. + +theorem Zplus_Zsucc_pos_neg: +\forall n,m. (Zsucc (pos n))+(neg m) = (Zsucc ((pos n)+(neg m))). +intros. +apply (nat_elim2 +(\lambda n,m. (Zsucc (pos n))+(neg m) = (Zsucc ((pos n)+(neg m))))) +[ intro. + elim n1;auto + (*[ simplify. + reflexivity + | elim n2; simplify; reflexivity + ]*) +| intros. + auto + (*elim n1;simplify;reflexivity*) +| intros. + rewrite < (Zplus_pos_neg ? m1). + elim H. + reflexivity +] +qed. + +theorem Zplus_Zsucc_neg_neg : +\forall n,m. Zsucc (neg n) + neg m = Zsucc (neg n + neg m). +intros. +apply (nat_elim2 +(\lambda n,m. Zsucc (neg n) + neg m = Zsucc (neg n + neg m))) +[ intros. + auto + (*elim n1 + [ simplify. + reflexivity + | elim n2;simplify;reflexivity + ]*) +| intros. + auto + (*elim n1;simplify;reflexivity*) +| intros. + auto. + (*rewrite < (Zplus_neg_neg ? m1). + reflexivity*) +] +qed. + +theorem Zplus_Zsucc_neg_pos: +\forall n,m. Zsucc (neg n)+(pos m) = Zsucc ((neg n)+(pos m)). +intros. +apply (nat_elim2 +(\lambda n,m. Zsucc (neg n) + (pos m) = Zsucc (neg n + pos m))) +[ intros. + auto + (*elim n1 + [ simplify. + reflexivity + | elim n2;simplify;reflexivity + ]*) +| intros. + auto + (*elim n1;simplify;reflexivity*) +| intros. + auto + (*rewrite < H. + rewrite < (Zplus_neg_pos ? (S m1)). + reflexivity*) +] +qed. + +theorem Zplus_Zsucc : \forall x,y:Z. (Zsucc x)+y = Zsucc (x+y). +intros. +elim x +[ auto + (*elim y + [ simplify. + reflexivity + | simplify. + reflexivity + | rewrite < Zsucc_Zplus_pos_O. + reflexivity + ]*) +| elim y;auto + (*[ rewrite < (sym_Zplus OZ). + reflexivity + | apply Zplus_Zsucc_pos_pos + | apply Zplus_Zsucc_pos_neg + ]*) +| elim y;auto + (*[ rewrite < sym_Zplus. + rewrite < (sym_Zplus OZ). + simplify. + reflexivity + | apply Zplus_Zsucc_neg_pos + | apply Zplus_Zsucc_neg_neg + ]*) +] +qed. + +theorem Zplus_Zpred: \forall x,y:Z. (Zpred x)+y = Zpred (x+y). +intros. +cut (Zpred (x+y) = Zpred ((Zsucc (Zpred x))+y));auto. +(*[ rewrite > Hcut. + rewrite > Zplus_Zsucc. + rewrite > Zpred_Zsucc. + reflexivity +| rewrite > Zsucc_Zpred. + reflexivity +]*) +qed. + + +theorem associative_Zplus: associative Z Zplus. +change with (\forall x,y,z:Z. (x + y) + z = x + (y + z)). +(* simplify. *) +intros. +elim x +[ auto + (*simplify. + reflexivity*) +| elim n + [ rewrite < Zsucc_Zplus_pos_O. + auto + (*rewrite < Zsucc_Zplus_pos_O. + rewrite > Zplus_Zsucc. + reflexivity*) + | rewrite > (Zplus_Zsucc (pos n1)). + rewrite > (Zplus_Zsucc (pos n1)). + auto + (*rewrite > (Zplus_Zsucc ((pos n1)+y)). + apply eq_f. + assumption*) + ] +| elim n + [ rewrite < (Zpred_Zplus_neg_O (y+z)). + auto + (*rewrite < (Zpred_Zplus_neg_O y). + rewrite < Zplus_Zpred. + reflexivity*) + | rewrite > (Zplus_Zpred (neg n1)). + rewrite > (Zplus_Zpred (neg n1)). + auto + (*rewrite > (Zplus_Zpred ((neg n1)+y)). + apply eq_f. + assumption*) + ] +] +qed. + +variant assoc_Zplus : \forall x,y,z:Z. (x+y)+z = x+(y+z) +\def associative_Zplus. + +(* Zopp *) +definition Zopp : Z \to Z \def +\lambda x:Z. match x with +[ OZ \Rightarrow OZ +| (pos n) \Rightarrow (neg n) +| (neg n) \Rightarrow (pos n) ]. + +(*CSC: the URI must disappear: there is a bug now *) +interpretation "integer unary minus" 'uminus x = (cic:/matita/Z/plus/Zopp.con x). + +theorem Zopp_Zplus: \forall x,y:Z. -(x+y) = -x + -y. +intros. +elim x +[ elim y;auto + (*simplify;reflexivity*) +| elim y + [ auto + (*simplify. + reflexivity*) + | auto + (*simplify. + reflexivity*) + | simplify. + apply nat_compare_elim; + intro;auto (*simplify;reflexivity*) + ] +| elim y + [ auto + (*simplify. + reflexivity*) + | simplify. + apply nat_compare_elim; + intro;auto + (*simplify;reflexivity*) + | auto + (*simplify. + reflexivity*) + ] +] +qed. + +theorem Zopp_Zopp: \forall x:Z. --x = x. +intro. +elim x;reflexivity. +qed. + +theorem Zplus_Zopp: \forall x:Z. x+ -x = OZ. +intro. +elim x +[ apply refl_eq +| simplify. + rewrite > nat_compare_n_n. + auto + (*simplify. + apply refl_eq*) +| simplify. + rewrite > nat_compare_n_n. + auto + (*simplify. + apply refl_eq*) +] +qed. + +(* minus *) +definition Zminus : Z \to Z \to Z \def \lambda x,y:Z. x + (-y). + +interpretation "integer minus" 'minus x y = (cic:/matita/Z/plus/Zminus.con x y). diff --git a/matita/library_auto/Z/times.ma b/matita/library_auto/Z/times.ma new file mode 100644 index 000000000..53bcba993 --- /dev/null +++ b/matita/library_auto/Z/times.ma @@ -0,0 +1,352 @@ +(**************************************************************************) +(* __ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/Z/times". + +include "nat/lt_arith.ma". +include "Z/plus.ma". + +definition Ztimes :Z \to Z \to Z \def +\lambda x,y. + match x with + [ OZ \Rightarrow OZ + | (pos m) \Rightarrow + match y with + [ OZ \Rightarrow OZ + | (pos n) \Rightarrow (pos (pred ((S m) * (S n)))) + | (neg n) \Rightarrow (neg (pred ((S m) * (S n))))] + | (neg m) \Rightarrow + match y with + [ OZ \Rightarrow OZ + | (pos n) \Rightarrow (neg (pred ((S m) * (S n)))) + | (neg n) \Rightarrow (pos (pred ((S m) * (S n))))]]. + +(*CSC: the URI must disappear: there is a bug now *) +interpretation "integer times" 'times x y = (cic:/matita/Z/times/Ztimes.con x y). + +theorem Ztimes_z_OZ: \forall z:Z. z*OZ = OZ. +intro. +elim z;auto. + (*simplify;reflexivity.*) +qed. + +theorem Ztimes_neg_Zopp: \forall n:nat.\forall x:Z. +neg n * x = - (pos n * x). +intros. +elim x;auto. + (*simplify;reflexivity.*) +qed. + +theorem symmetric_Ztimes : symmetric Z Ztimes. +change with (\forall x,y:Z. x*y = y*x). +intros. +elim x +[ auto + (*rewrite > Ztimes_z_OZ. + reflexivity*) +| elim y + [ auto + (*simplify. + reflexivity*) + | change with (pos (pred ((S n) * (S n1))) = pos (pred ((S n1) * (S n)))). + auto + (*rewrite < sym_times. + reflexivity*) + | change with (neg (pred ((S n) * (S n1))) = neg (pred ((S n1) * (S n)))). + auto + (*rewrite < sym_times. + reflexivity*) + ] +| elim y + [ auto + (*simplify. + reflexivity*) + | change with (neg (pred ((S n) * (S n1))) = neg (pred ((S n1) * (S n)))). + auto + (*rewrite < sym_times. + reflexivity*) + | change with (pos (pred ((S n) * (S n1))) = pos (pred ((S n1) * (S n)))). + auto + (*rewrite < sym_times. + reflexivity*) + ] +] +qed. + +variant sym_Ztimes : \forall x,y:Z. x*y = y*x +\def symmetric_Ztimes. + +theorem associative_Ztimes: associative Z Ztimes. +unfold associative. +intros. +elim x +[ auto + (*simplify. + reflexivity*) +| elim y + [ auto + (*simplify. + reflexivity*) + | elim z + [ auto + (*simplify. + reflexivity*) + | change with + (pos (pred ((S (pred ((S n) * (S n1)))) * (S n2))) = + pos (pred ((S n) * (S (pred ((S n1) * (S n2))))))). + rewrite < S_pred + [ rewrite < S_pred;auto + (*[ rewrite < assoc_times. + reflexivity + | apply lt_O_times_S_S + ]*) + | apply lt_O_times_S_S + ] + | change with + (neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) = + neg (pred ((S n) * (S (pred ((S n1) * (S n2))))))). + rewrite < S_pred + [ rewrite < S_pred;auto + (*[ rewrite < assoc_times. + reflexivity + | apply lt_O_times_S_S + ]*) + | apply lt_O_times_S_S + ] + ] + | elim z + [ auto + (*simplify. + reflexivity*) + | change with + (neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) = + neg (pred ((S n) * (S (pred ((S n1) * (S n2))))))). + rewrite < S_pred + [ rewrite < S_pred;auto + (*[ rewrite < assoc_times. + reflexivity + | apply lt_O_times_S_S + ]*) + | apply lt_O_times_S_S + ] + | change with + (pos (pred ((S (pred ((S n) * (S n1)))) * (S n2))) = + pos(pred ((S n) * (S (pred ((S n1) * (S n2))))))). + rewrite < S_pred + [ rewrite < S_pred;auto + (*[ rewrite < assoc_times. + reflexivity + | apply lt_O_times_S_S + ]*) + | apply lt_O_times_S_S + ] + ] + ] +| elim y + [ auto + (*simplify. + reflexivity*) + | elim z + [ auto + (*simplify. + reflexivity*) + | change with + (neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) = + neg (pred ((S n) * (S (pred ((S n1) * (S n2))))))). + rewrite < S_pred + [ rewrite < S_pred;auto + (*[ rewrite < assoc_times. + reflexivity + | apply lt_O_times_S_S + ]*) + | apply lt_O_times_S_S + ] + | change with + (pos (pred ((S (pred ((S n) * (S n1)))) * (S n2))) = + pos (pred ((S n) * (S (pred ((S n1) * (S n2))))))). + rewrite < S_pred + [ rewrite < S_pred;auto + (*[ rewrite < assoc_times. + reflexivity + | apply lt_O_times_S_S + ]*) + | apply lt_O_times_S_S + ] + ] + | elim z + [ auto + (*simplify. + reflexivity*) + | change with + (pos (pred ((S (pred ((S n) * (S n1)))) * (S n2))) = + pos (pred ((S n) * (S (pred ((S n1) * (S n2))))))). + rewrite < S_pred + [ rewrite < S_pred;auto + (*[ rewrite < assoc_times. + reflexivity + | apply lt_O_times_S_S + ]*) + | apply lt_O_times_S_S + ] + | change with + (neg (pred ((S (pred ((S n) * (S n1)))) * (S n2))) = + neg(pred ((S n) * (S (pred ((S n1) * (S n2))))))). + rewrite < S_pred + [ rewrite < S_pred;auto + (*[ rewrite < assoc_times. + reflexivity + | apply lt_O_times_S_S + ]*) + | apply lt_O_times_S_S + ] + ] + ] +] +qed. + +variant assoc_Ztimes : \forall x,y,z:Z. +(x * y) * z = x * (y * z) \def +associative_Ztimes. + +lemma times_minus1: \forall n,p,q:nat. lt q p \to +(S n) * (S (pred ((S p) - (S q)))) = +pred ((S n) * (S p)) - pred ((S n) * (S q)). +intros. +rewrite < S_pred +[ rewrite > minus_pred_pred + [ auto + (*rewrite < distr_times_minus. + reflexivity*) + + (* we now close all positivity conditions *) + | apply lt_O_times_S_S + | apply lt_O_times_S_S + ] +| auto + (*simplify. + unfold lt. + apply le_SO_minus. + exact H*) +] +qed. + +lemma Ztimes_Zplus_pos_neg_pos: \forall n,p,q:nat. +(pos n)*((neg p)+(pos q)) = (pos n)*(neg p)+ (pos n)*(pos q). +intros. +simplify. +change in match (p + n * (S p)) with (pred ((S n) * (S p))). +change in match (q + n * (S q)) with (pred ((S n) * (S q))). +rewrite < nat_compare_pred_pred +[ rewrite < nat_compare_times_l. + rewrite < nat_compare_S_S. + apply (nat_compare_elim p q) + [ intro. + (* uff *) + change with (pos (pred ((S n) * (S (pred ((S q) - (S p)))))) = + pos (pred ((pred ((S n) * (S q))) - (pred ((S n) * (S p)))))). + rewrite < (times_minus1 n q p H). + reflexivity + | intro. + auto + (*rewrite < H. + simplify. + reflexivity*) + | intro. + change with (neg (pred ((S n) * (S (pred ((S p) - (S q)))))) = + neg (pred ((pred ((S n) * (S p))) - (pred ((S n) * (S q)))))). + rewrite < (times_minus1 n p q H). + reflexivity + ] + (* two more positivity conditions from nat_compare_pred_pred *) + +| apply lt_O_times_S_S +| apply lt_O_times_S_S +] +qed. + +lemma Ztimes_Zplus_pos_pos_neg: \forall n,p,q:nat. +(pos n)*((pos p)+(neg q)) = (pos n)*(pos p)+ (pos n)*(neg q). +intros. +auto. +(*rewrite < sym_Zplus. +rewrite > Ztimes_Zplus_pos_neg_pos. +apply sym_Zplus.*) +qed. + +lemma distributive2_Ztimes_pos_Zplus: +distributive2 nat Z (\lambda n,z. (pos n) * z) Zplus. +change with (\forall n,y,z. +(pos n) * (y + z) = (pos n) * y + (pos n) * z). +intros. +elim y +[ reflexivity +| elim z + [ reflexivity + | change with + (pos (pred ((S n) * ((S n1) + (S n2)))) = + pos (pred ((S n) * (S n1) + (S n) * (S n2)))). + auto + (*rewrite < distr_times_plus. + reflexivity*) + | apply Ztimes_Zplus_pos_pos_neg + ] +| elim z + [ reflexivity + | apply Ztimes_Zplus_pos_neg_pos + | change with + (neg (pred ((S n) * ((S n1) + (S n2)))) = + neg (pred ((S n) * (S n1) + (S n) * (S n2)))). + auto + (*rewrite < distr_times_plus. + reflexivity*) + ] +] +qed. + +variant distr_Ztimes_Zplus_pos: \forall n,y,z. +(pos n) * (y + z) = ((pos n) * y + (pos n) * z) \def +distributive2_Ztimes_pos_Zplus. + +lemma distributive2_Ztimes_neg_Zplus : +distributive2 nat Z (\lambda n,z. (neg n) * z) Zplus. +change with (\forall n,y,z. +(neg n) * (y + z) = (neg n) * y + (neg n) * z). +intros. +rewrite > Ztimes_neg_Zopp. +rewrite > distr_Ztimes_Zplus_pos. +auto. +(*rewrite > Zopp_Zplus. +rewrite < Ztimes_neg_Zopp. +rewrite < Ztimes_neg_Zopp. +reflexivity.*) +qed. + +variant distr_Ztimes_Zplus_neg: \forall n,y,z. +(neg n) * (y + z) = (neg n) * y + (neg n) * z \def +distributive2_Ztimes_neg_Zplus. + +theorem distributive_Ztimes_Zplus: distributive Z Ztimes Zplus. +change with (\forall x,y,z:Z. x * (y + z) = x*y + x*z). +intros. +elim x;auto. +(*[ simplify. + reflexivity +| apply distr_Ztimes_Zplus_pos +| apply distr_Ztimes_Zplus_neg +]*) +qed. + +variant distr_Ztimes_Zplus: \forall x,y,z. +x * (y + z) = x*y + x*z \def +distributive_Ztimes_Zplus. diff --git a/matita/library_auto/Z/z.ma b/matita/library_auto/Z/z.ma new file mode 100644 index 000000000..85728d4c9 --- /dev/null +++ b/matita/library_auto/Z/z.ma @@ -0,0 +1,251 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/Z/z". + +include "datatypes/bool.ma". +include "nat/nat.ma". + +inductive Z : Set \def + OZ : Z +| pos : nat \to Z +| neg : nat \to Z. + +definition Z_of_nat \def +\lambda n. match n with +[ O \Rightarrow OZ +| (S n)\Rightarrow pos n]. + +coercion cic:/matita/Z/z/Z_of_nat.con. + +definition neg_Z_of_nat \def +\lambda n. match n with +[ O \Rightarrow OZ +| (S n)\Rightarrow neg n]. + +definition abs \def +\lambda z. + match z with +[ OZ \Rightarrow O +| (pos n) \Rightarrow (S n) +| (neg n) \Rightarrow (S n)]. + +definition OZ_test \def +\lambda z. +match z with +[ OZ \Rightarrow true +| (pos n) \Rightarrow false +| (neg n) \Rightarrow false]. + +theorem OZ_test_to_Prop :\forall z:Z. +match OZ_test z with +[true \Rightarrow z=OZ +|false \Rightarrow z \neq OZ]. +intros. +elim z +[ (*qui auto non chiude il goal*) + simplify. + reflexivity +| simplify. + unfold Not. + intros (H). + (*qui auto non chiude il goal*) + destruct H +| simplify. + unfold Not. + intros (H). + (*qui auto non chiude il goal*) + destruct H +] +qed. + +(* discrimination *) +theorem injective_pos: injective nat Z pos. +unfold injective. +intros. +apply inj_S. +change with (abs (pos x) = abs (pos y)). +auto. +(*apply eq_f. +assumption.*) +qed. + +variant inj_pos : \forall n,m:nat. pos n = pos m \to n = m +\def injective_pos. + +theorem injective_neg: injective nat Z neg. +unfold injective. +intros. +apply inj_S. +change with (abs (neg x) = abs (neg y)). +auto. +(*apply eq_f. +assumption.*) +qed. + +variant inj_neg : \forall n,m:nat. neg n = neg m \to n = m +\def injective_neg. + +theorem not_eq_OZ_pos: \forall n:nat. OZ \neq pos n. +unfold Not. +intros (n H). +(*qui auto non chiude il goal*) +destruct H. +qed. + +theorem not_eq_OZ_neg :\forall n:nat. OZ \neq neg n. +unfold Not. +intros (n H). +(*qui auto non chiude il goal*) +destruct H. +qed. + +theorem not_eq_pos_neg :\forall n,m:nat. pos n \neq neg m. +unfold Not. +intros (n m H). +(*qui auto non chiude il goal*) +destruct H. +qed. + +theorem decidable_eq_Z : \forall x,y:Z. decidable (x=y). +intros. +unfold decidable. +elim x +[ (* goal: x=OZ *) + elim y + [ (* goal: x=OZ y=OZ *) + auto + (*left. + reflexivity*) + | (* goal: x=OZ 2=2 *) + auto + (*right. + apply not_eq_OZ_pos*) + | (* goal: x=OZ 2=3 *) + auto + (*right. + apply not_eq_OZ_neg*) + ] +| (* goal: x=pos *) + elim y + [ (* goal: x=pos y=OZ *) + right. + unfold Not. + intro. + apply (not_eq_OZ_pos n). + auto + (*symmetry. + assumption*) + | (* goal: x=pos y=pos *) + elim (decidable_eq_nat n n1:((n=n1) \lor ((n=n1) \to False))) + [ auto + (*left. + apply eq_f. + assumption*) + | right. + unfold Not. + intros (H_inj). + auto + (*apply H. + destruct H_inj. + assumption*) + ] + | (* goal: x=pos y=neg *) + auto + (*right. + unfold Not. + intro. + apply (not_eq_pos_neg n n1). + assumption*) + ] +| (* goal: x=neg *) + elim y + [ (* goal: x=neg y=OZ *) + right. + unfold Not. + intro. + apply (not_eq_OZ_neg n). + auto + (*symmetry. + assumption*) + | (* goal: x=neg y=pos *) + right. + unfold Not. + intro. + apply (not_eq_pos_neg n1 n). + auto + (*symmetry. + assumption*) + | (* goal: x=neg y=neg *) + elim (decidable_eq_nat n n1:((n=n1) \lor ((n=n1) \to False))) + [ auto + (*left. + apply eq_f. + assumption*) + | right. + unfold Not. + intro. + auto + (*apply H. + apply injective_neg. + assumption*) + ] + ] +] +qed. + +(* end discrimination *) + +definition Zsucc \def +\lambda z. match z with +[ OZ \Rightarrow pos O +| (pos n) \Rightarrow pos (S n) +| (neg n) \Rightarrow + match n with + [ O \Rightarrow OZ + | (S p) \Rightarrow neg p]]. + +definition Zpred \def +\lambda z. match z with +[ OZ \Rightarrow neg O +| (pos n) \Rightarrow + match n with + [ O \Rightarrow OZ + | (S p) \Rightarrow pos p] +| (neg n) \Rightarrow neg (S n)]. + +theorem Zpred_Zsucc: \forall z:Z. Zpred (Zsucc z) = z. +intros. +elim z +[ reflexivity +| reflexivity +| elim n + [ reflexivity + | reflexivity + ] +] +qed. + +theorem Zsucc_Zpred: \forall z:Z. Zsucc (Zpred z) = z. +intros. +elim z +[ reflexivity +| elim n + [ reflexivity + | reflexivity + ] +| reflexivity +] +qed. + diff --git a/matita/library_auto/nat/chinese_reminder.ma b/matita/library_auto/nat/chinese_reminder.ma new file mode 100644 index 000000000..0ce46753f --- /dev/null +++ b/matita/library_auto/nat/chinese_reminder.ma @@ -0,0 +1,364 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/chinese_reminder". + +include "nat/exp.ma". +include "nat/gcd.ma". +include "nat/permutation.ma". +include "nat/congruence.ma". + +theorem and_congruent_congruent: \forall m,n,a,b:nat. O < n \to O < m \to +gcd n m = (S O) \to ex nat (\lambda x. congruent x a m \land congruent x b n). +intros. +cut (\exists c,d.c*n - d*m = (S O) \lor d*m - c*n = (S O)) +[ elim Hcut. + elim H3. + elim H4 + [ + apply (ex_intro nat ? ((a+b*m)*a1*n-b*a2*m)). + split + [ (* congruent to a *) + cut (a1*n = a2*m + (S O)) + [ rewrite > assoc_times. + rewrite > Hcut1. + rewrite < (sym_plus ? (a2*m)). + rewrite > distr_times_plus. + rewrite < times_n_SO. + rewrite > assoc_plus. + rewrite < assoc_times. + rewrite < times_plus_l. + rewrite > eq_minus_plus_plus_minus + [ auto + (*rewrite < times_minus_l. + rewrite > sym_plus. + apply (eq_times_plus_to_congruent ? ? ? ((b+(a+b*m)*a2)-b*a2)) + [ assumption + | reflexivity + ]*) + | apply le_times_l. + apply (trans_le ? ((a+b*m)*a2)) + [ apply le_times_l. + apply (trans_le ? (b*m));auto + (*[ rewrite > times_n_SO in \vdash (? % ?). + apply le_times_r. + assumption + | apply le_plus_n + ]*) + | apply le_plus_n + ] + ] + | apply minus_to_plus + [ apply lt_to_le. + change with (O + a2*m < a1*n). + apply lt_minus_to_plus. + auto + (*rewrite > H5. + unfold lt. + apply le_n*) + | assumption + ] + ] + | (* congruent to b *) + cut (a2*m = a1*n - (S O)) + [ rewrite > (assoc_times b a2). + rewrite > Hcut1. + rewrite > distr_times_minus. + rewrite < assoc_times. + rewrite < eq_plus_minus_minus_minus + [ auto + (*rewrite < times_n_SO. + rewrite < times_minus_l. + rewrite < sym_plus. + apply (eq_times_plus_to_congruent ? ? ? ((a+b*m)*a1-b*a1)) + [ assumption + | reflexivity + ]*) + | rewrite > assoc_times. + apply le_times_r. + (*auto genera un'esecuzione troppo lunga*) + apply (trans_le ? (a1*n - a2*m));auto + (*[ rewrite > H5. + apply le_n + | apply (le_minus_m ? (a2*m)) + ]*) + | apply le_times_l. + apply le_times_l. + auto + (*apply (trans_le ? (b*m)) + [ rewrite > times_n_SO in \vdash (? % ?). + apply le_times_r. + assumption + | apply le_plus_n + ]*) + ] + | apply sym_eq. + apply plus_to_minus. + rewrite > sym_plus. + apply minus_to_plus + [ apply lt_to_le. + change with (O + a2*m < a1*n). + apply lt_minus_to_plus. + auto + (*rewrite > H5. + unfold lt. + apply le_n*) + | assumption + ] + ] + ] + | (* and now the symmetric case; the price to pay for working + in nat instead than Z *) + apply (ex_intro nat ? ((b+a*n)*a2*m-a*a1*n)). + split + [(* congruent to a *) + cut (a1*n = a2*m - (S O)) + [ rewrite > (assoc_times a a1). + rewrite > Hcut1. + rewrite > distr_times_minus. + rewrite < assoc_times. + rewrite < eq_plus_minus_minus_minus + [ auto + (*rewrite < times_n_SO. + rewrite < times_minus_l. + rewrite < sym_plus. + apply (eq_times_plus_to_congruent ? ? ? ((b+a*n)*a2-a*a2)) + [ assumption + | reflexivity + ]*) + | rewrite > assoc_times. + apply le_times_r. + apply (trans_le ? (a2*m - a1*n));auto + (*[ rewrite > H5. + apply le_n + | apply (le_minus_m ? (a1*n)) + ]*) + | rewrite > assoc_times. + rewrite > assoc_times. + apply le_times_l. + auto + (*apply (trans_le ? (a*n)) + [ rewrite > times_n_SO in \vdash (? % ?). + apply le_times_r. + assumption. + | apply le_plus_n. + ]*) + ] + | apply sym_eq. + apply plus_to_minus. + rewrite > sym_plus. + apply minus_to_plus + [ apply lt_to_le. + change with (O + a1*n < a2*m). + apply lt_minus_to_plus. + auto + (*rewrite > H5. + unfold lt. + apply le_n*) + | assumption + ] + ] + | (* congruent to b *) + cut (a2*m = a1*n + (S O)) + [ rewrite > assoc_times. + rewrite > Hcut1. + rewrite > (sym_plus (a1*n)). + rewrite > distr_times_plus. + rewrite < times_n_SO. + rewrite < assoc_times. + rewrite > assoc_plus. + rewrite < times_plus_l. + rewrite > eq_minus_plus_plus_minus + [ auto + (*rewrite < times_minus_l. + rewrite > sym_plus. + apply (eq_times_plus_to_congruent ? ? ? ((a+(b+a*n)*a1)-a*a1)) + [ assumption + | reflexivity + ]*) + | apply le_times_l. + apply (trans_le ? ((b+a*n)*a1)) + [ apply le_times_l. + auto + (*apply (trans_le ? (a*n)) + [ rewrite > times_n_SO in \vdash (? % ?). + apply le_times_r. + assumption + | apply le_plus_n + ]*) + | apply le_plus_n + ] + ] + | apply minus_to_plus + [ apply lt_to_le. + change with (O + a1*n < a2*m). + apply lt_minus_to_plus. + auto + (*rewrite > H5. + unfold lt. + apply le_n*) + | assumption + ] + ] + ] + ] +(* proof of the cut *) +| (* qui auto non conclude il goal *) + rewrite < H2. + apply eq_minus_gcd +] +qed. + +theorem and_congruent_congruent_lt: \forall m,n,a,b:nat. O < n \to O < m \to +gcd n m = (S O) \to +ex nat (\lambda x. (congruent x a m \land congruent x b n) \land + (x < m*n)). +intros. +elim (and_congruent_congruent m n a b) +[ elim H3. + apply (ex_intro ? ? (a1 \mod (m*n))). + split + [ split + [ apply (transitive_congruent m ? a1) + [ unfold congruent. + apply sym_eq. + change with (congruent a1 (a1 \mod (m*n)) m). + rewrite < sym_times. + auto + (*apply congruent_n_mod_times;assumption*) + | assumption + ] + | apply (transitive_congruent n ? a1) + [ unfold congruent. + apply sym_eq. + change with (congruent a1 (a1 \mod (m*n)) n). + auto + (*apply congruent_n_mod_times;assumption*) + | assumption + ] + ] + | apply lt_mod_m_m. + auto + (*rewrite > (times_n_O O). + apply lt_times;assumption*) + ] +| assumption +| assumption +| assumption +] +qed. + +definition cr_pair : nat \to nat \to nat \to nat \to nat \def +\lambda n,m,a,b. +min (pred (n*m)) (\lambda x. andb (eqb (x \mod n) a) (eqb (x \mod m) b)). + +theorem cr_pair1: cr_pair (S (S O)) (S (S (S O))) O O = O. +reflexivity. +qed. + +theorem cr_pair2: cr_pair (S(S O)) (S(S(S O))) (S O) O = (S(S(S O))). +auto. +(*simplify. +reflexivity.*) +qed. + +theorem cr_pair3: cr_pair (S(S O)) (S(S(S O))) (S O) (S(S O)) = (S(S(S(S(S O))))). +reflexivity. +qed. + +theorem cr_pair4: cr_pair (S(S(S(S(S O))))) (S(S(S(S(S(S(S O))))))) (S(S(S O))) (S(S O)) = +(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S O))))))))))))))))))))))). +reflexivity. +qed. + +theorem mod_cr_pair : \forall m,n,a,b. a \lt m \to b \lt n \to +gcd n m = (S O) \to +(cr_pair m n a b) \mod m = a \land (cr_pair m n a b) \mod n = b. +intros. +cut (andb (eqb ((cr_pair m n a b) \mod m) a) + (eqb ((cr_pair m n a b) \mod n) b) = true) +[ generalize in match Hcut. + apply andb_elim. + apply eqb_elim;intro + [ rewrite > H3. + simplify. + intro. + auto + (*split + [ reflexivity + | apply eqb_true_to_eq. + assumption + ]*) + | simplify. + intro. + (* l'invocazione di auto qui genera segmentation fault *) + apply False_ind. + (* l'invocazione di auto qui genera segmentation fault *) + apply not_eq_true_false. + (* l'invocazione di auto qui genera segmentation fault *) + apply sym_eq. + assumption + ] +| apply (f_min_aux_true + (\lambda x. andb (eqb (x \mod m) a) (eqb (x \mod n) b)) (pred (m*n)) (pred (m*n))). + elim (and_congruent_congruent_lt m n a b) + [ apply (ex_intro ? ? a1). + split + [ split + [ auto + (*rewrite < minus_n_n. + apply le_O_n*) + | elim H3. + apply le_S_S_to_le. + apply (trans_le ? (m*n)) + [ assumption + | apply (nat_case (m*n)) + [ apply le_O_n + | intro. + auto + (*rewrite < pred_Sn. + apply le_n*) + ] + ] + ] + | elim H3. + elim H4. + apply andb_elim. + cut (a1 \mod m = a) + [ cut (a1 \mod n = b) + [ rewrite > (eq_to_eqb_true ? ? Hcut). + rewrite > (eq_to_eqb_true ? ? Hcut1). + (* l'invocazione di auto qui non chiude il goal *) + simplify. + reflexivity + | rewrite < (lt_to_eq_mod b n); + assumption + ] + | rewrite < (lt_to_eq_mod a m);assumption + ] + ] + | auto + (*apply (le_to_lt_to_lt ? b) + [ apply le_O_n + | assumption + ]*) + | auto + (*apply (le_to_lt_to_lt ? a) + [ apply le_O_n + | assumption + ]*) + | assumption + ] +] +qed. \ No newline at end of file diff --git a/matita/library_auto/nat/compare.ma b/matita/library_auto/nat/compare.ma new file mode 100644 index 000000000..89107fdee --- /dev/null +++ b/matita/library_auto/nat/compare.ma @@ -0,0 +1,320 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/compare". + +include "datatypes/bool.ma". +include "datatypes/compare.ma". +include "nat/orders.ma". + +let rec eqb n m \def +match n with + [ O \Rightarrow + match m with + [ O \Rightarrow true + | (S q) \Rightarrow false] + | (S p) \Rightarrow + match m with + [ O \Rightarrow false + | (S q) \Rightarrow eqb p q]]. + +theorem eqb_to_Prop: \forall n,m:nat. +match (eqb n m) with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m]. +intros. +apply (nat_elim2 +(\lambda n,m:nat.match (eqb n m) with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m])) +[ intro. + elim n1;simplify;auto + (*[ simplify + reflexivity + | simplify. + apply not_eq_O_S + ]*) +| intro. + simplify. + unfold Not. + intro. + apply (not_eq_O_S n1). + auto + (*apply sym_eq. + assumption*) +| intros. + simplify. + generalize in match H. + elim ((eqb n1 m1));simplify + [ apply eq_f. + apply H1 + | unfold Not. + intro. + apply H1. + auto + (*apply inj_S. + assumption*) + ] +] +qed. + +theorem eqb_elim : \forall n,m:nat.\forall P:bool \to Prop. +(n=m \to (P true)) \to (n \neq m \to (P false)) \to (P (eqb n m)). +intros. +cut +(match (eqb n m) with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m] \to (P (eqb n m))) +[ apply Hcut. + (* qui auto non conclude il goal*) + apply eqb_to_Prop +| elim (eqb n m) + [ (*qui auto non conclude il goal*) + apply ((H H2)) + | (*qui auto non conclude il goal*) + apply ((H1 H2)) + ] +] +qed. + +theorem eqb_n_n: \forall n. eqb n n = true. +intro. +elim n;simplify;auto. +(*[ simplify.reflexivity +| simplify.assumption. +]*) +qed. + +theorem eqb_true_to_eq: \forall n,m:nat. +eqb n m = true \to n = m. +intros. +change with +match true with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m]. +rewrite < H. +(*qui auto non conclude il goal*) +apply eqb_to_Prop. +qed. + +theorem eqb_false_to_not_eq: \forall n,m:nat. +eqb n m = false \to n \neq m. +intros. +change with +match false with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m]. +rewrite < H. +(*qui auto non conclude il goal*) +apply eqb_to_Prop. +qed. + +theorem eq_to_eqb_true: \forall n,m:nat. +n = m \to eqb n m = true. +intros. +auto. +(*apply (eqb_elim n m) +[ intros. reflexivity +| intros.apply False_ind.apply (H1 H) +]*) +qed. + +theorem not_eq_to_eqb_false: \forall n,m:nat. +\lnot (n = m) \to eqb n m = false. +intros.apply (eqb_elim n m);intros +[ apply False_ind. + apply (H H1) +| reflexivity +] +qed. + +let rec leb n m \def +match n with + [ O \Rightarrow true + | (S p) \Rightarrow + match m with + [ O \Rightarrow false + | (S q) \Rightarrow leb p q]]. + +theorem leb_to_Prop: \forall n,m:nat. +match (leb n m) with +[ true \Rightarrow n \leq m +| false \Rightarrow n \nleq m]. +intros. +apply (nat_elim2 +(\lambda n,m:nat.match (leb n m) with +[ true \Rightarrow n \leq m +| false \Rightarrow n \nleq m])) +[ simplify. + exact le_O_n +| simplify. + exact not_le_Sn_O +| intros 2. + simplify. + elim ((leb n1 m1));simplify + [ apply le_S_S. + (*qui auto non conclude il goal*) + apply H + | unfold Not. + intros. + apply H. + auto + (*apply le_S_S_to_le. + assumption*) + ] +] +qed. + +theorem leb_elim: \forall n,m:nat. \forall P:bool \to Prop. +(n \leq m \to (P true)) \to (n \nleq m \to (P false)) \to +P (leb n m). +intros. +cut +(match (leb n m) with +[ true \Rightarrow n \leq m +| false \Rightarrow n \nleq m] \to (P (leb n m))) +[ apply Hcut. + (*qui auto non conclude il goal*) + apply leb_to_Prop +| elim (leb n m) + [ (*qui auto non conclude il goal*) + apply ((H H2)) + | (*qui auto non conclude il goal*) + apply ((H1 H2)) + ] +] +qed. + +let rec nat_compare n m: compare \def +match n with +[ O \Rightarrow + match m with + [ O \Rightarrow EQ + | (S q) \Rightarrow LT ] +| (S p) \Rightarrow + match m with + [ O \Rightarrow GT + | (S q) \Rightarrow nat_compare p q]]. +(**********) +theorem nat_compare_n_n: \forall n:nat. nat_compare n n = EQ. +intro.elim n +[ auto + (*simplify. + reflexivity*) +| simplify. + assumption +] +qed. + +theorem nat_compare_S_S: \forall n,m:nat. +nat_compare n m = nat_compare (S n) (S m). +intros.auto. +(*simplify.reflexivity.*) +qed. + +theorem S_pred: \forall n:nat.lt O n \to eq nat n (S (pred n)). +intro. +elim n;auto. +(*[ apply False_ind. + exact (not_le_Sn_O O H) +| apply eq_f. + apply pred_Sn +]*) +qed. + +theorem nat_compare_pred_pred: +\forall n,m:nat.lt O n \to lt O m \to +eq compare (nat_compare n m) (nat_compare (pred n) (pred m)). +intros. +apply (lt_O_n_elim n H). +apply (lt_O_n_elim m H1). +intros. +auto. +(*simplify.reflexivity.*) +qed. + +theorem nat_compare_to_Prop: \forall n,m:nat. +match (nat_compare n m) with + [ LT \Rightarrow n < m + | EQ \Rightarrow n=m + | GT \Rightarrow m < n ]. +intros. +apply (nat_elim2 (\lambda n,m.match (nat_compare n m) with + [ LT \Rightarrow n < m + | EQ \Rightarrow n=m + | GT \Rightarrow m < n ])) +[ intro. + elim n1;simplify;auto + (*[ reflexivity + | unfold lt. + apply le_S_S. + apply le_O_n + ]*) +| intro. + simplify. + auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) +| intros 2. + simplify. + elim ((nat_compare n1 m1));simplify + [ unfold lt. + apply le_S_S. + (*qui auto non chiude il goal*) + apply H + | apply eq_f. + (*qui auto non chiude il goal*) + apply H + | unfold lt. + apply le_S_S. + (*qui auto non chiude il goal*) + apply H + ] +] +qed. + +theorem nat_compare_n_m_m_n: \forall n,m:nat. +nat_compare n m = compare_invert (nat_compare m n). +intros. +apply (nat_elim2 (\lambda n,m. nat_compare n m = compare_invert (nat_compare m n)));intros +[ elim n1;auto(*;simplify;reflexivity*) +| elim n1;auto(*;simplify;reflexivity*) +| auto + (*simplify.elim H.reflexivity*) +] +qed. + +theorem nat_compare_elim : \forall n,m:nat. \forall P:compare \to Prop. +(n < m \to P LT) \to (n=m \to P EQ) \to (m < n \to P GT) \to +(P (nat_compare n m)). +intros. +cut (match (nat_compare n m) with +[ LT \Rightarrow n < m +| EQ \Rightarrow n=m +| GT \Rightarrow m < n] \to +(P (nat_compare n m))) +[ apply Hcut. + (*auto non chiude il goal*) + apply nat_compare_to_Prop +| elim ((nat_compare n m)) + [ (*auto non chiude il goal*) + apply ((H H3)) + | (*auto non chiude il goal*) + apply ((H1 H3)) + | (*auto non chiude il goal*) + apply ((H2 H3)) + ] +] +qed. diff --git a/matita/library_auto/nat/congruence.ma b/matita/library_auto/nat/congruence.ma new file mode 100644 index 000000000..72402f83e --- /dev/null +++ b/matita/library_auto/nat/congruence.ma @@ -0,0 +1,258 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/congruence". + +include "nat/relevant_equations.ma". +include "nat/primes.ma". + +definition S_mod: nat \to nat \to nat \def +\lambda n,m:nat. (S m) \mod n. + +definition congruent: nat \to nat \to nat \to Prop \def +\lambda n,m,p:nat. mod n p = mod m p. + +interpretation "congruent" 'congruent n m p = + (cic:/matita/nat/congruence/congruent.con n m p). + +notation < "hvbox(n break \cong\sub p m)" + (*non associative*) with precedence 45 +for @{ 'congruent $n $m $p }. + +theorem congruent_n_n: \forall n,p:nat.congruent n n p. +intros. +unfold congruent. +reflexivity. +qed. + +theorem transitive_congruent: \forall p:nat. transitive nat +(\lambda n,m. congruent n m p). +intros.unfold transitive. +unfold congruent. +intros. +whd. +apply (trans_eq ? ? (y \mod p)) +[ (*qui auto non chiude il goal*) + apply H +| (*qui auto non chiude il goal*) + apply H1 +] +qed. + +theorem le_to_mod: \forall n,m:nat. n \lt m \to n = n \mod m. +intros. +auto. +(*apply (div_mod_spec_to_eq2 n m O n (n/m) (n \mod m)) +[ constructor 1 + [ assumption + | simplify. + reflexivity + ] +| apply div_mod_spec_div_mod. + apply (le_to_lt_to_lt O n m) + [ apply le_O_n + | assumption + ] +]*) +qed. + +theorem mod_mod : \forall n,p:nat. O

(div_mod (n \mod p) p) in \vdash (? ? % ?) +[ rewrite > (eq_div_O ? p) + [ reflexivity + | apply lt_mod_m_m. + assumption + ] +| assumption +]*) +qed. + +theorem mod_times_mod : \forall n,m,p:nat. O

times_plus_l. + rewrite > assoc_plus. + rewrite < div_mod + [ rewrite > assoc_times. + rewrite < div_mod;auto + (*[ reflexivity + | rewrite > (times_n_O O). + apply lt_times;assumption + ]*) + | assumption + ] + ] +] +qed. + +theorem congruent_n_mod_n : +\forall n,p:nat. O < p \to congruent n (n \mod p) p. +intros. +unfold congruent. +auto. +(*apply mod_mod. +assumption.*) +qed. + +theorem congruent_n_mod_times : +\forall n,m,p:nat. O < p \to O < m \to congruent n (n \mod (m*p)) p. +intros.unfold congruent. +apply mod_times_mod;assumption. +qed. + +theorem eq_times_plus_to_congruent: \forall n,m,p,r:nat. O< p \to +n = r*p+m \to congruent n m p. +intros. +unfold congruent. +apply (div_mod_spec_to_eq2 n p (div n p) (mod n p) (r +(div m p)) (mod m p)) +[ auto + (*apply div_mod_spec_div_mod. + assumption*) +| constructor 1 + [ auto + (*apply lt_mod_m_m. + assumption*) + | +(*cut (n = r * p + (m / p * p + m \mod p)).*) +(*lapply (div_mod m p H). +rewrite > sym_times. +rewrite > distr_times_plus. +(*rewrite > (sym_times p (m/p)).*) +(*rewrite > sym_times.*) + rewrite > assoc_plus. + auto paramodulation. + rewrite < div_mod. + assumption. + assumption. +*) + rewrite > sym_times. + rewrite > distr_times_plus. + rewrite > sym_times. + rewrite > (sym_times p). + rewrite > assoc_plus. + rewrite < div_mod;assumption. + ] +] +qed. + +theorem divides_to_congruent: \forall n,m,p:nat. O < p \to m \le n \to +divides p (n - m) \to congruent n m p. +intros. +elim H2. +apply (eq_times_plus_to_congruent n m p n2) +[ assumption +| rewrite < sym_plus. + apply minus_to_plus;auto + (*[ assumption + | rewrite > sym_times. assumption + ]*) +] +qed. + +theorem congruent_to_divides: \forall n,m,p:nat. +O < p \to congruent n m p \to divides p (n - m). +intros. +unfold congruent in H1. +apply (witness ? ? ((n / p)-(m / p))). +rewrite > sym_times. +rewrite > (div_mod n p) in \vdash (? ? % ?) +[ rewrite > (div_mod m p) in \vdash (? ? % ?) + [ rewrite < (sym_plus (m \mod p)). + auto + (*rewrite < H1. + rewrite < (eq_minus_minus_minus_plus ? (n \mod p)). + rewrite < minus_plus_m_m. + apply sym_eq. + apply times_minus_l*) + | assumption + ] +| assumption +] +qed. + +theorem mod_times: \forall n,m,p:nat. +O < p \to mod (n*m) p = mod ((mod n p)*(mod m p)) p. +intros. +change with (congruent (n*m) ((mod n p)*(mod m p)) p). +apply (eq_times_plus_to_congruent ? ? p +((n / p)*p*(m / p) + (n / p)*(m \mod p) + (n \mod p)*(m / p))) +[ assumption +| apply (trans_eq ? ? (((n/p)*p+(n \mod p))*((m/p)*p+(m \mod p)))) + [ apply eq_f2;auto(*;apply div_mod.assumption.*) + | apply (trans_eq ? ? (((n/p)*p)*((m/p)*p) + (n/p)*p*(m \mod p) + + (n \mod p)*((m / p)*p) + (n \mod p)*(m \mod p))) + [ apply times_plus_plus + | apply eq_f2 + [ rewrite < assoc_times. + auto + (*rewrite > (assoc_times (n/p) p (m \mod p)). + rewrite > (sym_times p (m \mod p)). + rewrite < (assoc_times (n/p) (m \mod p) p). + rewrite < times_plus_l. + rewrite < (assoc_times (n \mod p)). + rewrite < times_plus_l. + apply eq_f2 + [ apply eq_f2 + [ reflexivity + | reflexivity + ] + | reflexivity + ]*) + | reflexivity + ] + ] + ] +] +qed. + +theorem congruent_times: \forall n,m,n1,m1,p. O < p \to congruent n n1 p \to +congruent m m1 p \to congruent (n*m) (n1*m1) p. +unfold congruent. +intros. +rewrite > (mod_times n m p H). +auto. +(*rewrite > H1. +rewrite > H2. +apply sym_eq. +apply mod_times. +assumption.*) +qed. + +theorem congruent_pi: \forall f:nat \to nat. \forall n,m,p:nat.O < p \to +congruent (pi n f m) (pi n (\lambda m. mod (f m) p) m) p. +intros. +elim n;simplify +[ auto + (*apply congruent_n_mod_n. + assumption*) +| apply congruent_times + [ assumption + | auto + (*apply congruent_n_mod_n. + assumption*) + | (*NB: QUI AUTO NON RIESCE A CHIUDERE IL GOAL*) + assumption + ] +] +qed. diff --git a/matita/library_auto/nat/count.ma b/matita/library_auto/nat/count.ma new file mode 100644 index 000000000..0eb6139f6 --- /dev/null +++ b/matita/library_auto/nat/count.ma @@ -0,0 +1,347 @@ +(**************************************************************************) +(* __ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/count". + +include "nat/relevant_equations.ma". +include "nat/sigma_and_pi.ma". +include "nat/permutation.ma". + +theorem sigma_f_g : \forall n,m:nat.\forall f,g:nat \to nat. +sigma n (\lambda p.f p + g p) m = sigma n f m + sigma n g m. +intros. +elim n;simplify +[ reflexivity +| rewrite > H. + auto + (*rewrite > assoc_plus. + rewrite < (assoc_plus (g (S (n1+m)))). + rewrite > (sym_plus (g (S (n1+m)))). + rewrite > (assoc_plus (sigma n1 f m)). + rewrite < assoc_plus. + reflexivity*) +] +qed. + +theorem sigma_plus: \forall n,p,m:nat.\forall f:nat \to nat. +sigma (S (p+n)) f m = sigma p (\lambda x.(f ((S n) + x))) m + sigma n f m. +intros. +elim p;simplify +[ auto + (*rewrite < (sym_plus n m). + reflexivity*) +| rewrite > assoc_plus in \vdash (? ? ? %). + rewrite < H. + auto + (*simplify. + rewrite < plus_n_Sm. + rewrite > (sym_plus n). + rewrite > assoc_plus. + rewrite < (sym_plus m). + rewrite < (assoc_plus n1). + reflexivity*) +] +qed. + +theorem sigma_plus1: \forall n,p,m:nat.\forall f:nat \to nat. +sigma (p+(S n)) f m = sigma p (\lambda x.(f ((S n) + x))) m + sigma n f m. +intros. +elim p;simplify +[ reflexivity +| rewrite > assoc_plus in \vdash (? ? ? %). + rewrite < H. + rewrite < plus_n_Sm. + auto + (*rewrite < plus_n_Sm.simplify. + rewrite < (sym_plus n). + rewrite > assoc_plus. + rewrite < (sym_plus m). + rewrite < (assoc_plus n). + reflexivity*) +] +qed. + +theorem eq_sigma_sigma : \forall n,m:nat.\forall f:nat \to nat. +sigma (pred ((S n)*(S m))) f O = +sigma m (\lambda a.(sigma n (\lambda b.f (b*(S m) + a)) O)) O. +intro. +elim n;simplify +[ rewrite < plus_n_O. + apply eq_sigma. + intros. + reflexivity +| rewrite > sigma_f_g. + rewrite < plus_n_O. + rewrite < H. + auto + + (*rewrite > (S_pred ((S n1)*(S m))) + [ apply sigma_plus1 + | simplify. + unfold lt. + apply le_S_S. + apply le_O_n + ]*) +] +qed. + +theorem eq_sigma_sigma1 : \forall n,m:nat.\forall f:nat \to nat. +sigma (pred ((S n)*(S m))) f O = +sigma n (\lambda a.(sigma m (\lambda b.f (b*(S n) + a)) O)) O. +intros. +rewrite > sym_times. +apply eq_sigma_sigma. +qed. + +theorem sigma_times: \forall n,m,p:nat.\forall f:nat \to nat. +(sigma n f m)*p = sigma n (\lambda i.(f i) * p) m. +intro. +elim n;simplify +[ reflexivity +| rewrite < H. + apply times_plus_l +] +qed. + +definition bool_to_nat: bool \to nat \def +\lambda b. match b with +[ true \Rightarrow (S O) +| false \Rightarrow O ]. + +theorem bool_to_nat_andb: \forall a,b:bool. +bool_to_nat (andb a b) = (bool_to_nat a)*(bool_to_nat b). +intros. +elim a;auto. +(*[elim b + [ simplify. + reflexivity + | reflexivity + ] +| reflexivity +]*) +qed. + +definition count : nat \to (nat \to bool) \to nat \def +\lambda n.\lambda f. sigma (pred n) (\lambda n.(bool_to_nat (f n))) O. + +theorem count_times:\forall n,m:nat. +\forall f,f1,f2:nat \to bool. +\forall g:nat \to nat \to nat. +\forall g1,g2: nat \to nat. +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g b a) < (S n)*(S m)) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g1 (g b a)) = a) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g2 (g b a)) = b) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to f (g b a) = andb (f2 b) (f1 a)) \to +(count ((S n)*(S m)) f) = (count (S n) f1)*(count (S m) f2). +intros.unfold count. +rewrite < eq_map_iter_i_sigma. +rewrite > (permut_to_eq_map_iter_i plus assoc_plus sym_plus ? ? ? + (\lambda i.g (div i (S n)) (mod i (S n)))) +[ rewrite > eq_map_iter_i_sigma. + rewrite > eq_sigma_sigma1. + apply (trans_eq ? ? + (sigma n (\lambda a. + sigma m (\lambda b.(bool_to_nat (f2 b))*(bool_to_nat (f1 a))) O) O)) + [ apply eq_sigma.intros. + apply eq_sigma.intros. + rewrite > (div_mod_spec_to_eq (i1*(S n) + i) (S n) ((i1*(S n) + i)/(S n)) + ((i1*(S n) + i) \mod (S n)) i1 i) + [ rewrite > (div_mod_spec_to_eq2 (i1*(S n) + i) (S n) ((i1*(S n) + i)/(S n)) + ((i1*(S n) + i) \mod (S n)) i1 i) + [ rewrite > H3;auto (*qui auto impiega parecchio tempo*) + (*[ apply bool_to_nat_andb + | unfold lt. + apply le_S_S. + assumption + | unfold lt. + apply le_S_S. + assumption + ]*) + | auto + (*apply div_mod_spec_div_mod. + unfold lt. + apply le_S_S. + apply le_O_n*) + | constructor 1;auto + (*[ unfold lt. + apply le_S_S. + assumption + | reflexivity + ]*) + ] + | auto + (*apply div_mod_spec_div_mod. + unfold lt. + apply le_S_S. + apply le_O_n*) + | constructor 1;auto + (*[ unfold lt. + apply le_S_S. + assumption + | reflexivity + ]*) + ] + | apply (trans_eq ? ? + (sigma n (\lambda n.((bool_to_nat (f1 n)) * + (sigma m (\lambda n.bool_to_nat (f2 n)) O))) O)) + [ apply eq_sigma. + intros. + auto + (*rewrite > sym_times. + apply (trans_eq ? ? + (sigma m (\lambda n.(bool_to_nat (f2 n))*(bool_to_nat (f1 i))) O)) + [ reflexivity. + | apply sym_eq. + apply sigma_times + ]*) + | auto + (*simplify. + apply sym_eq. + apply sigma_times*) + ] + ] +| unfold permut. + split + [ intros. + rewrite < plus_n_O. + apply le_S_S_to_le. + rewrite < S_pred in \vdash (? ? %) + [ change with ((g (i/(S n)) (i \mod (S n))) \lt (S n)*(S m)). + apply H + [ auto + (*apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n*) + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? i) + [ auto + (*rewrite > (div_mod i (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ]*) + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + auto + (*rewrite > plus_n_O in \vdash (? ? %). + rewrite > sym_times. + assumption*) + | auto + (*rewrite > (times_n_O O). + apply lt_times; + unfold lt;apply le_S_S;apply le_O_n*) + ] + ] + ] + | auto + (*rewrite > (times_n_O O). + apply lt_times; + unfold lt;apply le_S_S;apply le_O_n *) + ] + | rewrite < plus_n_O. + unfold injn. + intros. + cut (i < (S n)*(S m)) + [ cut (j < (S n)*(S m)) + [ cut ((i \mod (S n)) < (S n)) + [ cut ((i/(S n)) < (S m)) + [ cut ((j \mod (S n)) < (S n)) + [ cut ((j/(S n)) < (S m)) + [ rewrite > (div_mod i (S n)) + [ rewrite > (div_mod j (S n)) + [ rewrite < (H1 (i \mod (S n)) (i/(S n)) Hcut2 Hcut3). + rewrite < (H2 (i \mod (S n)) (i/(S n)) Hcut2 Hcut3) in \vdash (? ? (? % ?) ?). + rewrite < (H1 (j \mod (S n)) (j/(S n)) Hcut4 Hcut5). + rewrite < (H2 (j \mod (S n)) (j/(S n)) Hcut4 Hcut5) in \vdash (? ? ? (? % ?)). + auto + (*rewrite > H6. + reflexivity*) + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + ] + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + ] + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? j) + [ auto. + (*rewrite > (div_mod j (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ]*) + | rewrite < sym_times. + assumption + ] + ] + | auto + (*apply lt_mod_m_m. + unfold lt. apply le_S_S. + apply le_O_n*) + ] + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? i) + [ auto + (*rewrite > (div_mod i (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ]*) + | rewrite < sym_times. + assumption + ] + ] + | auto + (*apply lt_mod_m_m. + unfold lt. apply le_S_S. + apply le_O_n*) + ] + | unfold lt. + auto + (*rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + assumption + | rewrite > (times_n_O O). + apply lt_times; + unfold lt; apply le_S_S;apply le_O_n + ]*) + ] + | unfold lt. + auto + (*rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + assumption + | rewrite > (times_n_O O). + apply lt_times; + unfold lt; apply le_S_S;apply le_O_n + ]*) + ] + ] +| intros. + apply False_ind. + apply (not_le_Sn_O m1 H4) +] +qed. diff --git a/matita/library_auto/nat/div_and_mod.ma b/matita/library_auto/nat/div_and_mod.ma new file mode 100644 index 000000000..ad83dbbaa --- /dev/null +++ b/matita/library_auto/nat/div_and_mod.ma @@ -0,0 +1,423 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/div_and_mod". + +include "datatypes/constructors.ma". +include "nat/minus.ma". + +let rec mod_aux p m n: nat \def +match (leb m n) with +[ true \Rightarrow m +| false \Rightarrow + match p with + [O \Rightarrow m + |(S q) \Rightarrow mod_aux q (m-(S n)) n]]. + +definition mod : nat \to nat \to nat \def +\lambda n,m. +match m with +[O \Rightarrow m +| (S p) \Rightarrow mod_aux n n p]. + +interpretation "natural remainder" 'module x y = + (cic:/matita/nat/div_and_mod/mod.con x y). + +let rec div_aux p m n : nat \def +match (leb m n) with +[ true \Rightarrow O +| false \Rightarrow + match p with + [O \Rightarrow O + |(S q) \Rightarrow S (div_aux q (m-(S n)) n)]]. + +definition div : nat \to nat \to nat \def +\lambda n,m. +match m with +[O \Rightarrow S n +| (S p) \Rightarrow div_aux n n p]. + +interpretation "natural divide" 'divide x y = + (cic:/matita/nat/div_and_mod/div.con x y). + +theorem le_mod_aux_m_m: +\forall p,n,m. n \leq p \to (mod_aux p n m) \leq m. +intro. +elim p +[ apply (le_n_O_elim n H (\lambda n.(mod_aux O n m) \leq m)). + auto + (*simplify. + apply le_O_n*) +| simplify. + apply (leb_elim n1 m);simplify;intro + [ assumption + | apply H. + cut (n1 \leq (S n) \to n1-(S m) \leq n) + [ auto + (*apply Hcut. + assumption*) + | elim n1;simplify;auto + (*[ apply le_O_n. + | apply (trans_le ? n2 n) + [ apply le_minus_m + | apply le_S_S_to_le. + assumption + ] + ]*) + ] + ] +] +qed. + +theorem lt_mod_m_m: \forall n,m. O < m \to (n \mod m) < m. +intros 2. +elim m +[ apply False_ind. + apply (not_le_Sn_O O H) +| simplify. + auto + (*unfold lt. + apply le_S_S. + apply le_mod_aux_m_m. + apply le_n*) +] +qed. + +theorem div_aux_mod_aux: \forall p,n,m:nat. +(n=(div_aux p n m)*(S m) + (mod_aux p n m)). +intro. +elim p;simplify +[ elim (leb n m);auto + (*simplify;apply refl_eq.*) +| apply (leb_elim n1 m);simplify;intro + [ apply refl_eq + | rewrite > assoc_plus. + elim (H (n1-(S m)) m). + change with (n1=(S m)+(n1-(S m))). + rewrite < sym_plus. + auto + (*apply plus_minus_m_m. + change with (m < n1). + apply not_le_to_lt. + exact H1*) + ] +] +qed. + +theorem div_mod: \forall n,m:nat. O < m \to n=(n / m)*m+(n \mod m). +intros 2. +elim m +[ elim (not_le_Sn_O O H) +| simplify. + apply div_aux_mod_aux +] +qed. + +inductive div_mod_spec (n,m,q,r:nat) : Prop \def +div_mod_spec_intro: r < m \to n=q*m+r \to (div_mod_spec n m q r). + +(* +definition div_mod_spec : nat \to nat \to nat \to nat \to Prop \def +\lambda n,m,q,r:nat.r < m \land n=q*m+r). +*) + +theorem div_mod_spec_to_not_eq_O: \forall n,m,q,r.(div_mod_spec n m q r) \to m \neq O. +intros 4. +unfold Not. +intros. +elim H. +absurd (le (S r) O);auto. +(*[ rewrite < H1. + assumption +| exact (not_le_Sn_O r). +]*) +qed. + +theorem div_mod_spec_div_mod: +\forall n,m. O < m \to (div_mod_spec n m (n / m) (n \mod m)). +intros. +auto. +(*apply div_mod_spec_intro +[ apply lt_mod_m_m. + assumption +| apply div_mod. + assumption +]*) +qed. + +theorem div_mod_spec_to_eq :\forall a,b,q,r,q1,r1. +(div_mod_spec a b q r) \to (div_mod_spec a b q1 r1) \to +(eq nat q q1). +intros. +elim H. +elim H1. +apply (nat_compare_elim q q1) +[ intro. + apply False_ind. + cut (eq nat ((q1-q)*b+r1) r) + [ cut (b \leq (q1-q)*b+r1) + [ cut (b \leq r) + [ apply (lt_to_not_le r b H2 Hcut2) + | elim Hcut. + assumption + ] + | apply (trans_le ? ((q1-q)*b));auto + (*[ apply le_times_n. + apply le_SO_minus. + exact H6 + | rewrite < sym_plus. + apply le_plus_n + ]*) + ] + | rewrite < sym_times. + rewrite > distr_times_minus. + rewrite > plus_minus;auto + (*[ rewrite > sym_times. + rewrite < H5. + rewrite < sym_times. + apply plus_to_minus. + apply H3 + | apply le_times_r. + apply lt_to_le. + apply H6 + ]*) + ] +| (* eq case *) + auto + (*intros. + assumption*) +| (* the following case is symmetric *) + intro. + apply False_ind. + cut (eq nat ((q-q1)*b+r) r1) + [ cut (b \leq (q-q1)*b+r) + [ cut (b \leq r1) + [ apply (lt_to_not_le r1 b H4 Hcut2) + | elim Hcut. + assumption + ] + | apply (trans_le ? ((q-q1)*b));auto + (*[ apply le_times_n. + apply le_SO_minus. + exact H6 + | rewrite < sym_plus. + apply le_plus_n + ]*) + ] + | rewrite < sym_times. + rewrite > distr_times_minus. + rewrite > plus_minus;auto + (*[ rewrite > sym_times. + rewrite < H3. + rewrite < sym_times. + apply plus_to_minus. + apply H5 + | apply le_times_r. + apply lt_to_le. + apply H6 + ]*) + ] +] +qed. + +theorem div_mod_spec_to_eq2 :\forall a,b,q,r,q1,r1. +(div_mod_spec a b q r) \to (div_mod_spec a b q1 r1) \to +(eq nat r r1). +intros. +elim H. +elim H1. +apply (inj_plus_r (q*b)). +rewrite < H3. +rewrite > (div_mod_spec_to_eq a b q r q1 r1 H H1). +assumption. +qed. + +theorem div_mod_spec_times : \forall n,m:nat.div_mod_spec ((S n)*m) (S n) m O. +intros. +auto. +(*constructor 1 +[ unfold lt. + apply le_S_S. + apply le_O_n +| rewrite < plus_n_O. + rewrite < sym_times. + reflexivity +]*) +qed. + + +(*il corpo del seguente teorema non e' stato strutturato *) +(* some properties of div and mod *) +theorem div_times: \forall n,m:nat. ((S n)*m) / (S n) = m. +intros. +apply (div_mod_spec_to_eq ((S n)*m) (S n) ? ? ? O). +goal 15. (* ?11 is closed with the following tactics *) +apply div_mod_spec_div_mod.auto.auto. +(*unfold lt.apply le_S_S.apply le_O_n. +apply div_mod_spec_times.*) +qed. + +theorem div_n_n: \forall n:nat. O < n \to n / n = S O. +intros. +apply (div_mod_spec_to_eq n n (n / n) (n \mod n) (S O) O);auto. +(*[ apply div_mod_spec_div_mod. + assumption +| constructor 1 + [ assumption + | rewrite < plus_n_O. + simplify. + rewrite < plus_n_O. + reflexivity + ] +] *) +qed. + +theorem eq_div_O: \forall n,m. n < m \to n / m = O. +intros. +apply (div_mod_spec_to_eq n m (n/m) (n \mod m) O n);auto. +(*[ apply div_mod_spec_div_mod. + apply (le_to_lt_to_lt O n m) + [ apply le_O_n + | assumption + ] +| constructor 1 + [ assumption + | reflexivity + ] +]*) +qed. + +theorem mod_n_n: \forall n:nat. O < n \to n \mod n = O. +intros. +apply (div_mod_spec_to_eq2 n n (n / n) (n \mod n) (S O) O);auto. +(*[ apply div_mod_spec_div_mod. + assumption +| constructor 1 + [ assumption. + | rewrite < plus_n_O. + simplify. + rewrite < plus_n_O. + reflexivity + ] +]*) +qed. + +theorem mod_S: \forall n,m:nat. O < m \to S (n \mod m) < m \to +((S n) \mod m) = S (n \mod m). +intros. +apply (div_mod_spec_to_eq2 (S n) m ((S n) / m) ((S n) \mod m) (n / m) (S (n \mod m))) +[ auto + (*apply div_mod_spec_div_mod. + assumption*) +| constructor 1 + [ assumption + | rewrite < plus_n_Sm. + auto + (*apply eq_f. + apply div_mod. + assumption*) + ] +] +qed. + +theorem mod_O_n: \forall n:nat.O \mod n = O. +intro. +elim n;auto. + (*simplify;reflexivity*) + +qed. + +theorem lt_to_eq_mod:\forall n,m:nat. n < m \to n \mod m = n. +intros. +apply (div_mod_spec_to_eq2 n m (n/m) (n \mod m) O n);auto. +(*[ apply div_mod_spec_div_mod. + apply (le_to_lt_to_lt O n m) + [ apply le_O_n + | assumption + ] +| constructor 1. + [ assumption + | reflexivity + ] +]*) +qed. + +(* injectivity *) +theorem injective_times_r: \forall n:nat.injective nat nat (\lambda m:nat.(S n)*m). +change with (\forall n,p,q:nat.(S n)*p = (S n)*q \to p=q). +intros. +rewrite < (div_times n). +auto. +(*rewrite < (div_times n q). +apply eq_f2 +[ assumption +| reflexivity +]*) +qed. + +variant inj_times_r : \forall n,p,q:nat.(S n)*p = (S n)*q \to p=q \def +injective_times_r. + +theorem lt_O_to_injective_times_r: \forall n:nat. O < n \to injective nat nat (\lambda m:nat.n*m). +simplify. +intros 4. +apply (lt_O_n_elim n H). +intros. +auto. +(*apply (inj_times_r m). +assumption.*) +qed. + +variant inj_times_r1:\forall n. O < n \to \forall p,q:nat.n*p = n*q \to p=q +\def lt_O_to_injective_times_r. + +theorem injective_times_l: \forall n:nat.injective nat nat (\lambda m:nat.m*(S n)). +simplify. +intros. +auto. +(*apply (inj_times_r n x y). +rewrite < sym_times. +rewrite < (sym_times y). +assumption.*) +qed. + +variant inj_times_l : \forall n,p,q:nat. p*(S n) = q*(S n) \to p=q \def +injective_times_l. + +theorem lt_O_to_injective_times_l: \forall n:nat. O < n \to injective nat nat (\lambda m:nat.m*n). +simplify. +intros 4. +apply (lt_O_n_elim n H). +intros. +auto. +(*apply (inj_times_l m). +assumption.*) +qed. + +variant inj_times_l1:\forall n. O < n \to \forall p,q:nat.p*n = q*n \to p=q +\def lt_O_to_injective_times_l. + +(* n_divides computes the pair (div,mod) *) + +(* p is just an upper bound, acc is an accumulator *) +let rec n_divides_aux p n m acc \def + match n \mod m with + [ O \Rightarrow + match p with + [ O \Rightarrow pair nat nat acc n + | (S p) \Rightarrow n_divides_aux p (n / m) m (S acc)] + | (S a) \Rightarrow pair nat nat acc n]. + +(* n_divides n m = if m divides n q times, with remainder r *) +definition n_divides \def \lambda n,m:nat.n_divides_aux n n m O. diff --git a/matita/library_auto/nat/euler_theorem.ma b/matita/library_auto/nat/euler_theorem.ma new file mode 100644 index 000000000..2a8449324 --- /dev/null +++ b/matita/library_auto/nat/euler_theorem.ma @@ -0,0 +1,329 @@ +(**************************************************************************) +(* __ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/euler_theorem". + +include "nat/map_iter_p.ma". +include "nat/totient.ma". + +(* a reformulation of totient using card insted of count *) +lemma totient_card: \forall n. +totient n = card n (\lambda i.eqb (gcd i n) (S O)). +intro. +apply (nat_case n) +[ reflexivity +| intro. + apply (nat_case m) + [ reflexivity + | intro. + apply count_card1;auto + (*[ reflexivity + | auto.rewrite > gcd_n_n. + reflexivity + ]*) + ] +] +qed. + +theorem gcd_pi_p: \forall n,k. O < k \to k \le n \to +gcd n (pi_p (\lambda i.eqb (gcd i n) (S O)) k) = (S O). +intros 3. +elim H +[ rewrite > pi_p_S. + cut (eqb (gcd (S O) n) (S O) = true) + [ rewrite > Hcut. + auto + (*change with ((gcd n (S O)) = (S O)). + auto*) + | auto + (*apply eq_to_eqb_true.auto*) + ] +| rewrite > pi_p_S. + apply eqb_elim + [ intro. + change with + ((gcd n ((S n1)*(pi_p (\lambda i.eqb (gcd i n) (S O)) n1))) = (S O)). + apply eq_gcd_times_SO + [ auto + (*unfold. + apply le_S. + assumption*) + | apply lt_O_pi_p. + | auto + (*rewrite > sym_gcd. + assumption.*) + | apply H2. + auto + (*apply (trans_le ? (S n1)) + [ apply le_n_Sn + | assumption + ]*) + ] + | intro. + change with + (gcd n (pi_p (\lambda i.eqb (gcd i n) (S O)) n1) = (S O)). + apply H2. + auto + (*apply (trans_le ? (S n1)) + [ apply le_n_Sn + | assumption + ]*) + ] +] +qed. + +theorem congruent_map_iter_p_times:\forall f:nat \to nat. \forall a,n:nat. +O < a \to +congruent +(map_iter_p n (\lambda i.eqb (gcd i a) (S O)) (\lambda x.f x) (S O) times) +(map_iter_p n (\lambda i.eqb (gcd i a) (S O)) + (\lambda x.f x \mod a) (S O) times) a. +intros. +elim n +[ auto + (*rewrite > map_iter_p_O. + apply (congruent_n_n ? a)*) +| apply (eqb_elim (gcd (S n1) a) (S O)) + [ intro. + rewrite > map_iter_p_S_true + [ rewrite > map_iter_p_S_true + [ apply congruent_times + [ assumption + | auto + (*apply congruent_n_mod_n. + assumption*) + | (*NB qui auto non chiude il goal*) + assumption + ] + | auto + (*apply eq_to_eqb_true. + assumption*) + ] + | auto + (*apply eq_to_eqb_true. + assumption*) + ] + | intro. + rewrite > map_iter_p_S_false + [ rewrite > map_iter_p_S_false + [ (*BN qui auto non chiude il goal*) + assumption + | auto + (*apply not_eq_to_eqb_false. + assumption*) + ] + | auto + (*apply not_eq_to_eqb_false. + assumption*) + ] + ] +] +qed. + +theorem permut_p_mod: \forall a,n. S O < n \to O < a \to gcd a n = (S O) \to +permut_p (\lambda x:nat.a*x \mod n) (\lambda i:nat.eqb (gcd i n) (S O)) n. +intros. +lapply (lt_S_to_lt ? ? H) as H3. +unfold permut_p. +simplify. +intros. +split +[ split + [ auto + (*apply lt_to_le. + apply lt_mod_m_m. + assumption*) + | rewrite > sym_gcd. + rewrite > gcd_mod + [ apply eq_to_eqb_true. + rewrite > sym_gcd. + apply eq_gcd_times_SO + [ assumption + | apply (gcd_SO_to_lt_O i n H). + auto + (*apply eqb_true_to_eq. + assumption*) + | auto + (*rewrite > sym_gcd. + assumption*) + | auto + (*rewrite > sym_gcd. + apply eqb_true_to_eq. + assumption*) + ] + | assumption + ] + ] +| intros. + lapply (gcd_SO_to_lt_n ? ? H H4 (eqb_true_to_eq ? ? H5)) as H9. + lapply (gcd_SO_to_lt_n ? ? H H7 (eqb_true_to_eq ? ? H6)) as H10. + lapply (gcd_SO_to_lt_O ? ? H (eqb_true_to_eq ? ? H5)) as H11. + lapply (gcd_SO_to_lt_O ? ? H (eqb_true_to_eq ? ? H6)) as H12. + unfold Not. + intro. + apply H8. + apply (nat_compare_elim i j) + [ intro. + absurd (j < n) + [ assumption + | apply le_to_not_lt. + apply (trans_le ? (j -i)) + [ apply divides_to_le + [(*fattorizzare*) + auto (*qui auto e' efficace, ma impiega un tempo piuttosto alto a chiudere il goal corrente*) + (*apply (lt_plus_to_lt_l i). + simplify. + rewrite < (plus_minus_m_m) + [ assumption + | apply lt_to_le. + assumption + ]*) + | apply (gcd_SO_to_divides_times_to_divides a) + [ assumption + | auto + (*rewrite > sym_gcd. + assumption*) + | apply mod_O_to_divides + [ assumption + | rewrite > distr_times_minus. + auto + ] + ] + ] + | auto + ] + ] + | auto + (*intro. + assumption*) + | intro. + absurd (i < n) + [ assumption + | apply le_to_not_lt. + apply (trans_le ? (i -j)) + [ apply divides_to_le + [(*fattorizzare*) + auto (*qui auto e' efficace, ma impiega un tempo piuttosto alto per concludere il goal attuale*) + (*apply (lt_plus_to_lt_l j). + simplify. + rewrite < (plus_minus_m_m) + [ assumption + | apply lt_to_le. + assumption + ]*) + | apply (gcd_SO_to_divides_times_to_divides a) + [ assumption + | auto + (*rewrite > sym_gcd. + assumption*) + | apply mod_O_to_divides + [ assumption + | rewrite > distr_times_minus. + auto + ] + ] + ] + | auto + ] + ] + ] +] +qed. + +theorem congruent_exp_totient_SO: \forall n,a:nat. (S O) < n \to +gcd a n = (S O) \to congruent (exp a (totient n)) (S O) n. +intros. +cut (O < a) +[ apply divides_to_congruent + [ auto + (*apply (trans_lt ? (S O)). + apply lt_O_S. + assumption*) + | auto + (*change with (O < exp a (totient n)). + apply lt_O_exp. + assumption*) + | apply (gcd_SO_to_divides_times_to_divides (pi_p (\lambda i.eqb (gcd i n) (S O)) n)) + [ auto + (*apply (trans_lt ? (S O)). + apply lt_O_S. + assumption*) + | auto + (*apply gcd_pi_p + [ apply (trans_lt ? (S O)). + apply lt_O_S. + assumption + | apply le_n + ]*) + | rewrite < sym_times. + rewrite > times_minus_l. + rewrite > (sym_times (S O)). + rewrite < times_n_SO. + rewrite > totient_card. + rewrite > a_times_pi_p. + apply congruent_to_divides + [ auto + (*apply (trans_lt ? (S O)). + apply lt_O_S. + assumption*) + | apply (transitive_congruent n ? + (map_iter_p n (\lambda i.eqb (gcd i n) (S O)) (\lambda x.a*x \mod n) (S O) times)) + [ auto + (*apply (congruent_map_iter_p_times ? n n). + apply (trans_lt ? (S O)) + [ apply lt_O_S + | assumption + ]*) + | unfold pi_p. + cut ( (map_iter_p n (\lambda i:nat.eqb (gcd i n) (S O)) (\lambda n:nat.n) (S O) times) + = (map_iter_p n (\lambda i:nat.eqb (gcd i n) (S O)) (\lambda x:nat.a*x\mod n) (S O) times)) + [ rewrite < Hcut1. + apply congruent_n_n + | apply (eq_map_iter_p_permut ? ? ? ? ? (λm.m)) + [ apply assoc_times + | apply sym_times + | apply (permut_p_mod ? ? H Hcut H1) + | simplify. + apply not_eq_to_eqb_false. + unfold. + intro. + auto + (*apply (lt_to_not_eq (S O) n) + [ assumption + | apply sym_eq. + assumption + ]*) + ] + ] + ] + ] + ] + ] +| elim (le_to_or_lt_eq O a (le_O_n a));auto + (*[ assumption + | auto.absurd (gcd a n = S O) + [ assumption + | rewrite < H2. + simplify. + unfold.intro. + apply (lt_to_not_eq (S O) n) + [ assumption + | apply sym_eq. + assumption + ] + ] + ]*) +] +qed. + \ No newline at end of file diff --git a/matita/library_auto/nat/exp.ma b/matita/library_auto/nat/exp.ma new file mode 100644 index 000000000..55352d046 --- /dev/null +++ b/matita/library_auto/nat/exp.ma @@ -0,0 +1,154 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/exp". + +include "nat/div_and_mod.ma". + +let rec exp n m on m\def + match m with + [ O \Rightarrow (S O) + | (S p) \Rightarrow (times n (exp n p)) ]. + +interpretation "natural exponent" 'exp a b = (cic:/matita/nat/exp/exp.con a b). + +theorem exp_plus_times : \forall n,p,q:nat. +n \sup (p + q) = (n \sup p) * (n \sup q). +intros. +elim p;simplify;auto. +(*[ rewrite < plus_n_O. + reflexivity +| rewrite > H. + symmetry. + apply assoc_times +]*) +qed. + +theorem exp_n_O : \forall n:nat. S O = n \sup O. +intro. +auto. +(*simplify. +reflexivity.*) +qed. + +theorem exp_n_SO : \forall n:nat. n = n \sup (S O). +intro. +auto. +(*simplify. +rewrite < times_n_SO. +reflexivity.*) +qed. + +theorem exp_exp_times : \forall n,p,q:nat. +(n \sup p) \sup q = n \sup (p * q). +intros. +elim q;simplify +[ auto. + (*rewrite < times_n_O. + simplify. + reflexivity*) +| rewrite > H. + rewrite < exp_plus_times. + auto + (*rewrite < times_n_Sm. + reflexivity*) +] +qed. + +theorem lt_O_exp: \forall n,m:nat. O < n \to O < n \sup m. +intros. +elim m;simplify;auto. + (*unfold lt +[ apply le_n +| rewrite > times_n_SO. + apply le_times;assumption +]*) +qed. + +theorem lt_m_exp_nm: \forall n,m:nat. (S O) < n \to m < n \sup m. +intros. +elim m;simplify;unfold lt; +[ apply le_n. +| apply (trans_le ? ((S(S O))*(S n1))) + [ simplify. + rewrite < plus_n_Sm. + apply le_S_S. + auto + (*apply le_S_S. + rewrite < sym_plus. + apply le_plus_n*) + | auto + (*apply le_times;assumption*) + ] +] +qed. + +theorem exp_to_eq_O: \forall n,m:nat. (S O) < n +\to n \sup m = (S O) \to m = O. +intros. +apply antisym_le +[ apply le_S_S_to_le. + rewrite < H1. + auto + (*change with (m < n \sup m). + apply lt_m_exp_nm. + assumption*) +| apply le_O_n +] +qed. + +theorem injective_exp_r: \forall n:nat. (S O) < n \to +injective nat nat (\lambda m:nat. n \sup m). +simplify. +intros 4. +apply (nat_elim2 (\lambda x,y.n \sup x = n \sup y \to x = y)) +[ intros. + auto + (*apply sym_eq. + apply (exp_to_eq_O n) + [ assumption + | rewrite < H1. + reflexivity + ]*) +| intros. + apply (exp_to_eq_O n);assumption +| intros. + apply eq_f. + apply H1. + (* esprimere inj_times senza S *) + cut (\forall a,b:nat.O < n \to n*a=n*b \to a=b) + [ apply Hcut + [ auto + (*simplify. + unfold lt. + apply le_S_S_to_le. + apply le_S. + assumption*) + | (*NB qui auto non chiude il goal, chiuso invece chiamando solo la tattica assumption*) + assumption + ] + | intros 2. + apply (nat_case n);intros;auto + (*[ apply False_ind. + apply (not_le_Sn_O O H3) + | apply (inj_times_r m1). + assumption + ]*) + ] +] +qed. + +variant inj_exp_r: \forall p:nat. (S O) < p \to \forall n,m:nat. +p \sup n = p \sup m \to n = m \def +injective_exp_r. diff --git a/matita/library_auto/nat/factorial.ma b/matita/library_auto/nat/factorial.ma new file mode 100644 index 000000000..2c77ca5b5 --- /dev/null +++ b/matita/library_auto/nat/factorial.ma @@ -0,0 +1,105 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/factorial". + +include "nat/le_arith.ma". + +let rec fact n \def + match n with + [ O \Rightarrow (S O) + | (S m) \Rightarrow (S m)*(fact m)]. + +interpretation "factorial" 'fact n = (cic:/matita/nat/factorial/fact.con n). + +theorem le_SO_fact : \forall n. (S O) \le n!. +intro. +elim n +[ auto + (*simplify. + apply le_n*) +| change with ((S O) \le (S n1)*n1!). + auto + (*apply (trans_le ? ((S n1)*(S O))) + [ simplify. + apply le_S_S. + apply le_O_n + | apply le_times_r. + assumption + ]*) +] +qed. + +theorem le_SSO_fact : \forall n. (S O) < n \to (S(S O)) \le n!. +intro. +apply (nat_case n) +[ intro. + auto + (*apply False_ind. + apply (not_le_Sn_O (S O) H).*) +| intros. + change with ((S (S O)) \le (S m)*m!). + apply (trans_le ? ((S(S O))*(S O)));auto + (*[ apply le_n + | apply le_times + [ exact H + | apply le_SO_fact + ] + ]*) +] +qed. + +theorem le_n_fact_n: \forall n. n \le n!. +intro. +elim n +[ apply le_O_n +| change with (S n1 \le (S n1)*n1!). + apply (trans_le ? ((S n1)*(S O)));auto + (*[ rewrite < times_n_SO. + apply le_n + | apply le_times. + apply le_n. + apply le_SO_fact + ]*) +] +qed. + +theorem lt_n_fact_n: \forall n. (S(S O)) < n \to n < n!. +intro. +apply (nat_case n) +[ intro. + auto + (*apply False_ind. + apply (not_le_Sn_O (S(S O)) H)*) +| intros. + change with ((S m) < (S m)*m!). + apply (lt_to_le_to_lt ? ((S m)*(S (S O)))) + [ rewrite < sym_times. + simplify. + unfold lt. + apply le_S_S. + auto + (*rewrite < plus_n_O. + apply le_plus_n*) + | apply le_times_r. + auto + (*apply le_SSO_fact. + simplify. + unfold lt. + apply le_S_S_to_le. + exact H*) + ] +] +qed. + diff --git a/matita/library_auto/nat/factorization.ma b/matita/library_auto/nat/factorization.ma new file mode 100644 index 000000000..6ee698849 --- /dev/null +++ b/matita/library_auto/nat/factorization.ma @@ -0,0 +1,973 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/factorization". + +include "nat/ord.ma". +include "nat/gcd.ma". +include "nat/nth_prime.ma". + +(* the following factorization algorithm looks for the largest prime + factor. *) +definition max_prime_factor \def \lambda n:nat. +(max n (\lambda p:nat.eqb (n \mod (nth_prime p)) O)). + +(* max_prime_factor is indeed a factor *) +theorem divides_max_prime_factor_n: + \forall n:nat. (S O) < n + \to nth_prime (max_prime_factor n) \divides n. +intros. +apply divides_b_true_to_divides +[ apply lt_O_nth_prime_n +| apply (f_max_true (\lambda p:nat.eqb (n \mod (nth_prime p)) O) n); + cut (\exists i. nth_prime i = smallest_factor n) + [ elim Hcut. + apply (ex_intro nat ? a). + split + [ apply (trans_le a (nth_prime a)) + [ auto + (*apply le_n_fn. + exact lt_nth_prime_n_nth_prime_Sn*) + | rewrite > H1. + apply le_smallest_factor_n + ] + | rewrite > H1. + (*CSC: simplify here does something nasty! *) + change with (divides_b (smallest_factor n) n = true). + apply divides_to_divides_b_true + [ auto + (*apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | apply lt_SO_smallest_factor. + assumption + ]*) + | auto + (*letin x \def le. + auto new*) + (* + apply divides_smallest_factor_n; + apply (trans_lt ? (S O)); + [ unfold lt; apply le_n; + | assumption; ] *) + ] + ] + | auto + (* + apply prime_to_nth_prime; + apply prime_smallest_factor_n; + assumption; *) + ] +] +qed. + +theorem divides_to_max_prime_factor : \forall n,m. (S O) < n \to O < m \to n \divides m \to +max_prime_factor n \le max_prime_factor m. +intros. +unfold max_prime_factor. +apply f_m_to_le_max +[ auto + (*apply (trans_le ? n) + [ apply le_max_n + | apply divides_to_le;assumption + ]*) +| change with (divides_b (nth_prime (max_prime_factor n)) m = true). + apply divides_to_divides_b_true + [ auto + (*cut (prime (nth_prime (max_prime_factor n))) + [ apply lt_O_nth_prime_n + | apply prime_nth_prime + ]*) + | auto + (*cut (nth_prime (max_prime_factor n) \divides n) + [ auto + | auto + ] *) + (* + [ apply (transitive_divides ? n); + [ apply divides_max_prime_factor_n. + assumption. + | assumption. + ] + | apply divides_b_true_to_divides; + [ apply lt_O_nth_prime_n. + | apply divides_to_divides_b_true; + [ apply lt_O_nth_prime_n. + | apply divides_max_prime_factor_n. + assumption. + ] + ] + ] + *) + ] +] +qed. + +theorem p_ord_to_lt_max_prime_factor: \forall n,p,q,r. O < n \to +p = max_prime_factor n \to +(pair nat nat q r) = p_ord n (nth_prime p) \to +(S O) < r \to max_prime_factor r < p. +intros. +rewrite > H1. +cut (max_prime_factor r \lt max_prime_factor n \lor + max_prime_factor r = max_prime_factor n) +[ elim Hcut + [ assumption + | absurd (nth_prime (max_prime_factor n) \divides r) + [ rewrite < H4. + auto + (*apply divides_max_prime_factor_n. + assumption*) + | unfold Not. + intro. + cut (r \mod (nth_prime (max_prime_factor n)) \neq O) + [ auto + (*unfold Not in Hcut1. + auto new*) + (* + apply Hcut1.apply divides_to_mod_O; + [ apply lt_O_nth_prime_n. + | assumption. + ] + *) + | letin z \def le. + cut(pair nat nat q r=p_ord_aux n n (nth_prime (max_prime_factor n))); + [ 2: rewrite < H1. + assumption + | letin x \def le. + auto width = 4 new + ] + (* CERCA COME MAI le_n non lo applica se lo trova come Const e non Rel *) + ] + (* + apply (p_ord_aux_to_not_mod_O n n ? q r); + [ apply lt_SO_nth_prime_n. + | assumption. + | apply le_n. + | rewrite < H1.assumption. + ] + ]. + *) + ] + ] +| apply (le_to_or_lt_eq (max_prime_factor r) (max_prime_factor n)). + apply divides_to_max_prime_factor + [ assumption + | assumption + | apply (witness r n ((nth_prime p) \sup q)). + rewrite < sym_times. + apply (p_ord_aux_to_exp n n ? q r) + [ apply lt_O_nth_prime_n + | assumption + ] + ] +] +qed. + +theorem p_ord_to_lt_max_prime_factor1: \forall n,p,q,r. O < n \to +max_prime_factor n \le p \to +(pair nat nat q r) = p_ord n (nth_prime p) \to +(S O) < r \to max_prime_factor r < p. +intros. +cut (max_prime_factor n < p \lor max_prime_factor n = p) +[ elim Hcut + [ apply (le_to_lt_to_lt ? (max_prime_factor n)) + [ apply divides_to_max_prime_factor + [ assumption + | assumption + | apply (witness r n ((nth_prime p) \sup q)). + rewrite > sym_times. + (*qui auto non chiude il goal*) + apply (p_ord_aux_to_exp n n) + [ apply lt_O_nth_prime_n. + | assumption + ] + ] + | assumption + ] + | apply (p_ord_to_lt_max_prime_factor n ? q);auto + (*[ assumption + | apply sym_eq. + assumption + | assumption + | assumption + ]*) + ] +| apply (le_to_or_lt_eq ? p H1) +] +qed. + +(* datatypes and functions *) + +inductive nat_fact : Set \def + nf_last : nat \to nat_fact + | nf_cons : nat \to nat_fact \to nat_fact. + +inductive nat_fact_all : Set \def + nfa_zero : nat_fact_all + | nfa_one : nat_fact_all + | nfa_proper : nat_fact \to nat_fact_all. + +let rec factorize_aux p n acc \def + match p with + [ O \Rightarrow acc + | (S p1) \Rightarrow + match p_ord n (nth_prime p1) with + [ (pair q r) \Rightarrow + factorize_aux p1 r (nf_cons q acc)]]. + +definition factorize : nat \to nat_fact_all \def \lambda n:nat. + match n with + [ O \Rightarrow nfa_zero + | (S n1) \Rightarrow + match n1 with + [ O \Rightarrow nfa_one + | (S n2) \Rightarrow + let p \def (max (S(S n2)) (\lambda p:nat.eqb ((S(S n2)) \mod (nth_prime p)) O)) in + match p_ord (S(S n2)) (nth_prime p) with + [ (pair q r) \Rightarrow + nfa_proper (factorize_aux p r (nf_last (pred q)))]]]. + +let rec defactorize_aux f i \def + match f with + [ (nf_last n) \Rightarrow (nth_prime i) \sup (S n) + | (nf_cons n g) \Rightarrow + (nth_prime i) \sup n *(defactorize_aux g (S i))]. + +definition defactorize : nat_fact_all \to nat \def +\lambda f : nat_fact_all. +match f with +[ nfa_zero \Rightarrow O +| nfa_one \Rightarrow (S O) +| (nfa_proper g) \Rightarrow defactorize_aux g O]. + +theorem lt_O_defactorize_aux: + \forall f:nat_fact. + \forall i:nat. + O < defactorize_aux f i. +intro. +elim f +[1,2: + simplify; + unfold lt; + rewrite > times_n_SO;auto + (*apply le_times + [ change with (O < nth_prime i). + apply lt_O_nth_prime_n + |2,3: + change with (O < exp (nth_prime i) n); + apply lt_O_exp; + apply lt_O_nth_prime_n + | change with (O < defactorize_aux n1 (S i)). + apply H + ] *) +] +qed. + +theorem lt_SO_defactorize_aux: \forall f:nat_fact.\forall i:nat. +S O < defactorize_aux f i. +intro. +elim f +[ simplify. + unfold lt. + rewrite > times_n_SO. + auto + (*apply le_times + [ change with (S O < nth_prime i). + apply lt_SO_nth_prime_n + | change with (O < exp (nth_prime i) n). + apply lt_O_exp. + apply lt_O_nth_prime_n + ]*) +| simplify. + unfold lt. + rewrite > times_n_SO. + rewrite > sym_times. + auto + (*apply le_times + [ change with (O < exp (nth_prime i) n). + apply lt_O_exp. + apply lt_O_nth_prime_n + | change with (S O < defactorize_aux n1 (S i)). + apply H + ]*) +] +qed. + +theorem defactorize_aux_factorize_aux : +\forall p,n:nat.\forall acc:nat_fact.O < n \to +((n=(S O) \land p=O) \lor max_prime_factor n < p) \to +defactorize_aux (factorize_aux p n acc) O = n*(defactorize_aux acc p). +intro. +elim p +[ simplify. + elim H1 + [ elim H2. + auto + (*rewrite > H3. + rewrite > sym_times. + apply times_n_SO*) + | apply False_ind. + apply (not_le_Sn_O (max_prime_factor n) H2) + ] +| simplify. + (* generalizing the goal: I guess there exists a better way *) + cut (\forall q,r.(pair nat nat q r) = (p_ord_aux n1 n1 (nth_prime n)) \to + defactorize_aux match (p_ord_aux n1 n1 (nth_prime n)) with + [(pair q r) \Rightarrow (factorize_aux n r (nf_cons q acc))] O = + n1*defactorize_aux acc (S n)) + [ (*invocando auto in questo punto, dopo circa 7 minuti l'esecuzione non era ancora terminata + ne' con un errore ne' chiudendo il goal + *) + apply (Hcut (fst ? ? (p_ord_aux n1 n1 (nth_prime n))) + (snd ? ? (p_ord_aux n1 n1 (nth_prime n)))). + auto + (*apply sym_eq.apply eq_pair_fst_snd*) + | intros. + rewrite < H3. + simplify. + cut (n1 = r * (nth_prime n) \sup q) + [ rewrite > H + [ simplify. + auto + (*rewrite < assoc_times. + rewrite < Hcut. + reflexivity.*) + | auto + (*cut (O < r \lor O = r) + [ elim Hcut1 + [ assumption + | absurd (n1 = O) + [ rewrite > Hcut. + rewrite < H4. + reflexivity + | unfold Not. + intro. + apply (not_le_Sn_O O). + rewrite < H5 in \vdash (? ? %). + assumption + ] + ] + | apply le_to_or_lt_eq. + apply le_O_n + ]*) + | cut ((S O) < r \lor (S O) \nlt r) + [ elim Hcut1 + [ right. + apply (p_ord_to_lt_max_prime_factor1 n1 ? q r) + [ assumption + | elim H2 + [ elim H5. + apply False_ind. + apply (not_eq_O_S n). + auto + (*apply sym_eq. + assumption*) + | auto + (*apply le_S_S_to_le. + exact H5*) + ] + | assumption + | assumption + ] + | cut (r=(S O)) + [ apply (nat_case n) + [ auto + (*left. + split + [ assumption + | reflexivity + ]*) + | intro. + right. + rewrite > Hcut2. + auto + (*simplify. + unfold lt. + apply le_S_S. + apply le_O_n*) + ] + | cut (r < (S O) ∨ r=(S O)) + [ elim Hcut2 + [ absurd (O=r) + [ auto + (*apply le_n_O_to_eq. + apply le_S_S_to_le. + exact H5*) + | unfold Not. + intro. + auto + (*cut (O=n1) + [ apply (not_le_Sn_O O). + rewrite > Hcut3 in ⊢ (? ? %). + assumption + | rewrite > Hcut. + rewrite < H6. + reflexivity + ]*) + ] + | assumption + ] + | auto + (*apply (le_to_or_lt_eq r (S O)). + apply not_lt_to_le. + assumption*) + ] + ] + ] + | apply (decidable_lt (S O) r) + ] + ] + | rewrite > sym_times. + apply (p_ord_aux_to_exp n1 n1) + [ apply lt_O_nth_prime_n + | assumption + ] + ] + ] +] +qed. + +theorem defactorize_factorize: \forall n:nat.defactorize (factorize n) = n. +intro. +apply (nat_case n) +[ reflexivity +| intro. + apply (nat_case m) + [ reflexivity + | intro.(*CSC: simplify here does something really nasty *) + change with + (let p \def (max (S(S m1)) (\lambda p:nat.eqb ((S(S m1)) \mod (nth_prime p)) O)) in + defactorize (match p_ord (S(S m1)) (nth_prime p) with + [ (pair q r) \Rightarrow + nfa_proper (factorize_aux p r (nf_last (pred q)))])=(S(S m1))). + intro. + (* generalizing the goal; find a better way *) + cut (\forall q,r.(pair nat nat q r) = (p_ord (S(S m1)) (nth_prime p)) \to + defactorize (match p_ord (S(S m1)) (nth_prime p) with + [ (pair q r) \Rightarrow + nfa_proper (factorize_aux p r (nf_last (pred q)))])=(S(S m1))) + [ (*invocando auto qui, dopo circa 300 secondi non si ottiene alcun risultato*) + apply (Hcut (fst ? ? (p_ord (S(S m1)) (nth_prime p))) + (snd ? ? (p_ord (S(S m1)) (nth_prime p)))). + auto + (*apply sym_eq. + apply eq_pair_fst_snd*) + | intros. + rewrite < H. + simplify. + cut ((S(S m1)) = (nth_prime p) \sup q *r) + [ cut (O defactorize_aux_factorize_aux + [ (*CSC: simplify here does something really nasty *) + change with (r*(nth_prime p) \sup (S (pred q)) = (S(S m1))). + cut ((S (pred q)) = q) + [ (*invocando auto qui, dopo circa 300 secondi non si ottiene ancora alcun risultato*) + rewrite > Hcut2. + auto + (*rewrite > sym_times. + apply sym_eq. + apply (p_ord_aux_to_exp (S(S m1))) + [ apply lt_O_nth_prime_n + | assumption + ]*) + | (* O < q *) + apply sym_eq. + apply S_pred. + cut (O < q \lor O = q) + [ elim Hcut2 + [ assumption + | absurd (nth_prime p \divides S (S m1)) + [ apply (divides_max_prime_factor_n (S (S m1))). + auto + (*unfold lt. + apply le_S_S. + apply le_S_S. + apply le_O_n.*) + | cut ((S(S m1)) = r) + [ rewrite > Hcut3 in \vdash (? (? ? %)). + (*CSC: simplify here does something really nasty *) + change with (nth_prime p \divides r \to False). + intro. + apply (p_ord_aux_to_not_mod_O (S(S m1)) (S(S m1)) (nth_prime p) q r) [ apply lt_SO_nth_prime_n + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | apply le_n + | assumption + | (*invocando auto qui, dopo circa 300 secondi non si ottiene ancora alcun risultato*) + apply divides_to_mod_O + [ apply lt_O_nth_prime_n + | assumption + ] + ] + | rewrite > times_n_SO in \vdash (? ? ? %). + rewrite < sym_times. + rewrite > (exp_n_O (nth_prime p)). + rewrite > H1 in \vdash (? ? ? (? (? ? %) ?)). + assumption + ] + ] + ] + | auto + (*apply le_to_or_lt_eq. + apply le_O_n*) + ] + ] + | assumption + | (* e adesso l'ultimo goal. TASSI: che ora non e' piu' l'ultimo :P *) + cut ((S O) < r \lor S O \nlt r) + [ elim Hcut2 + [ right. + apply (p_ord_to_lt_max_prime_factor1 (S(S m1)) ? q r);auto + (*[ unfold lt. + apply le_S_S. + apply le_O_n + | apply le_n + | assumption + | assumption + ]*) + | cut (r=(S O)) + [ apply (nat_case p) + [ auto + (*left. + split + [ assumption + | reflexivity + ]*) + | intro. + right. + rewrite > Hcut3. + auto + (*simplify. + unfold lt. + apply le_S_S. + apply le_O_n*) + ] + | cut (r \lt (S O) \or r=(S O)) + [ elim Hcut3 + [ absurd (O=r);auto + (*[ apply le_n_O_to_eq. + apply le_S_S_to_le. + exact H2 + | unfold Not. + intro. + apply (not_le_Sn_O O). + rewrite > H3 in \vdash (? ? %). + assumption + ]*) + | assumption + ] + | auto + (*apply (le_to_or_lt_eq r (S O)). + apply not_lt_to_le. + assumption*) + ] + ] + ] + | apply (decidable_lt (S O) r) + ] + ] + | (* O < r *) + cut (O < r \lor O = r) + [ elim Hcut1 + [ assumption + | apply False_ind. + apply (not_eq_O_S (S m1)). + rewrite > Hcut. + rewrite < H1. + auto + (*rewrite < times_n_O. + reflexivity*) + ] + | auto + (*apply le_to_or_lt_eq. + apply le_O_n*) + ] + ] + | (* prova del cut *) + goal 20. + apply (p_ord_aux_to_exp (S(S m1)));auto + (*[ apply lt_O_nth_prime_n + | assumption + ]*) + (* fine prova cut *) + ] + ] + ] +] +qed. + +let rec max_p f \def +match f with +[ (nf_last n) \Rightarrow O +| (nf_cons n g) \Rightarrow S (max_p g)]. + +let rec max_p_exponent f \def +match f with +[ (nf_last n) \Rightarrow n +| (nf_cons n g) \Rightarrow max_p_exponent g]. + +theorem divides_max_p_defactorize: \forall f:nat_fact.\forall i:nat. +nth_prime ((max_p f)+i) \divides defactorize_aux f i. +intro. +elim f +[ simplify. + auto + (*apply (witness ? ? ((nth_prime i) \sup n)). + reflexivity*) +| change with + (nth_prime (S(max_p n1)+i) \divides + (nth_prime i) \sup n *(defactorize_aux n1 (S i))). + elim (H (S i)). + rewrite > H1. + rewrite < sym_times. + rewrite > assoc_times. + auto + (*rewrite < plus_n_Sm. + apply (witness ? ? (n2* (nth_prime i) \sup n)). + reflexivity*) +] +qed. + +theorem divides_exp_to_divides: +\forall p,n,m:nat. prime p \to +p \divides n \sup m \to p \divides n. +intros 3. +elim m +[ simplify in H1. + auto + (*apply (transitive_divides p (S O)) + [ assumption + | apply divides_SO_n + ]*) +| cut (p \divides n \lor p \divides n \sup n1) + [ elim Hcut + [ assumption + | auto + (*apply H;assumption*) + ] + | auto + (*apply divides_times_to_divides + [ assumption + | exact H2 + ]*) + ] +] +qed. + +theorem divides_exp_to_eq: +\forall p,q,m:nat. prime p \to prime q \to +p \divides q \sup m \to p = q. +intros. +unfold prime in H1. +elim H1. +apply H4 +[ apply (divides_exp_to_divides p q m);assumption +| (*invocando auto in questo punto, dopo piu' di 8 minuti la computazione non + * era ancora terminata. + *) + unfold prime in H. + (*invocando auto anche in questo punto, dopo piu' di 10 minuti la computazione + * non era ancora terminata. + *) + elim H. + assumption +] +qed. + +theorem not_divides_defactorize_aux: \forall f:nat_fact. \forall i,j:nat. +i < j \to nth_prime i \ndivides defactorize_aux f j. +intro. +elim f +[ change with + (nth_prime i \divides (nth_prime j) \sup (S n) \to False). + intro. + absurd ((nth_prime i) = (nth_prime j)) + [ apply (divides_exp_to_eq ? ? (S n));auto + (*[ apply prime_nth_prime + | apply prime_nth_prime + | assumption + ]*) + | unfold Not. + intro. + cut (i = j) + [ apply (not_le_Sn_n i). + rewrite > Hcut in \vdash (? ? %). + assumption + | apply (injective_nth_prime ? ? H2) + ] + ] +| unfold Not. + simplify. + intro. + cut (nth_prime i \divides (nth_prime j) \sup n + \lor nth_prime i \divides defactorize_aux n1 (S j)) + [ elim Hcut + [ absurd ((nth_prime i) = (nth_prime j)) + [ apply (divides_exp_to_eq ? ? n);auto + (*[ apply prime_nth_prime + | apply prime_nth_prime + | assumption + ]*) + | unfold Not. + intro. + cut (i = j) + [ apply (not_le_Sn_n i). + rewrite > Hcut1 in \vdash (? ? %). + assumption + | apply (injective_nth_prime ? ? H4) + ] + ] + | apply (H i (S j)) + [ auto + (*apply (trans_lt ? j) + [ assumption + | unfold lt. + apply le_n + ]*) + | assumption + ] + ] + | auto + (*apply divides_times_to_divides. + apply prime_nth_prime. + assumption*) + ] +] +qed. + +lemma not_eq_nf_last_nf_cons: \forall g:nat_fact.\forall n,m,i:nat. +\lnot (defactorize_aux (nf_last n) i= defactorize_aux (nf_cons m g) i). +intros. +change with +(exp (nth_prime i) (S n) = defactorize_aux (nf_cons m g) i \to False). +intro. +cut (S(max_p g)+i= i) +[ apply (not_le_Sn_n i). + rewrite < Hcut in \vdash (? ? %). (*chiamando auto qui da uno strano errore "di tipo"*) + simplify. + auto + (*apply le_S_S. + apply le_plus_n*) +| apply injective_nth_prime. + apply (divides_exp_to_eq ? ? (S n)) + [ apply prime_nth_prime + | apply prime_nth_prime + | rewrite > H. + change with (divides (nth_prime ((max_p (nf_cons m g))+i)) + (defactorize_aux (nf_cons m g) i)). + apply divides_max_p_defactorize + ] +] +qed. + +lemma not_eq_nf_cons_O_nf_cons: \forall f,g:nat_fact.\forall n,i:nat. +\lnot (defactorize_aux (nf_cons O f) i= defactorize_aux (nf_cons (S n) g) i). +intros. +simplify. +unfold Not. +rewrite < plus_n_O. +intro. +apply (not_divides_defactorize_aux f i (S i) ?) +[ auto + (*unfold lt. + apply le_n*) +| auto + (*rewrite > H. + rewrite > assoc_times. + apply (witness ? ? ((exp (nth_prime i) n)*(defactorize_aux g (S i)))). + reflexivity*) +] +qed. + +theorem eq_defactorize_aux_to_eq: \forall f,g:nat_fact.\forall i:nat. +defactorize_aux f i = defactorize_aux g i \to f = g. +intro. +elim f +[ generalize in match H. + elim g + [ apply eq_f. + apply inj_S. + apply (inj_exp_r (nth_prime i)) + [ apply lt_SO_nth_prime_n + | (*qui auto non conclude il goal attivo*) + assumption + ] + | apply False_ind. + (*auto chiamato qui NON conclude il goal attivo*) + apply (not_eq_nf_last_nf_cons n2 n n1 i H2) + ] +| generalize in match H1. + elim g + [ apply False_ind. + apply (not_eq_nf_last_nf_cons n1 n2 n i). + auto + (*apply sym_eq. + assumption*) + | simplify in H3. + generalize in match H3. + apply (nat_elim2 (\lambda n,n2. + ((nth_prime i) \sup n)*(defactorize_aux n1 (S i)) = + ((nth_prime i) \sup n2)*(defactorize_aux n3 (S i)) \to + nf_cons n n1 = nf_cons n2 n3)) + [ intro. + elim n4 + [ auto + (*apply eq_f. + apply (H n3 (S i)) + simplify in H4. + rewrite > plus_n_O. + rewrite > (plus_n_O (defactorize_aux n3 (S i))). + assumption*) + | apply False_ind. + apply (not_eq_nf_cons_O_nf_cons n1 n3 n5 i). + (*auto chiamato qui NON chiude il goal attivo*) + assumption + ] + | intros. + apply False_ind. + apply (not_eq_nf_cons_O_nf_cons n3 n1 n4 i). + apply sym_eq. + (*auto chiamato qui non chiude il goal*) + assumption + | intros. + cut (nf_cons n4 n1 = nf_cons m n3) + [ cut (n4=m) + [ cut (n1=n3) + [ auto + (*rewrite > Hcut1. + rewrite > Hcut2. + reflexivity*) + | change with + (match nf_cons n4 n1 with + [ (nf_last m) \Rightarrow n1 + | (nf_cons m g) \Rightarrow g ] = n3). + rewrite > Hcut. + auto + (*simplify. + reflexivity*) + ] + | change with + (match nf_cons n4 n1 with + [ (nf_last m) \Rightarrow m + | (nf_cons m g) \Rightarrow m ] = m). + (*invocando auto qui, dopo circa 8 minuti la computazione non era ancora terminata*) + rewrite > Hcut. + auto + (*simplify. + reflexivity*) + ] + | apply H4. + simplify in H5. + apply (inj_times_r1 (nth_prime i)) + [ apply lt_O_nth_prime_n + | rewrite < assoc_times. + rewrite < assoc_times. + assumption + ] + ] + ] + ] +] +qed. + +theorem injective_defactorize_aux: \forall i:nat. +injective nat_fact nat (\lambda f.defactorize_aux f i). +simplify. +intros. +apply (eq_defactorize_aux_to_eq x y i H). +qed. + +theorem injective_defactorize: +injective nat_fact_all nat defactorize. +unfold injective. +change with (\forall f,g.defactorize f = defactorize g \to f=g). +intro. +elim f +[ generalize in match H. + elim g + [ (* zero - zero *) + reflexivity + | (* zero - one *) + simplify in H1. + apply False_ind. + apply (not_eq_O_S O H1) + | (* zero - proper *) + simplify in H1. + apply False_ind. + apply (not_le_Sn_n O). + rewrite > H1 in \vdash (? ? %). + auto + (*change with (O < defactorize_aux n O). + apply lt_O_defactorize_aux*) + ] +| generalize in match H. + elim g + [ (* one - zero *) + simplify in H1. + apply False_ind. + auto + (*apply (not_eq_O_S O). + apply sym_eq. + assumption*) + | (* one - one *) + reflexivity + | (* one - proper *) + simplify in H1. + apply False_ind. + apply (not_le_Sn_n (S O)). + rewrite > H1 in \vdash (? ? %). + auto + (*change with ((S O) < defactorize_aux n O). + apply lt_SO_defactorize_aux*) + ] +| generalize in match H. + elim g + [ (* proper - zero *) + simplify in H1. + apply False_ind. + apply (not_le_Sn_n O). + rewrite < H1 in \vdash (? ? %). + auto + (*change with (O < defactorize_aux n O). + apply lt_O_defactorize_aux.*) + | (* proper - one *) + simplify in H1. + apply False_ind. + apply (not_le_Sn_n (S O)). + rewrite < H1 in \vdash (? ? %). + auto + (*change with ((S O) < defactorize_aux n O). + apply lt_SO_defactorize_aux.*) + | (* proper - proper *) + apply eq_f. + apply (injective_defactorize_aux O). + (*invocata qui la tattica auto NON chiude il goal, chiuso invece + *da exact H1 + *) + exact H1 + ] +] +qed. + +theorem factorize_defactorize: +\forall f,g: nat_fact_all. factorize (defactorize f) = f. +intros. +auto. +(*apply injective_defactorize. +apply defactorize_factorize. +*) +qed. diff --git a/matita/library_auto/nat/fermat_little_theorem.ma b/matita/library_auto/nat/fermat_little_theorem.ma new file mode 100644 index 000000000..579fbc768 --- /dev/null +++ b/matita/library_auto/nat/fermat_little_theorem.ma @@ -0,0 +1,463 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/fermat_little_theorem". + +include "nat/exp.ma". +include "nat/gcd.ma". +include "nat/permutation.ma". +include "nat/congruence.ma". + +theorem permut_S_mod: \forall n:nat. permut (S_mod (S n)) n. +intro. +unfold permut. +split +[ intros. + unfold S_mod. + auto + (*apply le_S_S_to_le. + change with ((S i) \mod (S n) < S n). + apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n*) +| unfold injn. + intros. + apply inj_S. + rewrite < (lt_to_eq_mod i (S n)) + [ rewrite < (lt_to_eq_mod j (S n)) + [ cut (i < n \lor i = n) + [ cut (j < n \lor j = n) + [ elim Hcut + [ elim Hcut1 + [ (* i < n, j< n *) + rewrite < mod_S + [ rewrite < mod_S + [ (*qui auto non chiude il goal, chiuso invece dalla tattica + * apply H2 + *) + apply H2 + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | rewrite > lt_to_eq_mod; + auto(*unfold lt;apply le_S_S;assumption*) + ] + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | rewrite > lt_to_eq_mod + [ auto + (*unfold lt. + apply le_S_S. + assumption*) + | auto + (*unfold lt. + apply le_S_S. + assumption*) + ] + ] + | (* i < n, j=n *) + unfold S_mod in H2. + simplify. + apply False_ind. + apply (not_eq_O_S (i \mod (S n))). + apply sym_eq. + rewrite < (mod_n_n (S n)) + [ rewrite < H4 in \vdash (? ? ? (? %?)). + rewrite < mod_S + [ assumption + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | rewrite > lt_to_eq_mod; + auto;(*unfold lt;apply le_S_S;assumption*) + ] + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + ] + ] + | (* i = n, j < n *) + elim Hcut1 + [ apply False_ind. + apply (not_eq_O_S (j \mod (S n))). + rewrite < (mod_n_n (S n)) + [ rewrite < H3 in \vdash (? ? (? %?) ?). + rewrite < mod_S + [ assumption + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | rewrite > lt_to_eq_mod; + auto(*unfold lt;apply le_S_S;assumption*) + ] + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + ] + |(* i = n, j= n*) + auto + (*rewrite > H3. + rewrite > H4. + reflexivity*) + ] + ] + | auto + (*apply le_to_or_lt_eq. + assumption*) + ] + | auto + (*apply le_to_or_lt_eq. + assumption*) + ] + | auto + (*unfold lt. + apply le_S_S. + assumption*) + ] + | auto + (*unfold lt. + apply le_S_S. + assumption*) + ] +] +qed. + +(* +theorem eq_fact_pi: \forall n,m:nat. n < m \to n! = pi n (S_mod m). +intro.elim n. +simplify.reflexivity. +change with (S n1)*n1!=(S_mod m n1)*(pi n1 (S_mod m)). +unfold S_mod in \vdash (? ? ? (? % ?)). +rewrite > lt_to_eq_mod. +apply eq_f.apply H.apply (trans_lt ? (S n1)). +simplify. apply le_n.assumption.assumption. +qed. +*) + +theorem prime_to_not_divides_fact: \forall p:nat. prime p \to \forall n:nat. +n \lt p \to \not divides p n!. +intros 3. +elim n +[ unfold Not. + intros. + apply (lt_to_not_le (S O) p) + [ unfold prime in H. + elim H. + assumption + | auto + (*apply divides_to_le. + unfold lt. + apply le_n. + assumption*) + ] +| change with (divides p ((S n1)*n1!) \to False). + intro. + cut (divides p (S n1) \lor divides p n1!) + [ elim Hcut + [ apply (lt_to_not_le (S n1) p) + [ assumption + | auto + (*apply divides_to_le + [ unfold lt. + apply le_S_S. + apply le_O_n + | assumption + ]*) + ] + | auto + (*apply H1 + [ apply (trans_lt ? (S n1)) + [ unfold lt. + apply le_n + | assumption + ] + | assumption + ]*) + ] + | auto + (*apply divides_times_to_divides; + assumption*) + ] +] +qed. + +theorem permut_mod: \forall p,a:nat. prime p \to +\lnot divides p a\to permut (\lambda n.(mod (a*n) p)) (pred p). +unfold permut. +intros. +split +[ intros. + apply le_S_S_to_le. + apply (trans_le ? p) + [ change with (mod (a*i) p < p). + apply lt_mod_m_m. + unfold prime in H. + elim H. + auto + (*unfold lt. + apply (trans_le ? (S (S O))) + [ apply le_n_Sn + | assumption + ]*) + | rewrite < S_pred + [ apply le_n + | unfold prime in H. + elim H. + auto + (*apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ]*) + ] + ] +| unfold injn. + intros. + apply (nat_compare_elim i j) + [ (* i < j *) + intro. + absurd (j-i \lt p) + [ unfold lt. + rewrite > (S_pred p) + [ auto + (*apply le_S_S. + apply le_plus_to_minus. + apply (trans_le ? (pred p)) + [ assumption + | rewrite > sym_plus. + apply le_plus_n + ]*) + | auto + (*unfold prime in H. + elim H. + apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ]*) + ] + | apply (le_to_not_lt p (j-i)). + apply divides_to_le + [ auto + (*unfold lt. + apply le_SO_minus. + assumption*) + | cut (divides p a \lor divides p (j-i)) + [ elim Hcut + [ apply False_ind. + auto + (*apply H1. + assumption*) + | assumption + ] + | apply divides_times_to_divides + [ assumption + | rewrite > distr_times_minus. + apply eq_mod_to_divides + [ auto + (*unfold prime in H. + elim H. + apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ]*) + | auto + (*apply sym_eq. + apply H4*) + ] + ] + ] + ] + ] + |(* i = j *) + auto + (*intro. + assumption*) + | (* j < i *) + intro. + absurd (i-j \lt p) + [ unfold lt. + rewrite > (S_pred p) + [ auto + (*apply le_S_S. + apply le_plus_to_minus. + apply (trans_le ? (pred p)) + [ assumption + | rewrite > sym_plus. + apply le_plus_n + ]*) + | auto + (*unfold prime in H. + elim H. + apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ]*) + ] + | apply (le_to_not_lt p (i-j)). + apply divides_to_le + [ auto + (*unfold lt. + apply le_SO_minus. + assumption*) + | cut (divides p a \lor divides p (i-j)) + [ elim Hcut + [ apply False_ind. + auto + (*apply H1. + assumption*) + | assumption + ] + | apply divides_times_to_divides + [ assumption + | rewrite > distr_times_minus. + apply eq_mod_to_divides + [ auto + (*unfold prime in H. + elim H. + apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ]*) + | apply H4 + ] + ] + ] + ] + ] + ] +] +qed. + +theorem congruent_exp_pred_SO: \forall p,a:nat. prime p \to \lnot divides p a \to +congruent (exp a (pred p)) (S O) p. +intros. +cut (O < a) +[ cut (O < p) + [ cut (O < pred p) + [ apply divides_to_congruent + [ assumption + | auto + (*change with (O < exp a (pred p)). + apply lt_O_exp. + assumption*) + | cut (divides p (exp a (pred p)-(S O)) \lor divides p (pred p)!) + [ elim Hcut3 + [ assumption + | apply False_ind. + apply (prime_to_not_divides_fact p H (pred p)) + [ unfold lt. + auto + (*rewrite < (S_pred ? Hcut1). + apply le_n*) + | assumption + ] + ] + | apply divides_times_to_divides + [ assumption + | rewrite > times_minus_l. + rewrite > (sym_times (S O)). + rewrite < times_n_SO. + rewrite > (S_pred (pred p) Hcut2). + rewrite > eq_fact_pi. + rewrite > exp_pi_l. + apply congruent_to_divides + [ assumption + | apply (transitive_congruent p ? + (pi (pred (pred p)) (\lambda m. a*m \mod p) (S O))) + [ apply (congruent_pi (\lambda m. a*m)). + assumption + | cut (pi (pred(pred p)) (\lambda m.m) (S O) + = pi (pred(pred p)) (\lambda m.a*m \mod p) (S O)) + [ rewrite > Hcut3. + apply congruent_n_n + | rewrite < eq_map_iter_i_pi. + rewrite < eq_map_iter_i_pi. + apply (permut_to_eq_map_iter_i ? ? ? ? ? (λm.m)) + [ apply assoc_times + | (*NB qui auto non chiude il goal, chiuso invece dalla sola + ( tattica apply sys_times + *) + apply sym_times + | rewrite < plus_n_Sm. + rewrite < plus_n_O. + rewrite < (S_pred ? Hcut2). + auto + (*apply permut_mod + [ assumption + | assumption + ]*) + | intros. + cut (m=O) + [ auto + (*rewrite > Hcut3. + rewrite < times_n_O. + apply mod_O_n.*) + | auto + (*apply sym_eq. + apply le_n_O_to_eq. + apply le_S_S_to_le. + assumption*) + ] + ] + ] + ] + ] + ] + ] + ] + | unfold lt. + apply le_S_S_to_le. + rewrite < (S_pred ? Hcut1). + unfold prime in H. + elim H. + assumption + ] + | unfold prime in H. + elim H. + auto + (*apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ]*) + ] +| cut (O < a \lor O = a) + [ elim Hcut + [ assumption + | apply False_ind. + apply H1. + rewrite < H2. + auto + (*apply (witness ? ? O). + apply times_n_O*) + ] + | auto + (*apply le_to_or_lt_eq. + apply le_O_n*) + ] +] +qed. + diff --git a/matita/library_auto/nat/gcd.ma b/matita/library_auto/nat/gcd.ma new file mode 100644 index 000000000..7bab1da63 --- /dev/null +++ b/matita/library_auto/nat/gcd.ma @@ -0,0 +1,1124 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/gcd". + +include "nat/primes.ma". + +let rec gcd_aux p m n: nat \def +match divides_b n m with +[ true \Rightarrow n +| false \Rightarrow + match p with + [O \Rightarrow n + |(S q) \Rightarrow gcd_aux q n (m \mod n)]]. + +definition gcd : nat \to nat \to nat \def +\lambda n,m:nat. + match leb n m with + [ true \Rightarrow + match n with + [ O \Rightarrow m + | (S p) \Rightarrow gcd_aux (S p) m (S p) ] + | false \Rightarrow + match m with + [ O \Rightarrow n + | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]. + +theorem divides_mod: \forall p,m,n:nat. O < n \to p \divides m \to p \divides n \to +p \divides (m \mod n). +intros.elim H1.elim H2. +apply (witness ? ? (n2 - n1*(m / n))). +(*apply witness[|*) + rewrite > distr_times_minus. + rewrite < H3 in \vdash (? ? ? (? % ?)). + rewrite < assoc_times. + rewrite < H4 in \vdash (? ? ? (? ? (? % ?))). + apply sym_eq. + apply plus_to_minus. + rewrite > sym_times. + auto. + (*letin x \def div. + rewrite < (div_mod ? ? H). + reflexivity.*) +(*]*) +qed. + +theorem divides_mod_to_divides: \forall p,m,n:nat. O < n \to +p \divides (m \mod n) \to p \divides n \to p \divides m. +intros. +elim H1. +elim H2. +apply (witness p m ((n1*(m / n))+n2)). +rewrite > distr_times_plus. +rewrite < H3. +rewrite < assoc_times. +rewrite < H4. +rewrite < sym_times. +auto. +(*apply div_mod. +assumption.*) +qed. + + +theorem divides_gcd_aux_mn: \forall p,m,n. O < n \to n \le m \to n \le p \to +gcd_aux p m n \divides m \land gcd_aux p m n \divides n. +intro. +elim p +[ absurd (O < n);auto + (*[ assumption + | apply le_to_not_lt. + assumption + ]*) +| cut ((n1 \divides m) \lor (n1 \ndivides m)) + [ simplify. + elim Hcut + [ rewrite > divides_to_divides_b_true + [ simplify. + auto + (*split + [ assumption + | apply (witness n1 n1 (S O)). + apply times_n_SO + ]*) + | assumption + | assumption + ] + | rewrite > not_divides_to_divides_b_false + [ simplify. + cut (gcd_aux n n1 (m \mod n1) \divides n1 \land + gcd_aux n n1 (m \mod n1) \divides mod m n1) + [ elim Hcut1. + auto + (*split + [ apply (divides_mod_to_divides ? ? n1);assumption + | assumption + ]*) + | apply H + [ cut (O \lt m \mod n1 \lor O = mod m n1) + [ elim Hcut1 + [ assumption + | apply False_ind. + auto + (*apply H4. + apply mod_O_to_divides + [ assumption + | apply sym_eq. + assumption + ]*) + ] + | auto + (*apply le_to_or_lt_eq. + apply le_O_n*) + ] + | auto + (*apply lt_to_le. + apply lt_mod_m_m. + assumption*) + | apply le_S_S_to_le. + apply (trans_le ? n1);auto + (*[ auto.change with (m \mod n1 < n1). + apply lt_mod_m_m. + assumption + | assumption + ]*) + ] + ] + | assumption + | assumption + ] + ] + | auto + (*apply (decidable_divides n1 m). + assumption*) + ] +] +qed. + +theorem divides_gcd_nm: \forall n,m. +gcd n m \divides m \land gcd n m \divides n. +intros. +(*CSC: simplify simplifies too much because of a redex in gcd *) +change with +(match leb n m with + [ true \Rightarrow + match n with + [ O \Rightarrow m + | (S p) \Rightarrow gcd_aux (S p) m (S p) ] + | false \Rightarrow + match m with + [ O \Rightarrow n + | (S p) \Rightarrow gcd_aux (S p) n (S p) ] ] \divides m +\land +match leb n m with + [ true \Rightarrow + match n with + [ O \Rightarrow m + | (S p) \Rightarrow gcd_aux (S p) m (S p) ] + | false \Rightarrow + match m with + [ O \Rightarrow n + | (S p) \Rightarrow gcd_aux (S p) n (S p) ] ] \divides n). +apply (leb_elim n m) +[ apply (nat_case1 n) + [ simplify. + intros. + auto + (*split + [ apply (witness m m (S O)). + apply times_n_SO + | apply (witness m O O). + apply times_n_O + ]*) + | intros. + change with + (gcd_aux (S m1) m (S m1) \divides m + \land + gcd_aux (S m1) m (S m1) \divides (S m1)). + auto + (*apply divides_gcd_aux_mn + [ unfold lt. + apply le_S_S. + apply le_O_n + | assumption + | apply le_n + ]*) + ] +| simplify. + intro. + apply (nat_case1 m) + [ simplify. + intros. + auto + (*split + [ apply (witness n O O). + apply times_n_O + | apply (witness n n (S O)). + apply times_n_SO + ]*) + | intros. + change with + (gcd_aux (S m1) n (S m1) \divides (S m1) + \land + gcd_aux (S m1) n (S m1) \divides n). + cut (gcd_aux (S m1) n (S m1) \divides n + \land + gcd_aux (S m1) n (S m1) \divides S m1) + [ elim Hcut. + auto + (*split;assumption*) + | apply divides_gcd_aux_mn + [ auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | apply not_lt_to_le. + unfold Not. + unfold lt. + intro. + apply H. + rewrite > H1. + auto + (*apply (trans_le ? (S n)) + [ apply le_n_Sn + | assumption + ]*) + | apply le_n + ] + ] + ] +] +qed. + +theorem divides_gcd_n: \forall n,m. gcd n m \divides n. +intros. +exact (proj2 ? ? (divides_gcd_nm n m)). (*auto non termina la dimostrazione*) +qed. + +theorem divides_gcd_m: \forall n,m. gcd n m \divides m. +intros. +exact (proj1 ? ? (divides_gcd_nm n m)). (*auto non termina la dimostrazione*) +qed. + +theorem divides_gcd_aux: \forall p,m,n,d. O < n \to n \le m \to n \le p \to +d \divides m \to d \divides n \to d \divides gcd_aux p m n. +intro. +elim p +[ absurd (O < n);auto + (*[ assumption + | apply le_to_not_lt. + assumption + ]*) +| simplify. + cut (n1 \divides m \lor n1 \ndivides m) + [ elim Hcut. + rewrite > divides_to_divides_b_true;auto. + (*[ simplify. + assumption. + | assumption. + | assumption. + ]*) + rewrite > not_divides_to_divides_b_false + [ simplify. + apply H + [ cut (O \lt m \mod n1 \lor O = m \mod n1) + [ elim Hcut1 + [ assumption + | + absurd (n1 \divides m);auto + (*[ apply mod_O_to_divides + [ assumption. + | apply sym_eq.assumption. + ] + | assumption + ]*) + ] + | auto + (*apply le_to_or_lt_eq. + apply le_O_n*) + ] + | auto + (*apply lt_to_le. + apply lt_mod_m_m. + assumption*) + | apply le_S_S_to_le. + auto + (*apply (trans_le ? n1) + [ change with (m \mod n1 < n1). + apply lt_mod_m_m. + assumption + | assumption + ]*) + | assumption + | auto + (*apply divides_mod; + assumption*) + ] + | assumption + | assumption + ] + | auto + (*apply (decidable_divides n1 m). + assumption*) + ] +]qed. + +theorem divides_d_gcd: \forall m,n,d. +d \divides m \to d \divides n \to d \divides gcd n m. +intros. +(*CSC: here simplify simplifies too much because of a redex in gcd *) +change with +(d \divides +match leb n m with + [ true \Rightarrow + match n with + [ O \Rightarrow m + | (S p) \Rightarrow gcd_aux (S p) m (S p) ] + | false \Rightarrow + match m with + [ O \Rightarrow n + | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]). +apply (leb_elim n m) +[ apply (nat_case1 n) + [ simplify. + intros. + assumption + | intros. + change with (d \divides gcd_aux (S m1) m (S m1)). + apply divides_gcd_aux + [ auto + (*unfold lt. + apply le_S_S. + apply le_O_n.*) + | assumption. + | apply le_n. (*chiude il goal anche con auto*) + | assumption. + | rewrite < H2. + assumption + ] + ] +| apply (nat_case1 m) + [ simplify. + intros. + assumption + | intros. + change with (d \divides gcd_aux (S m1) n (S m1)). + apply divides_gcd_aux + [ auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | auto + (*apply lt_to_le. + apply not_le_to_lt. + assumption*) + | apply le_n (*chiude il goal anche con auto*) + | assumption + | rewrite < H2. + assumption + ] + ] +] +qed. + +theorem eq_minus_gcd_aux: \forall p,m,n.O < n \to n \le m \to n \le p \to +\exists a,b. a*n - b*m = gcd_aux p m n \lor b*m - a*n = gcd_aux p m n. +intro. +elim p +[ absurd (O < n);auto + (*[ assumption + | apply le_to_not_lt + assumption. + ]*) +| cut (O < m) + [ cut (n1 \divides m \lor n1 \ndivides m) + [ simplify. + elim Hcut1 + [ rewrite > divides_to_divides_b_true + [ simplify. + apply (ex_intro ? ? (S O)). + apply (ex_intro ? ? O). + auto + (*left. + simplify. + rewrite < plus_n_O. + apply sym_eq.apply minus_n_O*) + | assumption + | assumption + ] + | rewrite > not_divides_to_divides_b_false + [ change with + (\exists a,b. + a*n1 - b*m = gcd_aux n n1 (m \mod n1) + \lor + b*m - a*n1 = gcd_aux n n1 (m \mod n1)). + cut + (\exists a,b. + a*(m \mod n1) - b*n1= gcd_aux n n1 (m \mod n1) + \lor + b*n1 - a*(m \mod n1) = gcd_aux n n1 (m \mod n1)) + [ elim Hcut2. + elim H5. + elim H6 + [ (* first case *) + rewrite < H7. + apply (ex_intro ? ? (a1+a*(m / n1))). + apply (ex_intro ? ? a). + right. + rewrite < sym_plus. + rewrite < (sym_times n1). + rewrite > distr_times_plus. + rewrite > (sym_times n1). + rewrite > (sym_times n1). + rewrite > (div_mod m n1) in \vdash (? ? (? % ?) ?);auto + (*[ rewrite > assoc_times. + rewrite < sym_plus. + rewrite > distr_times_plus. + rewrite < eq_minus_minus_minus_plus. + rewrite < sym_plus.auto. + rewrite < plus_minus + [ rewrite < minus_n_n. + reflexivity + | apply le_n + ] + | assumption + ]*) + | (* second case *) + rewrite < H7. + apply (ex_intro ? ? (a1+a*(m / n1))). + apply (ex_intro ? ? a). + left. + (* clear Hcut2.clear H5.clear H6.clear H. *) + rewrite > sym_times. + rewrite > distr_times_plus. + rewrite > sym_times. + rewrite > (sym_times n1). + rewrite > (div_mod m n1) in \vdash (? ? (? ? %) ?) + [ rewrite > distr_times_plus. + rewrite > assoc_times. + rewrite < eq_minus_minus_minus_plus. + auto + (*rewrite < sym_plus. + rewrite < plus_minus + [ rewrite < minus_n_n. + reflexivity + | apply le_n + ]*) + | assumption + ] + ] + | apply (H n1 (m \mod n1)) + [ cut (O \lt m \mod n1 \lor O = m \mod n1) + [ elim Hcut2 + [ assumption + | absurd (n1 \divides m);auto + (*[ apply mod_O_to_divides + [ assumption + | symmetry. + assumption + ] + | assumption + ]*) + ] + | auto + (*apply le_to_or_lt_eq. + apply le_O_n*) + ] + | auto + (*apply lt_to_le. + apply lt_mod_m_m. + assumption*) + | apply le_S_S_to_le. + auto + (*apply (trans_le ? n1) + [ change with (m \mod n1 < n1). + apply lt_mod_m_m. + assumption + | assumption + ]*) + ] + ] + | assumption + | assumption + ] + ] + | auto + (*apply (decidable_divides n1 m). + assumption*) + ] + | auto + (*apply (lt_to_le_to_lt ? n1);assumption *) + ] +] +qed. + +theorem eq_minus_gcd: + \forall m,n.\exists a,b.a*n - b*m = (gcd n m) \lor b*m - a*n = (gcd n m). +intros. +unfold gcd. +apply (leb_elim n m) +[ apply (nat_case1 n) + [ simplify. + intros. + apply (ex_intro ? ? O). + apply (ex_intro ? ? (S O)). + auto + (*right.simplify. + rewrite < plus_n_O. + apply sym_eq. + apply minus_n_O*) + | intros. + change with + (\exists a,b. + a*(S m1) - b*m = (gcd_aux (S m1) m (S m1)) + \lor b*m - a*(S m1) = (gcd_aux (S m1) m (S m1))). + auto + (*apply eq_minus_gcd_aux + [ unfold lt. + apply le_S_S. + apply le_O_n + | assumption + | apply le_n + ]*) + ] +| apply (nat_case1 m) + [ simplify. + intros. + apply (ex_intro ? ? (S O)). + apply (ex_intro ? ? O). + auto + (*left.simplify. + rewrite < plus_n_O. + apply sym_eq. + apply minus_n_O*) + | intros. + change with + (\exists a,b. + a*n - b*(S m1) = (gcd_aux (S m1) n (S m1)) + \lor b*(S m1) - a*n = (gcd_aux (S m1) n (S m1))). + cut + (\exists a,b. + a*(S m1) - b*n = (gcd_aux (S m1) n (S m1)) + \lor + b*n - a*(S m1) = (gcd_aux (S m1) n (S m1))) + [ elim Hcut. + elim H2. + elim H3;apply (ex_intro ? ? a1);auto + (*[ apply (ex_intro ? ? a1). + apply (ex_intro ? ? a). + right. + assumption + | apply (ex_intro ? ? a1). + apply (ex_intro ? ? a). + left. + assumption + ]*) + | apply eq_minus_gcd_aux;auto + (*[ unfold lt. + apply le_S_S. + apply le_O_n + | auto.apply lt_to_le. + apply not_le_to_lt. + assumption + | apply le_n. + ]*) + ] + ] +] +qed. + +(* some properties of gcd *) + +theorem gcd_O_n: \forall n:nat. gcd O n = n. +auto. +(*intro.simplify.reflexivity.*) +qed. + +theorem gcd_O_to_eq_O:\forall m,n:nat. (gcd m n) = O \to +m = O \land n = O. +intros. +cut (O \divides n \land O \divides m) +[ elim Hcut. + auto + (*elim H2. + split + [ assumption + | elim H1. + assumption + ]*) +| rewrite < H. + apply divides_gcd_nm +] +qed. + +theorem lt_O_gcd:\forall m,n:nat. O < n \to O < gcd m n. +intros. +auto. +(*apply (nat_case1 (gcd m n)) +[ intros. + generalize in match (gcd_O_to_eq_O m n H1). + intros. + elim H2. + rewrite < H4 in \vdash (? ? %). + assumption +| intros. + unfold lt. + apply le_S_S. + apply le_O_n +]*) +qed. + +theorem gcd_n_n: \forall n.gcd n n = n. +intro. +auto. +(*elim n +[ reflexivity +| apply le_to_le_to_eq + [ apply divides_to_le + [ apply lt_O_S + | apply divides_gcd_n + ] + | apply divides_to_le + [ apply lt_O_gcd.apply lt_O_S + | apply divides_d_gcd + [ apply divides_n_n + | apply divides_n_n + ] + ] + ] +]*) +qed. + +theorem gcd_SO_to_lt_O: \forall i,n. (S O) < n \to gcd i n = (S O) \to +O < i. +intros. +elim (le_to_or_lt_eq ? ? (le_O_n i)) +[ assumption +| absurd ((gcd i n) = (S O)) + [ assumption + | rewrite < H2. + simplify. + unfold. + intro. + apply (lt_to_not_eq (S O) n H). + auto + (*apply sym_eq. + assumption*) + ] +] +qed. + +theorem gcd_SO_to_lt_n: \forall i,n. (S O) < n \to i \le n \to gcd i n = (S O) \to +i < n. +intros. +elim (le_to_or_lt_eq ? ? H1) + [assumption + |absurd ((gcd i n) = (S O)) + [assumption + |rewrite > H3. + rewrite > gcd_n_n. + unfold.intro. + apply (lt_to_not_eq (S O) n H). + apply sym_eq.assumption + ] + ] +qed. + +theorem gcd_n_times_nm: \forall n,m. O < m \to gcd n (n*m) = n. +intro.apply (nat_case n) + [intros.reflexivity + |intros. + apply le_to_le_to_eq + [apply divides_to_le + [apply lt_O_S|apply divides_gcd_n] + |apply divides_to_le + [apply lt_O_gcd.rewrite > (times_n_O O). + apply lt_times[apply lt_O_S|assumption] + |apply divides_d_gcd + [apply (witness ? ? m1).reflexivity + |apply divides_n_n + ] + ] + ] + ] +qed. + +theorem symmetric_gcd: symmetric nat gcd. +(*CSC: bug here: unfold symmetric does not work *) +change with +(\forall n,m:nat. gcd n m = gcd m n). +intros. +auto. +(*cut (O < (gcd n m) \lor O = (gcd n m)) +[ elim Hcut + [ cut (O < (gcd m n) \lor O = (gcd m n)) + [ elim Hcut1 + [ apply antisym_le + [ apply divides_to_le + [ assumption + | apply divides_d_gcd + [ apply divides_gcd_n + | apply divides_gcd_m + ] + ] + | apply divides_to_le + [ assumption + | apply divides_d_gcd + [ apply divides_gcd_n + | apply divides_gcd_m + ] + ] + ] + | rewrite < H1. + cut (m=O \land n=O) + [ elim Hcut2. + rewrite > H2. + rewrite > H3. + reflexivity + | apply gcd_O_to_eq_O. + apply sym_eq. + assumption + ] + ] + | apply le_to_or_lt_eq. + apply le_O_n + ] + | rewrite < H. + cut (n=O \land m=O) + [ elim Hcut1. + rewrite > H1. + rewrite > H2. + reflexivity + | apply gcd_O_to_eq_O.apply sym_eq. + assumption + ] + ] +| apply le_to_or_lt_eq. + apply le_O_n +]*) +qed. + +variant sym_gcd: \forall n,m:nat. gcd n m = gcd m n \def +symmetric_gcd. + +theorem le_gcd_times: \forall m,n,p:nat. O< p \to gcd m n \le gcd m (n*p). +intros. +apply (nat_case n) +[ apply le_n +| intro. + apply divides_to_le + [ apply lt_O_gcd. + auto + (*rewrite > (times_n_O O). + apply lt_times + [ auto.unfold lt. + apply le_S_S. + apply le_O_n + | assumption + ]*) + | apply divides_d_gcd;auto + (*[ apply (transitive_divides ? (S m1)) + [ apply divides_gcd_m + | apply (witness ? ? p). + reflexivity + ] + | apply divides_gcd_n + ]*) + ] +] +qed. + +theorem gcd_times_SO_to_gcd_SO: \forall m,n,p:nat. O < n \to O < p \to +gcd m (n*p) = (S O) \to gcd m n = (S O). +intros. +apply antisymmetric_le +[ rewrite < H2. + auto + (*apply le_gcd_times. + assumption*) +| auto + (*change with (O < gcd m n). + apply lt_O_gcd. + assumption*) +] +qed. + +(* for the "converse" of the previous result see the end of this development *) + +theorem eq_gcd_SO_to_not_divides: \forall n,m. (S O) < n \to +(gcd n m) = (S O) \to \lnot (divides n m). +intros.unfold.intro. +elim H2. +generalize in match H1. +rewrite > H3. +intro. +cut (O < n2) +[ elim (gcd_times_SO_to_gcd_SO n n n2 ? ? H4) + [ cut (gcd n (n*n2) = n);auto + (*[ auto.apply (lt_to_not_eq (S O) n) + [ assumption + | rewrite < H4. + assumption + ] + | apply gcd_n_times_nm. + assumption + ]*) + | auto + (*apply (trans_lt ? (S O)) + [ apply le_n + | assumption + ]*) + | assumption + ] +| elim (le_to_or_lt_eq O n2 (le_O_n n2)) + [ assumption + | apply False_ind. + apply (le_to_not_lt n (S O)) + [ rewrite < H4. + apply divides_to_le;auto + (*[ rewrite > H4. + apply lt_O_S + | apply divides_d_gcd + [ apply (witness ? ? n2). + reflexivity + | apply divides_n_n + ] + ]*) + | assumption + ] + ] +] +qed. + +theorem gcd_SO_n: \forall n:nat. gcd (S O) n = (S O). +intro. +auto. +(*apply antisym_le +[ apply divides_to_le + [ unfold lt. + apply le_n + | apply divides_gcd_n + ] +| cut (O < gcd (S O) n \lor O = gcd (S O) n) + [ elim Hcut + [ assumption + | apply False_ind. + apply (not_eq_O_S O). + cut ((S O)=O \land n=O) + [ elim Hcut1. + apply sym_eq. + assumption + | apply gcd_O_to_eq_O. + apply sym_eq. + assumption + ] + ] + | apply le_to_or_lt_eq. + apply le_O_n + ] +]*) +qed. + +theorem divides_gcd_mod: \forall m,n:nat. O < n \to +divides (gcd m n) (gcd n (m \mod n)). +intros. +auto. +(*apply divides_d_gcd +[ apply divides_mod + [ assumption + | apply divides_gcd_n + | apply divides_gcd_m + ] +| apply divides_gcd_m. +]*) +qed. + +theorem divides_mod_gcd: \forall m,n:nat. O < n \to +divides (gcd n (m \mod n)) (gcd m n) . +intros. +auto. +(*apply divides_d_gcd +[ apply divides_gcd_n +| apply (divides_mod_to_divides ? ? n) + [ assumption + | apply divides_gcd_m + | apply divides_gcd_n + ] +]*) +qed. + +theorem gcd_mod: \forall m,n:nat. O < n \to +(gcd n (m \mod n)) = (gcd m n) . +intros. +auto. +(*apply antisymmetric_divides +[ apply divides_mod_gcd. + assumption +| apply divides_gcd_mod. + assumption +]*) +qed. + +(* gcd and primes *) + +theorem prime_to_gcd_SO: \forall n,m:nat. prime n \to n \ndivides m \to +gcd n m = (S O). +intros.unfold prime in H. +elim H. +apply antisym_le +[ apply not_lt_to_le.unfold Not.unfold lt. + intro. + apply H1. + rewrite < (H3 (gcd n m));auto + (*[ apply divides_gcd_m + | apply divides_gcd_n + | assumption + ]*) +| cut (O < gcd n m \lor O = gcd n m) + [ elim Hcut + [ assumption + | apply False_ind. + apply (not_le_Sn_O (S O)). + cut (n=O \land m=O) + [ elim Hcut1. + rewrite < H5 in \vdash (? ? %). + assumption + | auto + (*apply gcd_O_to_eq_O. + apply sym_eq. + assumption*) + ] + ] + | auto + (*apply le_to_or_lt_eq. + apply le_O_n*) + ] +] +qed. + +theorem divides_times_to_divides: \forall n,p,q:nat.prime n \to n \divides p*q \to +n \divides p \lor n \divides q. +intros. +cut (n \divides p \lor n \ndivides p) +[elim Hcut + [left.assumption + |right. + cut (\exists a,b. a*n - b*p = (S O) \lor b*p - a*n = (S O)) + [elim Hcut1.elim H3.elim H4 + [(* first case *) + rewrite > (times_n_SO q).rewrite < H5. + rewrite > distr_times_minus. + rewrite > (sym_times q (a1*p)). + rewrite > (assoc_times a1). + elim H1. + (* + rewrite > H6. + applyS (witness n (n*(q*a-a1*n2)) (q*a-a1*n2)) + reflexivity. *) + applyS (witness n ? ? (refl_eq ? ?)) (* timeout=50 *) + (* + rewrite < (sym_times n).rewrite < assoc_times. + rewrite > (sym_times q).rewrite > assoc_times. + rewrite < (assoc_times a1).rewrite < (sym_times n). + rewrite > (assoc_times n). + rewrite < distr_times_minus. + apply (witness ? ? (q*a-a1*n2)).reflexivity + *) + |(* second case *) + rewrite > (times_n_SO q).rewrite < H5. + rewrite > distr_times_minus. + rewrite > (sym_times q (a1*p)). + rewrite > (assoc_times a1). + elim H1. + auto + (*rewrite > H6. + rewrite < sym_times.rewrite > assoc_times. + rewrite < (assoc_times q). + rewrite < (sym_times n). + rewrite < distr_times_minus. + apply (witness ? ? (n2*a1-q*a)). + reflexivity*) + ](* end second case *) + | rewrite < (prime_to_gcd_SO n p);auto + (* [ apply eq_minus_gcd + | assumption + | assumption + ]*) + ] + ] + | apply (decidable_divides n p). + apply (trans_lt ? (S O)) + [ auto + (*unfold lt. + apply le_n*) + | unfold prime in H. + elim H. + assumption + ] + ] +qed. + +theorem eq_gcd_times_SO: \forall m,n,p:nat. O < n \to O < p \to +gcd m n = (S O) \to gcd m p = (S O) \to gcd m (n*p) = (S O). +intros. +apply antisymmetric_le +[ apply not_lt_to_le. + unfold Not.intro. + cut (divides (smallest_factor (gcd m (n*p))) n \lor + divides (smallest_factor (gcd m (n*p))) p) + [ elim Hcut + [ apply (not_le_Sn_n (S O)). + change with ((S O) < (S O)). + rewrite < H2 in \vdash (? ? %). + apply (lt_to_le_to_lt ? (smallest_factor (gcd m (n*p)))) + [ auto + (*apply lt_SO_smallest_factor. + assumption*) + | apply divides_to_le;auto + (*[ rewrite > H2. + unfold lt. + apply le_n + | apply divides_d_gcd + [ assumption + | apply (transitive_divides ? (gcd m (n*p))) + [ apply divides_smallest_factor_n. + apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ] + | apply divides_gcd_n + ] + ] + ]*) + ] + | apply (not_le_Sn_n (S O)). + change with ((S O) < (S O)). + rewrite < H3 in \vdash (? ? %). + apply (lt_to_le_to_lt ? (smallest_factor (gcd m (n*p)))) + [ apply lt_SO_smallest_factor. + assumption + | apply divides_to_le;auto + (*[ rewrite > H3. + unfold lt. + apply le_n + | apply divides_d_gcd + [ assumption + | apply (transitive_divides ? (gcd m (n*p))) + [ apply divides_smallest_factor_n. + apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ] + | apply divides_gcd_n + ] + ] + ]*) + ] + ] + | apply divides_times_to_divides;auto + (*[ apply prime_smallest_factor_n. + assumption + | auto.apply (transitive_divides ? (gcd m (n*p))) + [ apply divides_smallest_factor_n. + apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ] + | apply divides_gcd_m + ] + ]*) + ] +| auto + (*change with (O < gcd m (n*p)). + apply lt_O_gcd. + rewrite > (times_n_O O). + apply lt_times;assumption.*) +] +qed. + +theorem gcd_SO_to_divides_times_to_divides: \forall m,n,p:nat. O < n \to +gcd n m = (S O) \to n \divides (m*p) \to n \divides p. +intros. +cut (n \divides p \lor n \ndivides p) +[ elim Hcut + [ assumption + | cut (\exists a,b. a*n - b*m = (S O) \lor b*m - a*n = (S O)) + [ elim Hcut1.elim H4.elim H5 + [(* first case *) + rewrite > (times_n_SO p).rewrite < H6. + rewrite > distr_times_minus. + rewrite > (sym_times p (a1*m)). + rewrite > (assoc_times a1). + elim H2. + applyS (witness n ? ? (refl_eq ? ?)) (* timeout=50 *). + |(* second case *) + rewrite > (times_n_SO p).rewrite < H6. + rewrite > distr_times_minus. + rewrite > (sym_times p (a1*m)). + rewrite > (assoc_times a1). + elim H2. + applyS (witness n ? ? (refl_eq ? ?)). + ](* end second case *) + | rewrite < H1. + apply eq_minus_gcd + ] + ] +| auto + (*apply (decidable_divides n p). + assumption.*) +] +qed. \ No newline at end of file diff --git a/matita/library_auto/nat/le_arith.ma b/matita/library_auto/nat/le_arith.ma new file mode 100644 index 000000000..6167e2dfb --- /dev/null +++ b/matita/library_auto/nat/le_arith.ma @@ -0,0 +1,135 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/le_arith". + +include "nat/times.ma". +include "nat/orders.ma". + +(* plus *) +theorem monotonic_le_plus_r: +\forall n:nat.monotonic nat le (\lambda m.n + m). +simplify.intros. +elim n;simplify +[ assumption +| auto + (*apply le_S_S.assumption*) +] +qed. + +theorem le_plus_r: \forall p,n,m:nat. n \le m \to p + n \le p + m +\def monotonic_le_plus_r. + +theorem monotonic_le_plus_l: +\forall m:nat.monotonic nat le (\lambda n.n + m). +simplify.intros. + (*rewrite < sym_plus. + rewrite < (sym_plus m).*) + applyS le_plus_r. + assumption. +qed. + +(* IN ALTERNATIVA: + +theorem monotonic_le_plus_l: +\forall m:nat.monotonic nat le (\lambda n.n + m). +simplify.intros. + rewrite < sym_plus. + rewrite < (sym_plus m). + auto. +qed. +*) +theorem le_plus_l: \forall p,n,m:nat. n \le m \to n + p \le m + p +\def monotonic_le_plus_l. + +theorem le_plus: \forall n1,n2,m1,m2:nat. n1 \le n2 \to m1 \le m2 +\to n1 + m1 \le n2 + m2. +intros. +auto. +(*apply (trans_le ? (n2 + m1)). +apply le_plus_l.assumption. +apply le_plus_r.assumption.*) +qed. + +theorem le_plus_n :\forall n,m:nat. m \le n + m. +intros. +change with (O+m \le n+m). +auto. +(*apply le_plus_l. + apply le_O_n.*) +qed. + +theorem eq_plus_to_le: \forall n,m,p:nat.n=m+p \to m \le n. +intros. +rewrite > H. +rewrite < sym_plus. +apply le_plus_n. (* a questo punto funziona anche: auto.*) +qed. + +(* times *) +theorem monotonic_le_times_r: +\forall n:nat.monotonic nat le (\lambda m. n * m). +simplify.intros.elim n;simplify +[ apply le_O_n. +| auto. +(*apply le_plus; + assumption. *) (* chiudo entrambi i goal attivi in questo modo*) +] +qed. + +theorem le_times_r: \forall p,n,m:nat. n \le m \to p*n \le p*m +\def monotonic_le_times_r. + +theorem monotonic_le_times_l: +\forall m:nat.monotonic nat le (\lambda n.n*m). +simplify.intros. +(*rewrite < sym_times. + rewrite < (sym_times m). +*) +applyS le_times_r. +assumption. +qed. + +(* IN ALTERNATIVA: +theorem monotonic_le_times_l: +\forall m:nat.monotonic nat le (\lambda n.n*m). +simplify.intros. +rewrite < sym_times. +rewrite < (sym_times m). +auto. +qed. +*) + +theorem le_times_l: \forall p,n,m:nat. n \le m \to n*p \le m*p +\def monotonic_le_times_l. + +theorem le_times: \forall n1,n2,m1,m2:nat. n1 \le n2 \to m1 \le m2 +\to n1*m1 \le n2*m2. +intros. +auto. +(*apply (trans_le ? (n2*m1)). +apply le_times_l.assumption. +apply le_times_r.assumption.*) +qed. + +theorem le_times_n: \forall n,m:nat.(S O) \le n \to m \le n*m. +intros.elim H;simplify +[ auto + (*elim (plus_n_O ?). + apply le_n....*) +| auto + (*rewrite < sym_plus. + apply le_plus_n.*) +] +qed. diff --git a/matita/library_auto/nat/lt_arith.ma b/matita/library_auto/nat/lt_arith.ma new file mode 100644 index 000000000..3bb8cbc6e --- /dev/null +++ b/matita/library_auto/nat/lt_arith.ma @@ -0,0 +1,329 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/lt_arith". + +include "nat/div_and_mod.ma". + +(* plus *) +theorem monotonic_lt_plus_r: +\forall n:nat.monotonic nat lt (\lambda m.n+m). +simplify.intros. +elim n;simplify +[ assumption +| auto. + (*unfold lt. + apply le_S_S. + assumption.*) +] +qed. + +variant lt_plus_r: \forall n,p,q:nat. p < q \to n + p < n + q \def +monotonic_lt_plus_r. + +theorem monotonic_lt_plus_l: +\forall n:nat.monotonic nat lt (\lambda m.m+n). +simplify. +intros. +(*rewrite < sym_plus. + rewrite < (sym_plus n).*) +applyS lt_plus_r.assumption. +qed. +(* IN ALTERNATIVA: mantengo le 2 rewrite, e concludo con auto. *) + +variant lt_plus_l: \forall n,p,q:nat. p < q \to p + n < q + n \def +monotonic_lt_plus_l. + +theorem lt_plus: \forall n,m,p,q:nat. n < m \to p < q \to n + p < m + q. +intros. +auto. +(*apply (trans_lt ? (n + q)). +apply lt_plus_r.assumption. +apply lt_plus_l.assumption.*) +qed. + +theorem lt_plus_to_lt_l :\forall n,p,q:nat. p+n < q+n \to p plus_n_O. + rewrite > (plus_n_O q). + assumption. +| apply H. + unfold lt. + apply le_S_S_to_le. + rewrite > plus_n_Sm. + rewrite > (plus_n_Sm q). + exact H1. +] +qed. + +theorem lt_plus_to_lt_r :\forall n,p,q:nat. n+p < n+q \to p sym_plus. +rewrite > (sym_plus q). +assumption. +qed. + +(* times and zero *) +theorem lt_O_times_S_S: \forall n,m:nat.O < (S n)*(S m). +intros. +auto. +(*simplify. +unfold lt. +apply le_S_S. +apply le_O_n.*) +qed. + +(* times *) +theorem monotonic_lt_times_r: +\forall n:nat.monotonic nat lt (\lambda m.(S n)*m). +simplify. +intros.elim n +[ auto + (*simplify. + rewrite < plus_n_O. + rewrite < plus_n_O. + assumption.*) +| apply lt_plus;assumption (* chiudo con assumption entrambi i sottogoal attivi*) +] +qed. + +theorem lt_times_r: \forall n,p,q:nat. p < q \to (S n) * p < (S n) * q +\def monotonic_lt_times_r. + +theorem monotonic_lt_times_l: +\forall m:nat.monotonic nat lt (\lambda n.n * (S m)). +simplify. +intros. +(*rewrite < sym_times. + rewrite < (sym_times (S m)).*) +applyS lt_times_r.assumption. +qed. + +(* IN ALTERNATIVA: mantengo le 2 rewrite, e concludo con auto. *) + + +variant lt_times_l: \forall n,p,q:nat. p nat_compare_n_n. + reflexivity*) +| intro. + apply nat_compare_elim + [ intro. + absurd (p (plus_n_O ((S m1)*(n / (S m1)))). +rewrite < H2. +rewrite < sym_times. +rewrite < div_mod +[ rewrite > H2. + assumption. +| auto + (*unfold lt. + apply le_S_S. + apply le_O_n.*) +] +qed. + +theorem lt_div_n_m_n: \forall n,m:nat. (S O) < m \to O < n \to n / m \lt n. +intros. +apply (nat_case1 (n / m)) +[ intro. + assumption +| intros. + rewrite < H2. + rewrite > (div_mod n m) in \vdash (? ? %) + [ apply (lt_to_le_to_lt ? ((n / m)*m)) + [ apply (lt_to_le_to_lt ? ((n / m)*(S (S O)))) + [ rewrite < sym_times. + rewrite > H2. + simplify. + unfold lt. + auto. + (*rewrite < plus_n_O. + rewrite < plus_n_Sm. + apply le_S_S. + apply le_S_S. + apply le_plus_n*) + | auto + (*apply le_times_r. + assumption*) + ] + | auto + (*rewrite < sym_plus. + apply le_plus_n*) + ] + | auto + (*apply (trans_lt ? (S O)). + unfold lt. + apply le_n. + assumption*) + ] +] +qed. + +(* general properties of functions *) +theorem monotonic_to_injective: \forall f:nat\to nat. +monotonic nat lt f \to injective nat nat f. +unfold injective.intros. +apply (nat_compare_elim x y) +[ intro. + apply False_ind. + apply (not_le_Sn_n (f x)). + rewrite > H1 in \vdash (? ? %). + change with (f x < f y). + auto + (*apply H. + apply H2*) +| intros. + assumption +| intro. + apply False_ind. + apply (not_le_Sn_n (f y)). + rewrite < H1 in \vdash (? ? %). + change with (f y < f x). + auto + (*apply H. + apply H2*) +] +qed. + +theorem increasing_to_injective: \forall f:nat\to nat. +increasing f \to injective nat nat f. +intros. +auto. +(*apply monotonic_to_injective. +apply increasing_to_monotonic. +assumption.*) +qed. diff --git a/matita/library_auto/nat/map_iter_p.ma b/matita/library_auto/nat/map_iter_p.ma new file mode 100644 index 000000000..dcab4d69f --- /dev/null +++ b/matita/library_auto/nat/map_iter_p.ma @@ -0,0 +1,1279 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/map_iter_p.ma". + +include "nat/permutation.ma". +include "nat/count.ma". + +let rec map_iter_p n p (g:nat \to nat) (a:nat) f \def + match n with + [ O \Rightarrow a + | (S k) \Rightarrow + match p (S k) with + [true \Rightarrow f (g (S k)) (map_iter_p k p g a f) + |false \Rightarrow map_iter_p k p g a f] + ]. + +theorem eq_map_iter_p: \forall g1,g2:nat \to nat. +\forall p:nat \to bool. +\forall f:nat \to nat \to nat. \forall a,n:nat. +(\forall m:nat. m \le n \to g1 m = g2 m) \to +map_iter_p n p g1 a f = map_iter_p n p g2 a f. +intros 6. +elim n +[ auto + (*simplify. + reflexivity*) +| simplify. + elim (p (S n1)) + [ simplify. + apply eq_f2 + [ auto + (*apply H1. + apply le_n*) + | simplify. + apply H. + intros. + auto + (*apply H1. + apply le_S. + assumption*) + ] + | simplify. + apply H. + intros. + auto + (*apply H1. + apply le_S. + assumption*) + ] +] +qed. + +(* useful since simplify simpifies too much *) + +theorem map_iter_p_O: \forall p.\forall g.\forall f. \forall a:nat. +map_iter_p O p g a f = a. +intros. +auto. +(*simplify.reflexivity.*) +qed. + +theorem map_iter_p_S_true: \forall p.\forall g.\forall f. \forall a,n:nat. +p (S n) = true \to +map_iter_p (S n) p g a f = f (g (S n)) (map_iter_p n p g a f). +intros.simplify.rewrite > H.reflexivity. +qed. + +theorem map_iter_p_S_false: \forall p.\forall g.\forall f. \forall a,n:nat. +p (S n) = false \to +map_iter_p (S n) p g a f = map_iter_p n p g a f. +intros.simplify.rewrite > H.reflexivity. +qed. + +(* map_iter examples *) +definition pi_p \def \lambda p. \lambda n. +map_iter_p n p (\lambda n.n) (S O) times. + +lemma pi_p_S: \forall n.\forall p. +pi_p p (S n) = + match p (S n) with + [true \Rightarrow (S n)*(pi_p p n) + |false \Rightarrow (pi_p p n) + ]. +intros.reflexivity. +qed. + +lemma lt_O_pi_p: \forall n.\forall p. +O < pi_p p n. +intros. +elim n +[ auto + (*simplify. + apply le_n*) +| rewrite > pi_p_S. + elim p (S n1) + [ change with (O < (S n1)*(pi_p p n1)). + auto + (*rewrite >(times_n_O n1). + apply lt_times + [ apply le_n + | assumption + ]*) + | assumption + ] +] +qed. + +let rec card n p \def + match n with + [O \Rightarrow O + |(S m) \Rightarrow + (bool_to_nat (p (S m))) + (card m p)]. + +lemma count_card: \forall p.\forall n. +p O = false \to count (S n) p = card n p. +intros. +elim n +[ simplify. + auto + (*rewrite > H. + reflexivity*) +| simplify. + rewrite < plus_n_O. + apply eq_f. + (*qui auto non chiude un goal chiuso invece dal solo assumption*) + assumption +] +qed. + +lemma count_card1: \forall p.\forall n. +p O = false \to p n = false \to count n p = card n p. +intros 3. +apply (nat_case n) +[ intro. + simplify. + auto + (*rewrite > H. + reflexivity*) +| intros.rewrite > (count_card ? ? H). + simplify. + auto + (*rewrite > H1. + reflexivity*) +] +qed. + +lemma a_times_pi_p: \forall p. \forall a,n. +exp a (card n p) * pi_p p n = map_iter_p n p (\lambda n.a*n) (S O) times. +intros. +elim n +[ auto + (*simplify. + reflexivity*) +| simplify. + apply (bool_elim ? (p (S n1))) + [ intro. + change with + (a*exp a (card n1 p) * ((S n1) * (pi_p p n1)) = + a*(S n1)*map_iter_p n1 p (\lambda n.a*n) (S O) times). + rewrite < H. + auto + | intro. + (*la chiamata di auto in questo punto dopo circa 8 minuti non aveva + * ancora generato un risultato + *) + assumption + ] +] +qed. + +definition permut_p \def \lambda f. \lambda p:nat\to bool. \lambda n. +\forall i. i \le n \to p i = true \to ((f i \le n \land p (f i) = true) +\land (\forall j. p j = true \to j \le n \to i \neq j \to (f i \neq f j))). + +definition extentional_eq_n \def \lambda f,g:nat \to nat.\lambda n. +\forall x. x \le n \to f x = g x. + +lemma extentional_eq_n_to_permut_p: \forall f,g. \forall p. \forall n. +extentional_eq_n f g n\to permut_p f p n \to permut_p g p n. +intros. +unfold permut_p. +intros. +elim (H1 i H2 H3). +split +[ elim H4. + split + [ rewrite < (H i H2). + assumption + | rewrite < (H i H2). + assumption + ] +| intros. + unfold. + intro. + apply (H5 j H6 H7 H8). + rewrite > (H i H2). + rewrite > (H j H7). + assumption +] +qed. + +theorem permut_p_compose: \forall f,g.\forall p.\forall n. +permut_p f p n \to permut_p g p n \to permut_p (compose ? ? ? g f) p n. +intros. +unfold permut_p. +intros. +elim (H i H2 H3). +elim H4. +elim (H1 (f i) H6 H7). +elim H8. +split +[ split + [ unfold compose. + assumption + | unfold compose. + auto + (*rewrite < H11. + reflexivity*) + ] +| intros. + unfold compose. + apply (H9 (f j)) + [ elim (H j H13 H12). + auto + (*elim H15. + rewrite < H18. + reflexivity*) + | elim (H j H13 H12). + elim H15. + assumption. + | apply (H5 j H12 H13 H14) + ] +] +qed. + + +theorem permut_p_S_to_permut_p: \forall f.\forall p.\forall n. +permut_p f p (S n) \to (f (S n)) = (S n) \to permut_p f p n. +intros. +unfold permut_p. +intros. +split +[ elim (H i (le_S i n H2) H3). + split + [ elim H4. + elim (le_to_or_lt_eq (f i) (S n)) + [ auto + (*apply le_S_S_to_le. + assumption*) + | absurd (f i = (S n)) + [ assumption + | rewrite < H1. + apply H5 + [ auto + (*rewrite < H8. + assumption*) + | apply le_n + | unfold.intro.rewrite > H8 in H2. + apply (not_le_Sn_n n).rewrite < H9. + assumption + ] + ] + | assumption + ] + | auto + (*elim H4. + assumption*) + ] +| intros. + elim (H i (le_S i n H2) H3). + auto + (*apply H8 + [ assumption + | apply le_S. + assumption + | assumption + ]*) +] +qed. + +lemma permut_p_transpose: \forall p.\forall i,j,n. +i \le n \to j \le n \to p i = p j \to +permut_p (transpose i j) p n. +unfold permut_p. +intros. +split +[ split + [ unfold transpose. + apply (eqb_elim i1 i) + [ intro. + apply (eqb_elim i1 j) + [ simplify.intro.assumption + | simplify.intro.assumption + ] + | intro. + apply (eqb_elim i1 j) + [ simplify.intro.assumption + | simplify.intro.assumption + ] + ] + | unfold transpose. + apply (eqb_elim i1 i) + [ intro. + apply (eqb_elim i1 j) + [ simplify.intro. + auto + (*rewrite < H6. + assumption*) + | simplify.intro. + auto + (*rewrite < H2. + rewrite < H5. + assumption*) + ] + | intro. + apply (eqb_elim i1 j) + [ simplify.intro. + auto + (*rewrite > H2. + rewrite < H6. + assumption*) + | simplify.intro. + assumption + ] + ] + ] +| intros. + unfold Not. + intro. + auto + (*apply H7. + apply (injective_transpose ? ? ? ? H8)*) +] +qed. + + +theorem eq_map_iter_p_k: \forall f,g.\forall p.\forall a,k,n:nat. +p (S n-k) = true \to (\forall i. (S n)-k < i \to i \le (S n) \to (p i) = false) \to +map_iter_p (S n) p g a f = map_iter_p (S n-k) p g a f. +intros 5. +elim k 3 +[ auto + (*rewrite < minus_n_O. + reflexivity*) +| apply (nat_case n1) + [ intros. + rewrite > map_iter_p_S_false + [ reflexivity + | auto + (*apply H2 + [ simplify. + apply lt_O_S. + | apply le_n + ]*) + ] + | intros. + rewrite > map_iter_p_S_false + [ rewrite > (H m H1) + [ reflexivity + | intros. + apply (H2 i H3). + auto + (*apply le_S. + assumption*) + ] + | auto + (*apply H2 + [ auto + | apply le_n + ]*) + ] + ] +] +qed. + + + +theorem eq_map_iter_p_a: \forall p.\forall f.\forall g. \forall a,n:nat. +(\forall i.i \le n \to p i = false) \to map_iter_p n p g a f = a. +intros 5. +elim n +[ auto + (*simplify. + reflexivity*) +| rewrite > map_iter_p_S_false + [ apply H. + intros. + auto + (*apply H1. + apply le_S. + assumption*) + | auto + (*apply H1. + apply le_n*) + ] +] +qed. + +theorem eq_map_iter_p_transpose: \forall p.\forall f.associative nat f \to +symmetric2 nat nat f \to \forall g. \forall a,k,n:nat. k < n \to +(p (S n) = true) \to (p (n-k)) = true \to (\forall i. n-k < i \to i \le n \to (p i) = false) +\to map_iter_p (S n) p g a f = map_iter_p (S n) p (\lambda m. g (transpose (n-k) (S n) m)) a f. +intros 8. +apply (nat_case n) +[ intro. + absurd (k < O) + [ assumption + | auto + (*apply le_to_not_lt. + apply le_O_n*) + ] +| intros. + rewrite > (map_iter_p_S_true ? ? ? ? ? H3). + rewrite > (map_iter_p_S_true ? ? ? ? ? H3). + rewrite > (eq_map_iter_p_k ? ? ? ? ? ? H4 H5). + rewrite > (eq_map_iter_p_k ? ? ? ? ? ? H4 H5). + generalize in match H4. + rewrite > minus_Sn_m + [ intro. + rewrite > (map_iter_p_S_true ? ? ? ? ? H6). + rewrite > (map_iter_p_S_true ? ? ? ? ? H6). + rewrite > transpose_i_j_j. + rewrite > transpose_i_j_i. + cut (map_iter_p (m-k) p g a f = + map_iter_p (m-k) p (\lambda x.g (transpose (S(m-k)) (S(S m)) x)) a f) + [ rewrite < Hcut. + rewrite < H. + rewrite < H1 in \vdash (? ? (? % ?) ?). + auto + (*rewrite > H. + reflexivity*) + | apply eq_map_iter_p. + intros. + unfold transpose. + cut (eqb m1 (S (m-k)) =false) + [ cut (eqb m1 (S (S m)) =false) + [ rewrite > Hcut. + rewrite > Hcut1. + reflexivity + | apply not_eq_to_eqb_false. + apply lt_to_not_eq. + apply (le_to_lt_to_lt ? m) + [ auto + (*apply (trans_le ? (m-k)) + [ assumption + | auto + ]*) + | auto + (*apply le_S. + apply le_n*) + ] + ] + | apply not_eq_to_eqb_false. + apply lt_to_not_eq. + auto + (*unfold. + auto*) + ] + ] + | auto + (*apply le_S_S_to_le. + assumption*) + ] +] +qed. + +theorem eq_map_iter_p_transpose1: \forall p.\forall f.associative nat f \to +symmetric2 nat nat f \to \forall g. \forall a,k1,k2,n:nat. O < k1 \to k1 < k2 \to k2 \le n \to +(p k1) = true \to (p k2) = true \to (\forall i. k1 < i \to i < k2 \to (p i) = false) +\to map_iter_p n p g a f = map_iter_p n p (\lambda m. g (transpose k1 k2 m)) a f. +intros 10. +elim n 2 +[ absurd (k2 \le O) + [ assumption + | auto + (*apply lt_to_not_le. + apply (trans_lt ? k1 ? H2 H3)*) + ] +| apply (eqb_elim (S n1) k2) + [ intro. + rewrite < H4. + intros. + cut (k1 = n1 - (n1 -k1)) + [ rewrite > Hcut. + apply (eq_map_iter_p_transpose p f H H1 g a (n1-k1)) + [ cut (k1 \le n1);auto + | assumption + | auto + (*rewrite < Hcut. + assumption*) + | rewrite < Hcut. + intros. + apply (H9 i H10). + auto + (*unfold. + auto*) + ] + | apply sym_eq. + auto + (*apply plus_to_minus. + auto*) + ] + | intros. + cut ((S n1) \neq k1) + [ apply (bool_elim ? (p (S n1))) + [ intro. + rewrite > map_iter_p_S_true + [ rewrite > map_iter_p_S_true + [ cut ((transpose k1 k2 (S n1)) = (S n1)) + [ rewrite > Hcut1. + apply eq_f. + apply (H3 H5) + [ elim (le_to_or_lt_eq ? ? H6) + [ auto + | absurd (S n1=k2) + [ auto + (*apply sym_eq. + assumption*) + | assumption + ] + ] + | assumption + | assumption + | assumption + ] + | unfold transpose. + rewrite > (not_eq_to_eqb_false ? ? Hcut). + rewrite > (not_eq_to_eqb_false ? ? H4). + reflexivity + ] + | assumption + ] + | assumption + ] + | intro. + rewrite > map_iter_p_S_false + [ rewrite > map_iter_p_S_false + [ apply (H3 H5) + [ elim (le_to_or_lt_eq ? ? H6) + [ auto + | (*l'invocazione di auto qui genera segmentation fault*) + absurd (S n1=k2) + [ auto + (*apply sym_eq. + assumption*) + | assumption + ] + ] + | assumption + | assumption + | assumption + ] + | assumption + ] + | assumption + ] + ] + | unfold. + intro. + absurd (k1 < k2) + [ assumption + | apply le_to_not_lt. + rewrite < H10. + assumption + ] + ] + ] +] +qed. + +lemma decidable_n:\forall p.\forall n. +(\forall m. m \le n \to (p m) = false) \lor +(\exists m. m \le n \land (p m) = true \land +\forall i. m < i \to i \le n \to (p i) = false). +intros. +elim n +[ apply (bool_elim ? (p O)) + [ intro. + right. + apply (ex_intro ? ? O). + split + [ auto + (*split + [ apply le_n + | assumption + ]*) + | intros. + absurd (O H4. + assumption*) + ] + | right. + elim H1. + elim H3. + elim H4. + apply (ex_intro ? ? a). + split + [ auto + (*split + [ apply le_S. + assumption + | assumption + ]*) + | intros. + elim (le_to_or_lt_eq i (S n1) H9) + [ auto + (*apply H5 + [ assumption + | apply le_S_S_to_le. + assumption + ]*) + | auto + (*rewrite > H10. + assumption*) + ] + ] + ] + ] +] +qed. + +lemma decidable_n1:\forall p.\forall n,j. j \le n \to (p j)=true \to +(\forall m. j < m \to m \le n \to (p m) = false) \lor +(\exists m. j < m \land m \le n \land (p m) = true \land +\forall i. m < i \to i \le n \to (p i) = false). +intros. +elim (decidable_n p n) +[ absurd ((p j)=true) + [ assumption + | unfold. + intro. + apply not_eq_true_false. + auto + (*rewrite < H3. + apply H2. + assumption*) + ] +| elim H2. + clear H2. + apply (nat_compare_elim j a) + [ intro. + right. + apply (ex_intro ? ? a). + elim H3.clear H3. + elim H4.clear H4. + split + [ auto + (*split + [ split + [ assumption + | assumption + ] + | assumption + ]*) + | assumption + ] + | intro. + rewrite > H2. + left. + elim H3 2. + (*qui la tattica auto non conclude il goal, concluso invece con l'invocazione + *della sola tattica assumption + *) + assumption + | intro. + absurd (p j = true) + [ assumption + | unfold. + intro. + apply not_eq_true_false. + rewrite < H4. + elim H3. + auto + (*clear H3. + apply (H6 j H2).assumption*) + ] + ] +] +qed. + +lemma decidable_n2:\forall p.\forall n,j. j \le n \to (p j)=true \to +(\forall m. j < m \to m \le n \to (p m) = false) \lor +(\exists m. j < m \land m \le n \land (p m) = true \land +\forall i. j < i \to i < m \to (p i) = false). +intros 3. +elim n +[ left. + apply (le_n_O_elim j H). + intros. + absurd (m \le O) + [ assumption + | auto + (*apply lt_to_not_le. + assumption*) + ] +| elim (le_to_or_lt_eq ? ? H1) + [ cut (j \le n1) + [ elim (H Hcut H2) + [ apply (bool_elim ? (p (S n1))) + [ intro. + right. + apply (ex_intro ? ? (S n1)). + split + [ auto + (*split + [ split + [ assumption + | apply le_n + ] + | assumption + ]*) + | intros. + auto + (*apply (H4 i H6). + apply le_S_S_to_le. + assumption*) + ] + | intro. + left. + intros. + elim (le_to_or_lt_eq ? ? H7) + [ auto + (*apply H4 + [ assumption + | apply le_S_S_to_le. + assumption + ]*) + | auto + (*rewrite > H8. + assumption*) + ] + ] + | right. + elim H4.clear H4. + elim H5.clear H5. + elim H4.clear H4. + elim H5.clear H5. + apply (ex_intro ? ? a). + split + [ split + [ auto + (*split + [ assumption + | apply le_S. + assumption + ]*) + | assumption + ] + | (*qui auto non chiude il goal, chiuso invece mediante l'invocazione + *della sola tattica assumption + *) + assumption + ] + ] + | auto + (*apply le_S_S_to_le. + assumption*) + ] + | left. + intros. + absurd (j < m) + [ assumption + | apply le_to_not_lt. + rewrite > H3. + assumption + ] + ] +] +qed. + +(* tutti d spostare *) +theorem lt_minus_to_lt_plus: +\forall n,m,p. n - m < p \to n < m + p. +intros 2. +apply (nat_elim2 ? ? ? ? n m) +[ simplify. + intros. + auto +| intros 2. + auto + (*rewrite < minus_n_O. + intro. + assumption*) +| intros. + simplify. + cut (n1 < m1+p) + [ auto + | apply H. + apply H1 + ] +] +qed. + +theorem lt_plus_to_lt_minus: +\forall n,m,p. m \le n \to n < m + p \to n - m < p. +intros 2. +apply (nat_elim2 ? ? ? ? n m) +[ simplify. + intros 3. + apply (le_n_O_elim ? H). + auto + (*simplify. + intros. + assumption*) +| simplify. + intros. + assumption +| intros. + simplify. + apply H + [ auto + (*apply le_S_S_to_le. + assumption*) + | apply le_S_S_to_le. + apply H2 + ] +] +qed. + +theorem minus_m_minus_mn: \forall n,m. n\le m \to n=m-(m-n). +intros. +apply sym_eq. +auto. +(*apply plus_to_minus. +auto.*) +qed. + +theorem eq_map_iter_p_transpose2: \forall p.\forall f.associative nat f \to +symmetric2 nat nat f \to \forall g. \forall a,k,n:nat. O < k \to k \le n \to +(p (S n) = true) \to (p k) = true +\to map_iter_p (S n) p g a f = map_iter_p (S n) p (\lambda m. g (transpose k (S n) m)) a f. +intros 10. +cut (k = (S n)-(S n -k)) +[ generalize in match H3. + clear H3. + generalize in match g. + generalize in match H2. + clear H2. + rewrite > Hcut. + (*generalize in match Hcut.clear Hcut.*) + (* generalize in match H3.clear H3.*) + (* something wrong here + rewrite > Hcut in \vdash (?\rarr ?\rarr %). *) + apply (nat_elim1 (S n - k)). + intros. + elim (decidable_n2 p n (S n -m) H4 H6) + [ apply (eq_map_iter_p_transpose1 p f H H1 f1 a) + [ assumption + | auto + (*unfold. + auto*) + | apply le_n + | assumption + | assumption + | intros. + auto + (*apply H7 + [ assumption + | apply le_S_S_to_le. + assumption + ]*) + ] + | elim H7. + clear H7. + elim H8.clear H8. + elim H7.clear H7. + elim H8.clear H8. + apply (trans_eq ? ? + (map_iter_p (S n) p (\lambda i.f1 (transpose a1 (S n) (transpose (S n -m) a1 i))) a f)) + [ apply (trans_eq ? ? + (map_iter_p (S n) p (\lambda i.f1 (transpose a1 (S n) i)) a f)) + [ cut (a1 = (S n -(S n -a1))) + [ rewrite > Hcut1. + apply H2 + [ apply lt_plus_to_lt_minus + [ auto + (*apply le_S. + assumption*) + | rewrite < sym_plus. + auto + (*apply lt_minus_to_lt_plus. + assumption*) + ] + | rewrite < Hcut1. + auto + (*apply (trans_lt ? (S n -m)); + assumption*) + | rewrite < Hcut1. + assumption + | assumption + | auto + (*rewrite < Hcut1. + assumption*) + ] + | auto + (*apply minus_m_minus_mn. + apply le_S. + assumption*) + ] + | apply (eq_map_iter_p_transpose1 p f H H1) + [ assumption + | assumption + | auto + (*apply le_S. + assumption*) + | assumption + | assumption + | (*qui auto non chiude il goal, chiuso dall'invocazione della singola + * tattica assumption + *) + assumption + ] + ] + | apply (trans_eq ? ? + (map_iter_p (S n) p (\lambda i.f1 (transpose a1 (S n) (transpose (S n -m) a1 (transpose (S n -(S n -a1)) (S n) i)))) a f)) + [ cut (a1 = (S n) -(S n -a1)) + [ apply H2 + [ apply lt_plus_to_lt_minus + [ auto + (*apply le_S. + assumption*) + | rewrite < sym_plus. + auto + (*apply lt_minus_to_lt_plus. + assumption*) + ] + | rewrite < Hcut1. + auto + (*apply (trans_lt ? (S n -m)) + [ assumption + | assumption + ]*) + | rewrite < Hcut1. + assumption + | assumption + | auto + (*rewrite < Hcut1. + assumption*) + ] + | auto + (*apply minus_m_minus_mn. + apply le_S. + assumption*) + ] + | apply eq_map_iter_p. + cut (a1 = (S n) -(S n -a1)) + [ intros. + apply eq_f. + rewrite < Hcut1. + rewrite < transpose_i_j_j_i. + rewrite > (transpose_i_j_j_i (S n -m)). + rewrite > (transpose_i_j_j_i a1 (S n)). + rewrite > (transpose_i_j_j_i (S n -m)). + apply sym_eq. + apply eq_transpose + [ unfold. + intro. + apply (not_le_Sn_n n). + rewrite < H12. + assumption + | unfold. + intro. + apply (not_le_Sn_n n). + rewrite > H12. + assumption + | unfold. + intro. + apply (not_le_Sn_n a1). + rewrite < H12 in \vdash (? (? %) ?). + assumption + ] + | auto + (*apply minus_m_minus_mn. + apply le_S. + assumption*) + ] + ] + ] + ] +| auto + (*apply minus_m_minus_mn. + apply le_S. + assumption*) +] +qed. + +theorem eq_map_iter_p_transpose3: \forall p.\forall f.associative nat f \to +symmetric2 nat nat f \to \forall g. \forall a,k,n:nat. O < k \to k \le (S n) \to +(p (S n) = true) \to (p k) = true +\to map_iter_p (S n) p g a f = map_iter_p (S n) p (\lambda m. g (transpose k (S n) m)) a f. +intros. +elim (le_to_or_lt_eq ? ? H3) +[ apply (eq_map_iter_p_transpose2 p f H H1 g a k n H2);auto + (*[ apply le_S_S_to_le. + assumption + | assumption + | assumption + ]*) +| rewrite > H6. + apply eq_map_iter_p. + intros. + auto + (*apply eq_f. + apply sym_eq. + apply transpose_i_i.*) +] +qed. + +lemma permut_p_O: \forall p.\forall h.\forall n. +permut_p h p n \to p O = false \to \forall m. (S m) \le n \to p (S m) = true \to O < h(S m). +intros. +unfold permut_p in H. +apply not_le_to_lt.unfold. +intro. +elim (H (S m) H2 H3). +elim H5. +absurd (p (h (S m)) = true) +[ assumption +| apply (le_n_O_elim ? H4). + unfold. + intro. + (*l'invocazione di auto in questo punto genera segmentation fault*) + apply not_eq_true_false. + (*l'invocazione di auto in questo punto genera segmentation fault*) + rewrite < H9. + (*l'invocazione di auto in questo punto genera segmentation fault*) + rewrite < H1. + (*l'invocazione di auto in questo punto genera segmentation fault*) + reflexivity +] +qed. + +theorem eq_map_iter_p_permut: \forall p.\forall f.associative nat f \to +symmetric2 nat nat f \to \forall n.\forall g. \forall h.\forall a:nat. +permut_p h p n \to p O = false \to +map_iter_p n p g a f = map_iter_p n p (compose ? ? ? g h) a f . +intros 5. +elim n +[ auto + (*simplify. + reflexivity*) +| apply (bool_elim ? (p (S n1))) + [ intro. + apply (trans_eq ? ? (map_iter_p (S n1) p (\lambda m.g ((transpose (h (S n1)) (S n1)) m)) a f)) + [ unfold permut_p in H3. + elim (H3 (S n1) (le_n ?) H5). + elim H6. + clear H6. + apply (eq_map_iter_p_transpose3 p f H H1 g a (h(S n1)) n1) + [ apply (permut_p_O ? ? ? H3 H4);auto + (*[ apply le_n + | assumption + ]*) + | assumption + | assumption + | assumption + ] + | apply (trans_eq ? ? (map_iter_p (S n1) p (\lambda m. + (g(transpose (h (S n1)) (S n1) + (transpose (h (S n1)) (S n1) (h m)))) ) a f)) + [ rewrite > (map_iter_p_S_true ? ? ? ? ? H5). + rewrite > (map_iter_p_S_true ? ? ? ? ? H5). + apply eq_f2 + [ rewrite > transpose_i_j_j. + rewrite > transpose_i_j_i. + rewrite > transpose_i_j_j. + reflexivity + | apply (H2 (\lambda m.(g(transpose (h (S n1)) (S n1) m))) ?) + [ unfold. + intros. + split + [ split + [ simplify. + unfold permut_p in H3. + elim (H3 i (le_S ? ? H6) H7). + elim H8. + clear H8. + elim (le_to_or_lt_eq ? ? H10) + [ unfold transpose. + rewrite > (not_eq_to_eqb_false ? ? (lt_to_not_eq ? ? H8)). + cut (h i \neq h (S n1)) + [ rewrite > (not_eq_to_eqb_false ? ? Hcut). + simplify. + auto + (*apply le_S_S_to_le. + assumption*) + | apply H9 + [ apply H5 + | apply le_n + | apply lt_to_not_eq. + auto + (*unfold. + apply le_S_S. + assumption*) + ] + ] + | rewrite > H8. + apply (eqb_elim (S n1) (h (S n1))) + [ intro. + absurd (h i = h (S n1)) + [ auto + (*rewrite > H8. + assumption*) + | apply H9 + [ assumption + | apply le_n + | apply lt_to_not_eq. + auto + (*unfold. + apply le_S_S. + assumption*) + ] + ] + | intro. + unfold transpose. + rewrite > (not_eq_to_eqb_false ? ? H12). + rewrite > (eq_to_eqb_true ? ? (refl_eq ? (S n1))). + simplify. + elim (H3 (S n1) (le_n ? ) H5). + elim H13.clear H13. + elim (le_to_or_lt_eq ? ? H15) + [ auto + (*apply le_S_S_to_le. + assumption*) + | apply False_ind. + auto + (*apply H12. + apply sym_eq. + assumption*) + ] + ] + ] + + | simplify. + unfold permut_p in H3. + unfold transpose. + apply (eqb_elim (h i) (S n1)) + [ intro. + apply (eqb_elim (h i) (h (S n1))) + [ intro. + (*NB: qui auto non chiude il goal*) + simplify. + assumption + | intro. + simplify. + elim (H3 (S n1) (le_n ? ) H5). + auto + (*elim H10. + assumption*) + ] + | intro. + apply (eqb_elim (h i) (h (S n1))) + [ intro. + (*NB: qui auto non chiude il goal*) + simplify. + assumption + | intro. + simplify. + elim (H3 i (le_S ? ? H6) H7). + auto + (*elim H10. + assumption*) + ] + ] + ] + | simplify. + intros. + unfold Not. + intro. + unfold permut_p in H3. + elim (H3 i (le_S i ? H6) H7). + apply (H13 j H8 (le_S j ? H9) H10). + apply (injective_transpose ? ? ? ? H11) + ] + | assumption + ] + ] + | apply eq_map_iter_p. + intros. + auto + (*rewrite > transpose_transpose. + reflexivity*) + ] + ] + | intro. + rewrite > (map_iter_p_S_false ? ? ? ? ? H5). + rewrite > (map_iter_p_S_false ? ? ? ? ? H5). + apply H2 + [ unfold permut_p. + unfold permut_p in H3. + intros. + elim (H3 i (le_S i ? H6) H7). + elim H8. + split + [ split + [ elim (le_to_or_lt_eq ? ? H10) + [ auto + (*apply le_S_S_to_le.assumption*) + | absurd (p (h i) = true) + [ assumption + | rewrite > H12. + rewrite > H5. + unfold.intro. + (*l'invocazione di auto qui genera segmentation fault*) + apply not_eq_true_false. + (*l'invocazione di auto qui genera segmentation fault*) + apply sym_eq. + (*l'invocazione di auto qui genera segmentation fault*) + assumption + ] + ] + | assumption + ] + | intros. + apply H9;auto + (*[ assumption + | apply (le_S ? ? H13) + | assumption + ]*) + ] + | assumption + + ] + + ] + +] +qed. + diff --git a/matita/library_auto/nat/minimization.ma b/matita/library_auto/nat/minimization.ma new file mode 100644 index 000000000..d5f91db6f --- /dev/null +++ b/matita/library_auto/nat/minimization.ma @@ -0,0 +1,406 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/minimization". + +include "nat/minus.ma". + +let rec max i f \def + match (f i) with + [ true \Rightarrow i + | false \Rightarrow + match i with + [ O \Rightarrow O + | (S j) \Rightarrow max j f ]]. + +theorem max_O_f : \forall f: nat \to bool. max O f = O. +intro. simplify. +elim (f O); auto. +(*[ simplify. + reflexivity +| simplify. + reflexivity +]*) +qed. + +theorem max_S_max : \forall f: nat \to bool. \forall n:nat. +(f (S n) = true \land max (S n) f = (S n)) \lor +(f (S n) = false \land max (S n) f = max n f). +intros.simplify.elim (f (S n));auto. +(*[ simplify. + left. + split;reflexivity +| simplify. + right. + split;reflexivity. +]*) +qed. + +theorem le_max_n : \forall f: nat \to bool. \forall n:nat. +max n f \le n. +intros. +elim n +[ rewrite > max_O_f. + apply le_n +| simplify. + elim (f (S n1));simplify;auto. + (*[ simplify. + apply le_n + | simplify. + apply le_S. + assumption + ]*) +] +qed. + +theorem le_to_le_max : \forall f: nat \to bool. \forall n,m:nat. +n\le m \to max n f \le max m f. +intros. +elim H +[ apply le_n +| apply (trans_le ? (max n1 f)) + [ apply H2 + | cut ((f (S n1) = true \land max (S n1) f = (S n1)) \lor + (f (S n1) = false \land max (S n1) f = max n1 f)) + [ elim Hcut;elim H3;rewrite > H5;auto + (*[ elim H3. + rewrite > H5. + apply le_S. + apply le_max_n. + | elim H3. + rewrite > H5. + apply le_n. + ]*) + | apply max_S_max. + ] + ] +] +qed. + +theorem f_m_to_le_max: \forall f: nat \to bool. \forall n,m:nat. +m\le n \to f m = true \to m \le max n f. +intros 3. +elim n +[ auto. + (*apply (le_n_O_elim m H). + apply le_O_n.*) +| apply (le_n_Sm_elim m n1 H1);intro + [ apply (trans_le ? (max n1 f)); auto + (*[ apply H + [apply le_S_S_to_le. + assumption + | assumption + ] + | apply le_to_le_max. + apply le_n_Sn. + ]*) + | simplify. + rewrite < H3. + rewrite > H2. + auto + (*simplify. + apply le_n.*) + ] +] +qed. + + +definition max_spec \def \lambda f:nat \to bool.\lambda n: nat. +\exists i. (le i n) \land (f i = true) \to +(f n) = true \land (\forall i. i < n \to (f i = false)). + +theorem f_max_true : \forall f:nat \to bool. \forall n:nat. +(\exists i:nat. le i n \land f i = true) \to f (max n f) = true. +intros 2. +elim n +[ elim H. + elim H1. + generalize in match H3. + apply (le_n_O_elim a H2). + auto + (*intro. + simplify. + rewrite > H4. + simplify. + assumption.*) +| simplify. + apply (bool_ind (\lambda b:bool. + (f (S n1) = b) \to (f (match b in bool with + [ true \Rightarrow (S n1) + | false \Rightarrow (max n1 f)])) = true)) + + [ auto + (*simplify. + intro. + assumption.*) + | simplify. + intro. + apply H. + elim H1. + elim H3. + generalize in match H5. + apply (le_n_Sm_elim a n1 H4) + [ intros. + apply (ex_intro nat ? a). + auto + (*split + [ apply le_S_S_to_le. + assumption. + | assumption. + ]*) + | intros. + (* una chiamata di auto in questo punto genera segmentation fault*) + apply False_ind. + (* una chiamata di auto in questo punto genera segmentation fault*) + apply not_eq_true_false. + (* una chiamata di auto in questo punto genera segmentation fault*) + rewrite < H2. + (* una chiamata di auto in questo punto genera segmentation fault*) + rewrite < H7. + (* una chiamata di auto in questo punto genera segmentation fault*) + rewrite > H6. + reflexivity. + ] + | reflexivity. + ] +] +qed. + +theorem lt_max_to_false : \forall f:nat \to bool. +\forall n,m:nat. (max n f) < m \to m \leq n \to f m = false. +intros 2. +elim n +[ absurd (le m O);auto + (*[ assumption + | cut (O < m) + [ apply (lt_O_n_elim m Hcut). + exact not_le_Sn_O. + | rewrite < (max_O_f f). + assumption. + ] + ]*) +| generalize in match H1. + elim (max_S_max f n1) + [ elim H3. + absurd (m \le S n1) + [ assumption + | apply lt_to_not_le. + rewrite < H6. + assumption + ] + | elim H3. + apply (le_n_Sm_elim m n1 H2) + [ intro. + apply H;auto + (*[ rewrite < H6. + assumption + | apply le_S_S_to_le. + assumption + ]*) + | intro. + auto + (*rewrite > H7. + assumption*) + ] + ] +]qed. + +let rec min_aux off n f \def + match f (n-off) with + [ true \Rightarrow (n-off) + | false \Rightarrow + match off with + [ O \Rightarrow n + | (S p) \Rightarrow min_aux p n f]]. + +definition min : nat \to (nat \to bool) \to nat \def +\lambda n.\lambda f. min_aux n n f. + +theorem min_aux_O_f: \forall f:nat \to bool. \forall i :nat. +min_aux O i f = i. +intros.simplify. +(*una chiamata di auto a questo punto porta ad un'elaborazione molto lunga (forse va + in loop): dopo circa 3 minuti non era ancora terminata. + *) +rewrite < minus_n_O. +(*una chiamata di auto a questo punto porta ad un'elaborazione molto lunga (forse va + in loop): dopo circa 3 minuti non era ancora terminata. + *) +elim (f i); auto. +(*[ reflexivity. + simplify +| reflexivity +]*) +qed. + +theorem min_O_f : \forall f:nat \to bool. +min O f = O. +intro. +(* una chiamata di auto a questo punto NON conclude la dimostrazione*) +apply (min_aux_O_f f O). +qed. + +theorem min_aux_S : \forall f: nat \to bool. \forall i,n:nat. +(f (n -(S i)) = true \land min_aux (S i) n f = (n - (S i))) \lor +(f (n -(S i)) = false \land min_aux (S i) n f = min_aux i n f). +intros.simplify.elim (f (n - (S i)));auto. +(*[ simplify. + left. + split;reflexivity. +| simplify. + right. + split;reflexivity. +]*) +qed. + +theorem f_min_aux_true: \forall f:nat \to bool. \forall off,m:nat. +(\exists i. le (m-off) i \land le i m \land f i = true) \to +f (min_aux off m f) = true. +intros 2. +elim off +[ elim H. + elim H1. + elim H2. + cut (a = m) + [ auto. + (*rewrite > (min_aux_O_f f). + rewrite < Hcut. + assumption*) + | apply (antisym_le a m) + [ assumption + | rewrite > (minus_n_O m). + assumption + ] + ] +| simplify. + apply (bool_ind (\lambda b:bool. + (f (m-(S n)) = b) \to (f (match b in bool with + [ true \Rightarrow m-(S n) + | false \Rightarrow (min_aux n m f)])) = true)) + [ auto + (*simplify. + intro. + assumption.*) + | simplify. + intro. + apply H. + elim H1. + elim H3. + elim H4. + elim (le_to_or_lt_eq (m-(S n)) a H6) + [ apply (ex_intro nat ? a). + split;auto + (*[ auto.split + [ apply lt_minus_S_n_to_le_minus_n. + assumption + | assumption + ] + | assumption + ]*) + | absurd (f a = false) + [ (* una chiamata di auto in questo punto genera segmentation fault*) + rewrite < H8. + assumption. + | rewrite > H5. + apply not_eq_true_false + ] + ] + | reflexivity. + ] +] +qed. + +theorem lt_min_aux_to_false : \forall f:nat \to bool. +\forall n,off,m:nat. (n-off) \leq m \to m < (min_aux off n f) \to f m = false. +intros 3. +elim off +[absurd (le n m) + [ rewrite > minus_n_O. + assumption + | apply lt_to_not_le. + rewrite < (min_aux_O_f f n). + assumption + ] +| generalize in match H1. + elim (min_aux_S f n1 n) + [ elim H3. + absurd (n - S n1 \le m) + [ assumption + | apply lt_to_not_le. + rewrite < H6. + assumption + ] + | elim H3. + elim (le_to_or_lt_eq (n -(S n1)) m) + [ apply H + [ auto + (*apply lt_minus_S_n_to_le_minus_n. + assumption*) + | rewrite < H6. + assumption + ] + | rewrite < H7. + assumption + | assumption + ] + ] +] +qed. + +theorem le_min_aux : \forall f:nat \to bool. +\forall n,off:nat. (n-off) \leq (min_aux off n f). +intros 3. +elim off +[ rewrite < minus_n_O. + auto + (*rewrite > (min_aux_O_f f n). + apply le_n.*) +| elim (min_aux_S f n1 n) + [ elim H1. + auto + (*rewrite > H3. + apply le_n.*) + | elim H1. + rewrite > H3. + auto + (*apply (trans_le (n-(S n1)) (n-n1)) + [ apply monotonic_le_minus_r. + apply le_n_Sn. + | assumption. + ]*) + ] +] +qed. + +theorem le_min_aux_r : \forall f:nat \to bool. +\forall n,off:nat. (min_aux off n f) \le n. +intros. +elim off +[ simplify. + rewrite < minus_n_O. + elim (f n);auto + (*[simplify. + apply le_n. + | simplify. + apply le_n. + ]*) +| simplify. + elim (f (n -(S n1)));simplify;auto + (*[ apply le_plus_to_minus. + rewrite < sym_plus. + apply le_plus_n + | assumption + ]*) +] +qed. diff --git a/matita/library_auto/nat/minus.ma b/matita/library_auto/nat/minus.ma new file mode 100644 index 000000000..c2d070a8f --- /dev/null +++ b/matita/library_auto/nat/minus.ma @@ -0,0 +1,514 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + + +set "baseuri" "cic:/matita/nat/minus". + +include "nat/le_arith.ma". +include "nat/compare.ma". + +let rec minus n m \def + match n with + [ O \Rightarrow O + | (S p) \Rightarrow + match m with + [O \Rightarrow (S p) + | (S q) \Rightarrow minus p q ]]. + +(*CSC: the URI must disappear: there is a bug now *) +interpretation "natural minus" 'minus x y = (cic:/matita/nat/minus/minus.con x y). + +theorem minus_n_O: \forall n:nat.n=n-O. +intros. +elim n; +auto. (* applico auto su entrambi i goal aperti*) +(*simplify;reflexivity.*) +qed. + +theorem minus_n_n: \forall n:nat.O=n-n. +intros. +elim n;simplify +[ reflexivity +| apply H +] +qed. + +theorem minus_Sn_n: \forall n:nat. S O = (S n)-n. +intro. +elim n +[ auto + (*simplify.reflexivity.*) +| elim H. + reflexivity +] +qed. + + +theorem minus_Sn_m: \forall n,m:nat. m \leq n \to (S n)-m = S (n-m). +intros 2. +apply (nat_elim2 +(\lambda n,m.m \leq n \to (S n)-m = S (n-m)));intros +[ apply (le_n_O_elim n1 H). + auto + (*simplify. + reflexivity.*) +| auto + (*simplify. + reflexivity.*) +| rewrite < H + [ reflexivity + | auto + (*apply le_S_S_to_le. + assumption.*) + ] +] +qed. + +theorem plus_minus: +\forall n,m,p:nat. m \leq n \to (n-m)+p = (n+p)-m. +intros 2. +apply (nat_elim2 +(\lambda n,m.\forall p:nat.m \leq n \to (n-m)+p = (n+p)-m));intros +[ apply (le_n_O_elim ? H). + auto + (*simplify. + rewrite < minus_n_O. + reflexivity.*) +| auto + (*simplify. + reflexivity.*) +| simplify. + auto + (*apply H. + apply le_S_S_to_le. + assumption.*) +] +qed. + +theorem minus_plus_m_m: \forall n,m:nat.n = (n+m)-m. +intros 2. +generalize in match n. +elim m +[ rewrite < minus_n_O. + apply plus_n_O. +| elim n2 + [ auto + (*simplify. + apply minus_n_n.*) + | rewrite < plus_n_Sm. + change with (S n3 = (S n3 + n1)-n1). + apply H + ] +] +qed. + +theorem plus_minus_m_m: \forall n,m:nat. +m \leq n \to n = (n-m)+m. +intros 2. +apply (nat_elim2 (\lambda n,m.m \leq n \to n = (n-m)+m));intros +[ apply (le_n_O_elim n1 H). + reflexivity +| auto + (*simplify. + rewrite < plus_n_O. + reflexivity.*) +| simplify. + rewrite < sym_plus. + simplify. + apply eq_f. + rewrite < sym_plus. + auto + (*apply H. + apply le_S_S_to_le. + assumption.*) +] +qed. + +theorem minus_to_plus :\forall n,m,p:nat.m \leq n \to n-m = p \to +n = m+p. +intros.apply (trans_eq ? ? ((n-m)+m));auto. +(*[ apply plus_minus_m_m. + apply H. +| elim H1. + apply sym_plus. +]*) +qed. + +theorem plus_to_minus :\forall n,m,p:nat. +n = m+p \to n-m = p. +intros. +apply (inj_plus_r m). +rewrite < H. +rewrite < sym_plus. +symmetry. +auto. +(*apply plus_minus_m_m. +rewrite > H. +rewrite > sym_plus. +apply le_plus_n.*) +qed. + +theorem minus_S_S : \forall n,m:nat. +eq nat (minus (S n) (S m)) (minus n m). +intros. +reflexivity. +qed. + +theorem minus_pred_pred : \forall n,m:nat. lt O n \to lt O m \to +eq nat (minus (pred n) (pred m)) (minus n m). +intros. +apply (lt_O_n_elim n H). +intro. +apply (lt_O_n_elim m H1). +intro. +auto. +(*simplify.reflexivity.*) +qed. + +theorem eq_minus_n_m_O: \forall n,m:nat. +n \leq m \to n-m = O. +intros 2. +apply (nat_elim2 (\lambda n,m.n \leq m \to n-m = O));intros +[ auto + (*simplify. + reflexivity.*) +| apply False_ind. + auto + (*apply not_le_Sn_O. + goal 15.*) (*prima goal 13*) +(* effettuando un'esecuzione passo-passo, quando si arriva a dover + considerare questa tattica, la finestra di dimostrazione scompare + e viene generato il seguente errore: + Uncaught exception: File "matitaMathView.ml", line 677, characters + 6-12: Assertion failed. + + tuttavia l'esecuzione continua, ed il teorema viene comunque + dimostrato. + *) + (*apply H.*) +| simplify. + auto + (*apply H. + apply le_S_S_to_le. + apply H1.*) +] +qed. + +theorem le_SO_minus: \forall n,m:nat.S n \leq m \to S O \leq m-n. +intros. +elim H +[ elim (minus_Sn_n n).apply le_n +| rewrite > minus_Sn_m;auto + (*apply le_S.assumption. + apply lt_to_le.assumption.*) +] +qed. + +theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)). +intros.apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n))));intros +[ elim n1;simplify + [ apply le_n_Sn. + | rewrite < minus_n_O. + apply le_n. + ] +| auto + (*simplify.apply le_n_Sn.*) +| simplify.apply H. +] +qed. + +theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p. +intros 3. +auto. +(*simplify. +intro. +apply (trans_le (m-n) (S (m-(S n))) p). +apply minus_le_S_minus_S. +assumption.*) +qed. + +theorem le_minus_m: \forall n,m:nat. n-m \leq n. +intros.apply (nat_elim2 (\lambda m,n. n-m \leq n));intros +[ auto + (*rewrite < minus_n_O. + apply le_n.*) +| auto + (*simplify. + apply le_n.*) +| simplify. + auto + (*apply le_S. + assumption.*) +] +qed. + +theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n. +intros. +apply (lt_O_n_elim n H). +intro. +apply (lt_O_n_elim m H1). +intro. +simplify. +auto. +(*unfold lt. +apply le_S_S. +apply le_minus_m.*) +qed. + +theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m. +intros 2. +apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)) +[ intros. + apply le_O_n +| simplify. + intros. + assumption +| simplify. + intros. + auto + (*apply le_S_S. + apply H. + assumption.*) +] +qed. + +(* galois *) +theorem monotonic_le_minus_r: +\forall p,q,n:nat. q \leq p \to n-p \le n-q. +(*simplify*). +intros 2. +apply (nat_elim2 +(\lambda p,q.\forall a.q \leq p \to a-p \leq a-q));intros +[ apply (le_n_O_elim n H). + apply le_n. +| rewrite < minus_n_O. + apply le_minus_m. +| elim a + [ auto + (*simplify. + apply le_n.*) + | simplify. + auto + (*apply H. + apply le_S_S_to_le. + assumption.*) + ] +] +qed. + +theorem le_minus_to_plus: \forall n,m,p. (le (n-m) p) \to (le n (p+m)). +intros 2. +apply (nat_elim2 (\lambda n,m.\forall p.(le (n-m) p) \to (le n (p+m))));intros +[ apply le_O_n. +| rewrite < plus_n_O. + assumption. +| rewrite < plus_n_Sm. + apply le_S_S. + apply H. + exact H1. +] +qed. + +theorem le_plus_to_minus: \forall n,m,p. (le n (p+m)) \to (le (n-m) p). +intros 2. +apply (nat_elim2 (\lambda n,m.\forall p.(le n (p+m)) \to (le (n-m) p))) +[ intros. + auto + (*simplify. + apply le_O_n.*) +| intros 2. + rewrite < plus_n_O. + auto + (*intro. + simplify. + assumption.*) +| intros. + simplify. + apply H. + apply le_S_S_to_le. + rewrite > plus_n_Sm. + assumption +] +qed. + +(* the converse of le_plus_to_minus does not hold *) +theorem le_plus_to_minus_r: \forall n,m,p. (le (n+m) p) \to (le n (p-m)). +intros 3. +apply (nat_elim2 (\lambda m,p.(le (n+m) p) \to (le n (p-m))));intro +[ rewrite < plus_n_O. + rewrite < minus_n_O. + auto + (*intro. + assumption.*) +| intro. + cut (n=O) + [ auto + (*rewrite > Hcut. + apply le_O_n.*) + | apply sym_eq. + apply le_n_O_to_eq. + auto + (*apply (trans_le ? (n+(S n1))) + [ rewrite < sym_plus. + apply le_plus_n + | assumption + ]*) + ] +| intros. + simplify. + apply H. + apply le_S_S_to_le. + rewrite > plus_n_Sm. + assumption +] +qed. + +(* minus and lt - to be completed *) +theorem lt_minus_to_plus: \forall n,m,p. (lt n (p-m)) \to (lt (n+m) p). +intros 3. +apply (nat_elim2 (\lambda m,p.(lt n (p-m)) \to (lt (n+m) p))) +[ intro. + rewrite < plus_n_O. + rewrite < minus_n_O. + auto + (*intro. + assumption.*) +| simplify. + intros. + apply False_ind. + apply (not_le_Sn_O n H) +| (*simplify.*) + intros. + unfold lt. + apply le_S_S. + rewrite < plus_n_Sm. + auto + (*apply H. + apply H1.*) +] +qed. + +theorem distributive_times_minus: distributive nat times minus. +unfold distributive. +intros. +apply ((leb_elim z y));intro +[ cut (x*(y-z)+x*z = (x*y-x*z)+x*z) + [ auto + (*apply (inj_plus_l (x*z)). + assumption.*) + | apply (trans_eq nat ? (x*y)) + [ rewrite < distr_times_plus. + auto + (*rewrite < (plus_minus_m_m ? ? H). + reflexivity.*) + | rewrite < plus_minus_m_m;auto + (*[ reflexivity. + | apply le_times_r. + assumption. + ]*) + ] + ] +| rewrite > eq_minus_n_m_O + [ rewrite > (eq_minus_n_m_O (x*y)) + [ auto + (*rewrite < sym_times. + simplify. + reflexivity.*) + | apply le_times_r. + apply lt_to_le. + auto + (*apply not_le_to_lt. + assumption.*) + ] + | auto + (*apply lt_to_le. + apply not_le_to_lt. + assumption.*) + ] +] +qed. + +theorem distr_times_minus: \forall n,m,p:nat. n*(m-p) = n*m-n*p +\def distributive_times_minus. + +theorem eq_minus_plus_plus_minus: \forall n,m,p:nat. p \le m \to (n+m)-p = n+(m-p). +intros. +apply plus_to_minus. +rewrite > sym_plus in \vdash (? ? ? %). +rewrite > assoc_plus. +auto. +(*rewrite < plus_minus_m_m. +reflexivity. +assumption. +*) +qed. + +theorem eq_minus_minus_minus_plus: \forall n,m,p:nat. (n-m)-p = n-(m+p). +intros. +cut (m+p \le n \or m+p \nleq n) +[ elim Hcut + [ symmetry. + apply plus_to_minus. + rewrite > assoc_plus. + rewrite > (sym_plus p). + rewrite < plus_minus_m_m + [ rewrite > sym_plus. + rewrite < plus_minus_m_m ; auto + (*[ reflexivity. + | apply (trans_le ? (m+p)) + [ rewrite < sym_plus. + apply le_plus_n + | assumption + ] + ]*) + | apply le_plus_to_minus_r. + rewrite > sym_plus. + assumption. + ] + | rewrite > (eq_minus_n_m_O n (m+p)) + [ rewrite > (eq_minus_n_m_O (n-m) p) + [ reflexivity + | apply le_plus_to_minus. + apply lt_to_le. + rewrite < sym_plus. + auto + (*apply not_le_to_lt. + assumption.*) + ] + | auto + (*apply lt_to_le. + apply not_le_to_lt. + assumption.*) + ] + ] +| apply (decidable_le (m+p) n) +] +qed. + +theorem eq_plus_minus_minus_minus: \forall n,m,p:nat. p \le m \to m \le n \to +p+(n-m) = n-(m-p). +intros. +apply sym_eq. +apply plus_to_minus. +rewrite < assoc_plus. +rewrite < plus_minus_m_m; +[ rewrite < sym_plus. + auto + (*rewrite < plus_minus_m_m + [ reflexivity + | assumption + ]*) +| assumption +] +qed. diff --git a/matita/library_auto/nat/nat.ma b/matita/library_auto/nat/nat.ma new file mode 100644 index 000000000..80f5939dd --- /dev/null +++ b/matita/library_auto/nat/nat.ma @@ -0,0 +1,151 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/nat". + +include "higher_order_defs/functions.ma". + +inductive nat : Set \def + | O : nat + | S : nat \to nat. + +definition pred: nat \to nat \def + \lambda n:nat. match n with + [ O \Rightarrow O + | (S p) \Rightarrow p ]. + +theorem pred_Sn : \forall n:nat.n=(pred (S n)). + auto. + (*intros. reflexivity.*) +qed. + +theorem injective_S : injective nat nat S. + unfold injective. + intros. + rewrite > pred_Sn. + rewrite > (pred_Sn y). + auto. + (*apply eq_f. + assumption.*) +qed. + +theorem inj_S : \forall n,m:nat.(S n)=(S m) \to n=m \def + injective_S. + +theorem not_eq_S : \forall n,m:nat. + \lnot n=m \to S n \neq S m. + intros. + unfold Not. + intros. + auto. + (*apply H. + apply injective_S. + assumption.*) +qed. + +definition not_zero : nat \to Prop \def + \lambda n: nat. + match n with + [ O \Rightarrow False + | (S p) \Rightarrow True ]. + +theorem not_eq_O_S : \forall n:nat. O \neq S n. + intros. + unfold Not. + intros. + cut (not_zero O) + [exact Hcut + |rewrite > H.exact I] +qed. + +theorem not_eq_n_Sn : \forall n:nat. n \neq S n. + intros. + elim n + [apply not_eq_O_S + |apply not_eq_S.assumption] +qed. + +theorem nat_case: + \forall n:nat.\forall P:nat \to Prop. + P O \to (\forall m:nat. P (S m)) \to P n. + intros. + + elim n + [ assumption + | apply H1 ] +qed. + +theorem nat_case1: + \forall n:nat.\forall P:nat \to Prop. + (n=O \to P O) \to (\forall m:nat. (n=(S m) \to P (S m))) \to P n. +intros 2; +elim n + [ auto + (*apply H; + reflexivity*) + | auto + (*apply H2; + reflexivity*) ] +qed. + +theorem nat_elim2 : + \forall R:nat \to nat \to Prop. + (\forall n:nat. R O n) + \to (\forall n:nat. R (S n) O) + \to (\forall n,m:nat. R n m \to R (S n) (S m)) + \to \forall n,m:nat. R n m. + intros 5; + elim n + [ apply H + | apply (nat_case m) + [ apply H1 + |intro; + auto + (*apply H2; + apply H3*) + ] + ] +qed. + +theorem decidable_eq_nat : \forall n,m:nat.decidable (n=m). + intros.unfold decidable. + apply (nat_elim2 (\lambda n,m.(Or (n=m) ((n=m) \to False)))) + [ intro; elim n1 + [auto + (*left; + reflexivity*) + |auto + (*right; + apply not_eq_O_S*) ] + | intro; + right; + intro; + apply (not_eq_O_S n1); + auto + (*apply sym_eq; + assumption*) + | intros; elim H + [ auto + (*left; + apply eq_f; + assumption*) + | right; + intro; + auto + (*apply H1; + apply inj_S; + assumption*) + ] + ] +qed. diff --git a/matita/library_auto/nat/nth_prime.ma b/matita/library_auto/nat/nth_prime.ma new file mode 100644 index 000000000..eabb598f1 --- /dev/null +++ b/matita/library_auto/nat/nth_prime.ma @@ -0,0 +1,279 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/nth_prime". + +include "nat/primes.ma". +include "nat/lt_arith.ma". + +(* upper bound by Bertrand's conjecture. *) +(* Too difficult to prove. +let rec nth_prime n \def +match n with + [ O \Rightarrow (S(S O)) + | (S p) \Rightarrow + let previous_prime \def S (nth_prime p) in + min_aux previous_prime ((S(S O))*previous_prime) primeb]. + +theorem example8 : nth_prime (S(S O)) = (S(S(S(S(S O))))). +normalize.reflexivity. +qed. + +theorem example9 : nth_prime (S(S(S O))) = (S(S(S(S(S(S(S O))))))). +normalize.reflexivity. +qed. + +theorem example10 : nth_prime (S(S(S(S O)))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))))). +normalize.reflexivity. +qed. *) + +theorem smallest_factor_fact: \forall n:nat. +n < smallest_factor (S n!). +intros. +apply not_le_to_lt. +unfold Not. +intro. +apply (not_divides_S_fact n (smallest_factor(S n!))) +[ apply lt_SO_smallest_factor. + auto + (*unfold lt. + apply le_S_S. + apply le_SO_fact*) +| assumption +| auto + (*apply divides_smallest_factor_n. + unfold lt. + apply le_S_S. + apply le_O_n*) +] +qed. + +theorem ex_prime: \forall n. (S O) \le n \to \exists m. +n < m \land m \le S n! \land (prime m). +intros. +elim H +[ apply (ex_intro nat ? (S(S O))). + split;auto + (*[ split + [ apply (le_n (S(S O))) + | apply (le_n (S(S O))) + ] + | apply (primeb_to_Prop (S(S O))) + ]*) +| apply (ex_intro nat ? (smallest_factor (S (S n1)!))). + split + [ auto + (*split + [ apply smallest_factor_fact + | apply le_smallest_factor_n + ]*) + | (* Andrea: ancora hint non lo trova *) + apply prime_smallest_factor_n. + auto + (*unfold lt. + apply le_S. + apply le_SSO_fact. + unfold lt. + apply le_S_S. + assumption*) + ] +] +qed. + +let rec nth_prime n \def +match n with + [ O \Rightarrow (S(S O)) + | (S p) \Rightarrow + let previous_prime \def (nth_prime p) in + let upper_bound \def S previous_prime! in + min_aux (upper_bound - (S previous_prime)) upper_bound primeb]. + +(* it works, but nth_prime 4 takes already a few minutes - +it must compute factorial of 7 ...*) + +theorem example11 : nth_prime (S(S O)) = (S(S(S(S(S O))))). +auto. +(*normalize.reflexivity.*) +qed. + +theorem example12: nth_prime (S(S(S O))) = (S(S(S(S(S(S(S O))))))). +auto. +(*normalize.reflexivity.*) +qed. + +theorem example13 : nth_prime (S(S(S(S O)))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))))). +auto. +(*normalize.reflexivity.*) +qed. + +(* +theorem example14 : nth_prime (S(S(S(S(S O))))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))))). +normalize.reflexivity. +*) + +theorem prime_nth_prime : \forall n:nat.prime (nth_prime n). +intro. +apply (nat_case n) +[ auto + (*simplify. + apply (primeb_to_Prop (S(S O)))*) +| intro. + change with + (let previous_prime \def (nth_prime m) in + let upper_bound \def S previous_prime! in + prime (min_aux (upper_bound - (S previous_prime)) upper_bound primeb)). + apply primeb_true_to_prime. + apply f_min_aux_true. + apply (ex_intro nat ? (smallest_factor (S (nth_prime m)!))). + split + [ split + [ cut (S (nth_prime m)!-(S (nth_prime m)! - (S (nth_prime m))) = (S (nth_prime m))) + [ rewrite > Hcut. + exact (smallest_factor_fact (nth_prime m)) + | (* maybe we could factorize this proof *) + apply plus_to_minus. + auto + (*apply plus_minus_m_m. + apply le_S_S. + apply le_n_fact_n*) + ] + | apply le_smallest_factor_n + ] + | apply prime_to_primeb_true. + apply prime_smallest_factor_n. + auto + (*unfold lt. + apply le_S_S. + apply le_SO_fact*) + ] +] +qed. + +(* properties of nth_prime *) +theorem increasing_nth_prime: increasing nth_prime. +unfold increasing. +intros. +change with +(let previous_prime \def (nth_prime n) in +let upper_bound \def S previous_prime! in +(S previous_prime) \le min_aux (upper_bound - (S previous_prime)) upper_bound primeb). +intros. +cut (upper_bound - (upper_bound -(S previous_prime)) = (S previous_prime)) +[ rewrite < Hcut in \vdash (? % ?). + apply le_min_aux +| apply plus_to_minus. + auto + (*apply plus_minus_m_m. + apply le_S_S. + apply le_n_fact_n*) +] +qed. + +variant lt_nth_prime_n_nth_prime_Sn :\forall n:nat. +(nth_prime n) < (nth_prime (S n)) \def increasing_nth_prime. + +theorem injective_nth_prime: injective nat nat nth_prime. +auto. +(*apply increasing_to_injective. +apply increasing_nth_prime.*) +qed. + +theorem lt_SO_nth_prime_n : \forall n:nat. (S O) \lt nth_prime n. +intros. +(*usando la tattica auto qui, dopo svariati minuti la computazione non era + * ancora terminata + *) +elim n +[ auto + (*unfold lt. + apply le_n*) +| auto + (*apply (trans_lt ? (nth_prime n1)) + [ assumption + | apply lt_nth_prime_n_nth_prime_Sn + ]*) +] +qed. + +theorem lt_O_nth_prime_n : \forall n:nat. O \lt nth_prime n. +intros. +auto. +(*apply (trans_lt O (S O)) +[ unfold lt. + apply le_n +| apply lt_SO_nth_prime_n +]*) +qed. + +theorem ex_m_le_n_nth_prime_m: +\forall n: nat. nth_prime O \le n \to +\exists m. nth_prime m \le n \land n < nth_prime (S m). +auto. +(*intros. +apply increasing_to_le2 +[ exact lt_nth_prime_n_nth_prime_Sn +| assumption +]*) +qed. + +theorem lt_nth_prime_to_not_prime: \forall n,m. nth_prime n < m \to m < nth_prime (S n) +\to \lnot (prime m). +intros. +apply primeb_false_to_not_prime. +letin previous_prime \def (nth_prime n). +letin upper_bound \def (S previous_prime!). +apply (lt_min_aux_to_false primeb upper_bound (upper_bound - (S previous_prime)) m) +[ cut (S (nth_prime n)!-(S (nth_prime n)! - (S (nth_prime n))) = (S (nth_prime n))) + [ rewrite > Hcut. + assumption + | apply plus_to_minus. + auto + (*apply plus_minus_m_m. + apply le_S_S. + apply le_n_fact_n*) + ] +| assumption +] +qed. + +(* nth_prime enumerates all primes *) +theorem prime_to_nth_prime : \forall p:nat. prime p \to +\exists i. nth_prime i = p. +intros. +cut (\exists m. nth_prime m \le p \land p < nth_prime (S m)) +[ elim Hcut. + elim H1. + cut (nth_prime a < p \lor nth_prime a = p) + [ elim Hcut1 + [ absurd (prime p) + [ assumption + | auto + (*apply (lt_nth_prime_to_not_prime a);assumption*) + ] + | auto + (*apply (ex_intro nat ? a). + assumption*) + ] + | auto + (*apply le_to_or_lt_eq. + assumption*) + ] +| apply ex_m_le_n_nth_prime_m. + simplify. + unfold prime in H. + elim H. + assumption +] +qed. + diff --git a/matita/library_auto/nat/ord.ma b/matita/library_auto/nat/ord.ma new file mode 100644 index 000000000..8f73f0478 --- /dev/null +++ b/matita/library_auto/nat/ord.ma @@ -0,0 +1,388 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/ord". + +include "datatypes/constructors.ma". +include "nat/exp.ma". +include "nat/gcd.ma". +include "nat/relevant_equations.ma". (* required by auto paramod *) + +(* this definition of log is based on pairs, with a remainder *) + +let rec p_ord_aux p n m \def + match n \mod m with + [ O \Rightarrow + match p with + [ O \Rightarrow pair nat nat O n + | (S p) \Rightarrow + match (p_ord_aux p (n / m) m) with + [ (pair q r) \Rightarrow pair nat nat (S q) r] ] + | (S a) \Rightarrow pair nat nat O n]. + +(* p_ord n m = if m divides n q times, with remainder r *) +definition p_ord \def \lambda n,m:nat.p_ord_aux n n m. + +theorem p_ord_aux_to_Prop: \forall p,n,m. O < m \to + match p_ord_aux p n m with + [ (pair q r) \Rightarrow n = m \sup q *r ]. +intro. +elim p +[ simplify. + apply (nat_case (n \mod m)) + [ simplify. + apply plus_n_O + | intros. + simplify. + apply plus_n_O + ] +| simplify. + apply (nat_case1 (n1 \mod m)) + [ intro. + simplify. + generalize in match (H (n1 / m) m). + elim (p_ord_aux n (n1 / m) m). + simplify. + rewrite > assoc_times. + rewrite < H3 + [ rewrite > (plus_n_O (m*(n1 / m))). + rewrite < H2. + rewrite > sym_times. + auto + (*rewrite < div_mod + [ reflexivity + | assumption + ]*) + | assumption + ] + | intros. + simplify. + apply plus_n_O + ] +] +qed. + +theorem p_ord_aux_to_exp: \forall p,n,m,q,r. O < m \to + (pair nat nat q r) = p_ord_aux p n m \to n = m \sup q * r. +intros. +change with +match (pair nat nat q r) with + [ (pair q r) \Rightarrow n = m \sup q * r ]. +rewrite > H1. +apply p_ord_aux_to_Prop. +assumption. +qed. + +(* questo va spostato in primes1.ma *) +theorem p_ord_exp: \forall n,m,i. O < m \to n \mod m \neq O \to +\forall p. i \le p \to p_ord_aux p (m \sup i * n) m = pair nat nat i n. +intros 5. +elim i +[ simplify. + rewrite < plus_n_O. + apply (nat_case p) + [ simplify. + elim (n \mod m);auto + (*[ simplify. + reflexivity + | simplify. + reflexivity + ]*) + | intro. + simplify. + cut (O < n \mod m \lor O = n \mod m) + [ elim Hcut + [ apply (lt_O_n_elim (n \mod m) H3). + intros.auto + (*simplify. + reflexivity*) + | apply False_ind.auto + (*apply H1. + apply sym_eq. + assumption*) + ] + | auto + (*apply le_to_or_lt_eq. + apply le_O_n*) + ] + ] +| generalize in match H3. + apply (nat_case p) + [ intro. + apply False_ind. + apply (not_le_Sn_O n1 H4) + | intros. + simplify. + fold simplify (m \sup (S n1)). + cut (((m \sup (S n1)*n) \mod m) = O) + [ rewrite > Hcut. + simplify. + fold simplify (m \sup (S n1)). + cut ((m \sup (S n1) *n) / m = m \sup n1 *n) + [ rewrite > Hcut1. + rewrite > (H2 m1);auto + (*[ simplify. + reflexivity + | apply le_S_S_to_le. + assumption + ]*) + | (* div_exp *) + simplify. + rewrite > assoc_times. + apply (lt_O_n_elim m H). + intro. + apply div_times + ] + | (* mod_exp = O *) + apply divides_to_mod_O + [ assumption + | simplify.auto + (*rewrite > assoc_times. + apply (witness ? ? (m \sup n1 *n)). + reflexivity*) + ] + ] + ] +] +qed. + +theorem p_ord_aux_to_Prop1: \forall p,n,m. (S O) < m \to O < n \to n \le p \to + match p_ord_aux p n m with + [ (pair q r) \Rightarrow r \mod m \neq O]. +intro. +elim p +[ absurd (O < n);auto + (*[ assumption + | apply le_to_not_lt. + assumption + ]*) +| simplify. + apply (nat_case1 (n1 \mod m)) + [ intro. + generalize in match (H (n1 / m) m). + elim (p_ord_aux n (n1 / m) m). + apply H5 + [ assumption + | auto + (*apply eq_mod_O_to_lt_O_div + [ apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ] + | assumption + | assumption + ]*) + | apply le_S_S_to_le.auto + (*apply (trans_le ? n1) + [ change with (n1 / m < n1). + apply lt_div_n_m_n;assumption + | assumption + ]*) + ] + | intros. + simplify.auto + (*rewrite > H4. + unfold Not. + intro. + apply (not_eq_O_S m1). + rewrite > H5. + reflexivity.*) + ] +] +qed. + +theorem p_ord_aux_to_not_mod_O: \forall p,n,m,q,r. (S O) < m \to O < n \to n \le p \to + pair nat nat q r = p_ord_aux p n m \to r \mod m \neq O. +intros. +change with + match (pair nat nat q r) with + [ (pair q r) \Rightarrow r \mod m \neq O]. +rewrite > H3. +apply p_ord_aux_to_Prop1; + assumption. +qed. + +theorem p_ord_exp1: \forall p,n,q,r. O < p \to \lnot p \divides r \to +n = p \sup q * r \to p_ord n p = pair nat nat q r. +intros. +unfold p_ord. +rewrite > H2. +apply p_ord_exp +[ assumption +| unfold. + intro. + auto + (*apply H1. + apply mod_O_to_divides + [ assumption + | assumption + ]*) +| apply (trans_le ? (p \sup q)) + [ cut ((S O) \lt p) + [ auto + (*elim q + [ simplify. + apply le_n_Sn + | simplify. + generalize in match H3. + apply (nat_case n1) + [ simplify. + rewrite < times_n_SO. + intro. + assumption + | intros. + apply (trans_le ? (p*(S m))) + [ apply (trans_le ? ((S (S O))*(S m))) + [ simplify. + rewrite > plus_n_Sm. + rewrite < plus_n_O. + apply le_plus_n + | apply le_times_l. + assumption + ] + | apply le_times_r. + assumption + ] + ] + ]*) + | alias id "not_eq_to_le_to_lt" = "cic:/matita/algebra/finite_groups/not_eq_to_le_to_lt.con". + apply not_eq_to_le_to_lt + [ unfold. + intro. + auto + (*apply H1. + rewrite < H3. + apply (witness ? r r ?). + simplify. + apply plus_n_O*) + | assumption + ] + ] + | rewrite > times_n_SO in \vdash (? % ?). + apply le_times_r. + change with (O \lt r). + apply not_eq_to_le_to_lt + [ unfold. + intro.auto + (*apply H1.rewrite < H3. + apply (witness ? ? O ?).rewrite < times_n_O. + reflexivity*) + | apply le_O_n + ] + ] +] +qed. + +theorem p_ord_to_exp1: \forall p,n,q,r. (S O) \lt p \to O \lt n \to p_ord n p = pair nat nat q r\to +\lnot p \divides r \land n = p \sup q * r. +intros. +unfold p_ord in H2. +split +[ unfold.intro. + apply (p_ord_aux_to_not_mod_O n n p q r);auto + (*[ assumption + | assumption + | apply le_n + | symmetry. + assumption + | apply divides_to_mod_O + [ apply (trans_lt ? (S O)) + [ unfold. + apply le_n + | assumption + ] + | assumption + ] + ]*) +| apply (p_ord_aux_to_exp n);auto + (*[ apply (trans_lt ? (S O)) + [ unfold. + apply le_n + | assumption + ] + | symmetry. + assumption + ]*) +] +qed. + +theorem p_ord_times: \forall p,a,b,qa,ra,qb,rb. prime p +\to O \lt a \to O \lt b +\to p_ord a p = pair nat nat qa ra +\to p_ord b p = pair nat nat qb rb +\to p_ord (a*b) p = pair nat nat (qa + qb) (ra*rb). +intros. +cut ((S O) \lt p) +[ elim (p_ord_to_exp1 ? ? ? ? Hcut H1 H3). + elim (p_ord_to_exp1 ? ? ? ? Hcut H2 H4). + apply p_ord_exp1 + [ auto + (*apply (trans_lt ? (S O)) + [ unfold. + apply le_n + | assumption + ]*) + | unfold. + intro. + elim (divides_times_to_divides ? ? ? H H9);auto + (*[ apply (absurd ? ? H10 H5) + | apply (absurd ? ? H10 H7) + ]*) + | (* rewrite > H6. + rewrite > H8. *) + auto paramodulation + ] +| unfold prime in H. + elim H. + assumption +] +qed. + +theorem fst_p_ord_times: \forall p,a,b. prime p +\to O \lt a \to O \lt b +\to fst ? ? (p_ord (a*b) p) = (fst ? ? (p_ord a p)) + (fst ? ? (p_ord b p)). +intros. +rewrite > (p_ord_times p a b (fst ? ? (p_ord a p)) (snd ? ? (p_ord a p)) +(fst ? ? (p_ord b p)) (snd ? ? (p_ord b p)) H H1 H2);auto. +(*[ simplify. + reflexivity +| apply eq_pair_fst_snd +| apply eq_pair_fst_snd +]*) +qed. + +theorem p_ord_p : \forall p:nat. (S O) \lt p \to p_ord p p = pair ? ? (S O) (S O). +intros. +apply p_ord_exp1 +[ auto + (*apply (trans_lt ? (S O)) + [ unfold. + apply le_n + | assumption + ]*) +| unfold. + intro. + apply (absurd ? ? H).auto + (*apply le_to_not_lt. + apply divides_to_le + [ unfold. + apply le_n + | assumption + ]*) +| auto + (*rewrite < times_n_SO. + apply exp_n_SO*) +] +qed. \ No newline at end of file diff --git a/matita/library_auto/nat/orders.ma b/matita/library_auto/nat/orders.ma new file mode 100644 index 000000000..fb6b597e2 --- /dev/null +++ b/matita/library_auto/nat/orders.ma @@ -0,0 +1,568 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/orders". + +include "nat/nat.ma". +include "higher_order_defs/ordering.ma". + +(* definitions *) +inductive le (n:nat) : nat \to Prop \def + | le_n : le n n + | le_S : \forall m:nat. le n m \to le n (S m). + +(*CSC: the URI must disappear: there is a bug now *) +interpretation "natural 'less or equal to'" 'leq x y = (cic:/matita/nat/orders/le.ind#xpointer(1/1) x y). +(*CSC: the URI must disappear: there is a bug now *) +interpretation "natural 'neither less nor equal to'" 'nleq x y = + (cic:/matita/logic/connectives/Not.con + (cic:/matita/nat/orders/le.ind#xpointer(1/1) x y)). + +definition lt: nat \to nat \to Prop \def +\lambda n,m:nat.(S n) \leq m. + +(*CSC: the URI must disappear: there is a bug now *) +interpretation "natural 'less than'" 'lt x y = (cic:/matita/nat/orders/lt.con x y). +(*CSC: the URI must disappear: there is a bug now *) +interpretation "natural 'not less than'" 'nless x y = + (cic:/matita/logic/connectives/Not.con (cic:/matita/nat/orders/lt.con x y)). + +definition ge: nat \to nat \to Prop \def +\lambda n,m:nat.m \leq n. + +(*CSC: the URI must disappear: there is a bug now *) +interpretation "natural 'greater or equal to'" 'geq x y = (cic:/matita/nat/orders/ge.con x y). + +definition gt: nat \to nat \to Prop \def +\lambda n,m:nat.m H7. + apply H*) + ] + ] + | auto + (*apply le_to_or_lt_eq. + apply H6*) + ] +] +qed. diff --git a/matita/library_auto/nat/permutation.ma b/matita/library_auto/nat/permutation.ma new file mode 100644 index 000000000..e450fc329 --- /dev/null +++ b/matita/library_auto/nat/permutation.ma @@ -0,0 +1,1432 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/permutation". + +include "nat/compare.ma". +include "nat/sigma_and_pi.ma". + +definition injn: (nat \to nat) \to nat \to Prop \def +\lambda f:nat \to nat.\lambda n:nat.\forall i,j:nat. +i \le n \to j \le n \to f i = f j \to i = j. + +theorem injn_Sn_n: \forall f:nat \to nat. \forall n:nat. +injn f (S n) \to injn f n. +unfold injn. +intros. +apply H;auto. +(*[ apply le_S. + assumption +| apply le_S. + assumption +| assumption +]*) +qed. + +theorem injective_to_injn: \forall f:nat \to nat. \forall n:nat. +injective nat nat f \to injn f n. +unfold injective. +unfold injn. +intros.auto. +(*apply H. +assumption.*) +qed. + +definition permut : (nat \to nat) \to nat \to Prop +\def \lambda f:nat \to nat. \lambda m:nat. +(\forall i:nat. i \le m \to f i \le m )\land injn f m. + +theorem permut_O_to_eq_O: \forall h:nat \to nat. +permut h O \to (h O) = O. +intros. +unfold permut in H. +elim H. +apply sym_eq.auto. +(*apply le_n_O_to_eq. +apply H1. +apply le_n.*) +qed. + +theorem permut_S_to_permut: \forall f:nat \to nat. \forall m:nat. +permut f (S m) \to f (S m) = (S m) \to permut f m. +unfold permut. +intros. +elim H. +split +[ intros. + cut (f i < S m \lor f i = S m) + [ elim Hcut + [ auto + (*apply le_S_S_to_le. + assumption*) + | apply False_ind. + apply (not_le_Sn_n m). + cut ((S m) = i) + [ rewrite > Hcut1. + assumption + | apply H3 + [ apply le_n + | auto + (*apply le_S. + assumption*) + | auto + (*rewrite > H5. + assumption*) + ] + ] + ] + | apply le_to_or_lt_eq. + auto + (*apply H2. + apply le_S. + assumption*) + ] +| apply (injn_Sn_n f m H3) +] +qed. + +(* transpositions *) + +definition transpose : nat \to nat \to nat \to nat \def +\lambda i,j,n:nat. +match eqb n i with + [ true \Rightarrow j + | false \Rightarrow + match eqb n j with + [ true \Rightarrow i + | false \Rightarrow n]]. + +notation < "(❲i↹j❳)n" + right associative with precedence 71 +for @{ 'transposition $i $j $n}. + +notation < "(❲i \atop j❳)n" + right associative with precedence 71 +for @{ 'transposition $i $j $n}. + +interpretation "natural transposition" 'transposition i j n = + (cic:/matita/nat/permutation/transpose.con i j n). + +lemma transpose_i_j_i: \forall i,j:nat. transpose i j i = j. +intros. +unfold transpose. +(*dopo circa 6 minuti, l'esecuzione di auto in questo punto non era ancora terminata*) +rewrite > (eqb_n_n i).auto. +(*simplify. +reflexivity.*) +qed. + +lemma transpose_i_j_j: \forall i,j:nat. transpose i j j = i. +intros. +unfold transpose. +apply (eqb_elim j i) +[ auto + (*simplify. + intro. + assumption*) +| rewrite > (eqb_n_n j). + simplify. + intros. + reflexivity +] +qed. + +theorem transpose_i_i: \forall i,n:nat. (transpose i i n) = n. +intros. +unfold transpose. +apply (eqb_elim n i) +[ auto + (*intro. + simplify. + apply sym_eq. + assumption*) +| intro. + auto + (*simplify. + reflexivity*) +] +qed. + +theorem transpose_i_j_j_i: \forall i,j,n:nat. +transpose i j n = transpose j i n. +intros. +unfold transpose. +apply (eqb_elim n i) +[ apply (eqb_elim n j) + [ intros. + (*l'esecuzione di auto in questo punto, dopo circa 300 secondi, non era ancora terminata*) + simplify.auto + (*rewrite < H. + rewrite < H1. + reflexivity*) + | intros. + auto + (*simplify. + reflexivity*) + ] +| apply (eqb_elim n j) + [ intros.auto + (*simplify.reflexivity *) + | intros.auto + (*simplify.reflexivity*) + ] +] +qed. + +theorem transpose_transpose: \forall i,j,n:nat. +(transpose i j (transpose i j n)) = n. +intros. +unfold transpose. +unfold transpose. +apply (eqb_elim n i) +[ simplify. + intro. + apply (eqb_elim j i) + [ simplify. + intros. + auto + (*rewrite > H. + rewrite > H1. + reflexivity*) + | rewrite > (eqb_n_n j). + simplify. + intros. + auto + (*apply sym_eq. + assumption*) + ] +| apply (eqb_elim n j) + [ simplify. + rewrite > (eqb_n_n i). + intros. + auto + (*simplify. + apply sym_eq. + assumption*) + | simplify. + intros. + (*l'esecuzione di auto in questo punto, dopo piu' di 6 minuti non era ancora terminata*) + rewrite > (not_eq_to_eqb_false n i H1). + (*l'esecuzione di auto in questo punto, dopo piu' alcuni minuti non era ancora terminata*) + rewrite > (not_eq_to_eqb_false n j H).auto + (*simplify. + reflexivity*) + ] +] +qed. + +theorem injective_transpose : \forall i,j:nat. +injective nat nat (transpose i j). +unfold injective. +intros.auto. +(*rewrite < (transpose_transpose i j x). +rewrite < (transpose_transpose i j y). +apply eq_f. +assumption.*) +qed. + +variant inj_transpose: \forall i,j,n,m:nat. +transpose i j n = transpose i j m \to n = m \def +injective_transpose. + +theorem permut_transpose: \forall i,j,n:nat. i \le n \to j \le n \to +permut (transpose i j) n. +unfold permut. +intros. +split +[ unfold transpose. + intros. + elim (eqb i1 i) + [ (*qui auto non chiude il goal*) + simplify. + assumption + | elim (eqb i1 j) + [ (*aui auto non chiude il goal*) + simplify. + assumption + | (*aui auto non chiude il goal*) + simplify. + assumption + ] + ] +| auto + (*apply (injective_to_injn (transpose i j) n). + apply injective_transpose*) +] +qed. + +theorem permut_fg: \forall f,g:nat \to nat. \forall n:nat. +permut f n \to permut g n \to permut (\lambda m.(f(g m))) n. +unfold permut. +intros. +elim H. +elim H1. +split +[ intros. + simplify. + auto + (*apply H2. + apply H4. + assumption*) +| simplify. + intros. + apply H5 + [ assumption + | assumption + | apply H3 + [ auto + (*apply H4. + assumption*) + | auto + (*apply H4. + assumption*) + | assumption + ] + ] +] +qed. + +theorem permut_transpose_l: +\forall f:nat \to nat. \forall m,i,j:nat. +i \le m \to j \le m \to permut f m \to permut (\lambda n.transpose i j (f n)) m. +intros. +auto. +(*apply (permut_fg (transpose i j) f m ? ?) +[ apply permut_transpose;assumption +| assumption +]*) +qed. + +theorem permut_transpose_r: +\forall f:nat \to nat. \forall m,i,j:nat. +i \le m \to j \le m \to permut f m \to permut (\lambda n.f (transpose i j n)) m. +intros.auto. +(*apply (permut_fg f (transpose i j) m ? ?) +[ assumption +| apply permut_transpose;assumption +]*) +qed. + +theorem eq_transpose : \forall i,j,k,n:nat. \lnot j=i \to + \lnot i=k \to \lnot j=k \to +transpose i j n = transpose i k (transpose k j (transpose i k n)). +(* uffa: triplo unfold? *) +intros.unfold transpose. +unfold transpose. +unfold transpose. +apply (eqb_elim n i) +[ intro. + simplify. + rewrite > (eqb_n_n k). + simplify. + rewrite > (not_eq_to_eqb_false j i H). + rewrite > (not_eq_to_eqb_false j k H2). + reflexivity +| intro. + apply (eqb_elim n j) + [ intro. + cut (\lnot n = k) + [ cut (\lnot n = i) + [ rewrite > (not_eq_to_eqb_false n k Hcut). + simplify. + rewrite > (not_eq_to_eqb_false n k Hcut). + rewrite > (eq_to_eqb_true n j H4). + simplify. + rewrite > (not_eq_to_eqb_false k i) + [ rewrite > (eqb_n_n k). + auto + (*simplify. + reflexivity*) + | unfold Not. + intro.auto + (*apply H1. + apply sym_eq. + assumption*) + ] + | assumption + ] + | unfold Not. + intro.auto + (*apply H2. + apply (trans_eq ? ? n) + [ apply sym_eq. + assumption + | assumption + ]*) + ] + | intro. + apply (eqb_elim n k) + [ intro. + simplify. + rewrite > (not_eq_to_eqb_false i k H1). + rewrite > (not_eq_to_eqb_false i j) + [ simplify. + rewrite > (eqb_n_n i). + auto + (*simplify. + assumption*) + | unfold Not. + intro.auto + (*apply H. + apply sym_eq. + assumption*) + ] + | intro. + simplify. + rewrite > (not_eq_to_eqb_false n k H5). + rewrite > (not_eq_to_eqb_false n j H4). + simplify. + rewrite > (not_eq_to_eqb_false n i H3). + rewrite > (not_eq_to_eqb_false n k H5). + auto + (*simplify. + reflexivity*) + ] + ] +] +qed. + +theorem permut_S_to_permut_transpose: \forall f:nat \to nat. +\forall m:nat. permut f (S m) \to permut (\lambda n.transpose (f (S m)) (S m) +(f n)) m. +unfold permut. +intros. +elim H. +split +[ intros. + simplify. + unfold transpose. + apply (eqb_elim (f i) (f (S m))) + [ intro. + apply False_ind. + cut (i = (S m)) + [ apply (not_le_Sn_n m). + rewrite < Hcut. + assumption + | apply H2;auto + (*[ apply le_S. + assumption + | apply le_n + | assumption + ]*) + ] + | intro. + simplify. + apply (eqb_elim (f i) (S m)) + [ intro. + cut (f (S m) \lt (S m) \lor f (S m) = (S m)) + [ elim Hcut + [ apply le_S_S_to_le. + (*NB qui auto non chiude il goal*) + assumption + | apply False_ind. + auto + (*apply H4. + rewrite > H6. + assumption*) + ] + | auto + (*apply le_to_or_lt_eq. + apply H1. + apply le_n*) + ] + | intro.simplify. + cut (f i \lt (S m) \lor f i = (S m)) + [ elim Hcut + [ auto + (*apply le_S_S_to_le. + assumption*) + | apply False_ind. + auto + (*apply H5. + assumption*) + ] + | apply le_to_or_lt_eq. + auto + (*apply H1. + apply le_S. + assumption*) + ] + ] + ] +| unfold injn. + intros. + apply H2;auto + (*[ apply le_S. + assumption + | apply le_S. + assumption + | apply (inj_transpose (f (S m)) (S m)). + apply H5 + ]*) +] +qed. + +(* bounded bijectivity *) + +definition bijn : (nat \to nat) \to nat \to Prop \def +\lambda f:nat \to nat. \lambda n. \forall m:nat. m \le n \to +ex nat (\lambda p. p \le n \land f p = m). + +theorem eq_to_bijn: \forall f,g:nat\to nat. \forall n:nat. +(\forall i:nat. i \le n \to (f i) = (g i)) \to +bijn f n \to bijn g n. +intros 4. +unfold bijn. +intros. +elim (H1 m) +[ apply (ex_intro ? ? a). + rewrite < (H a) + [ assumption + | elim H3. + assumption + ] +| assumption +] +qed. + +theorem bijn_Sn_n: \forall f:nat \to nat. \forall n:nat. +bijn f (S n) \to f (S n) = (S n) \to bijn f n. +unfold bijn. +intros. +elim (H m) +[ elim H3. + apply (ex_intro ? ? a). + split + [ cut (a < S n \lor a = S n) + [ elim Hcut + [ auto + (*apply le_S_S_to_le. + assumption*) + | apply False_ind. + apply (not_le_Sn_n n). + rewrite < H1. + rewrite < H6. + rewrite > H5. + assumption + ] + | auto + (*apply le_to_or_lt_eq. + assumption*) + ] + | assumption + ] +| auto + (*apply le_S. + assumption*) +] +qed. + +theorem bijn_n_Sn: \forall f:nat \to nat. \forall n:nat. +bijn f n \to f (S n) = (S n) \to bijn f (S n). +unfold bijn. +intros. +cut (m < S n \lor m = S n) +[ elim Hcut + [ elim (H m) + [ elim H4. + apply (ex_intro ? ? a). + auto + (*split + [ apply le_S. + assumption + | assumption + ]*) + | auto + (*apply le_S_S_to_le. + assumption*) + ] + | auto + (*apply (ex_intro ? ? (S n)). + split + [ apply le_n + | rewrite > H3. + assumption + ]*) + ] +| auto + (*apply le_to_or_lt_eq. + assumption*) +] +qed. + +theorem bijn_fg: \forall f,g:nat\to nat. \forall n:nat. +bijn f n \to bijn g n \to bijn (\lambda p.f(g p)) n. +unfold bijn. +intros. +simplify. +elim (H m) +[ elim H3. + elim (H1 a) + [ elim H6. + auto + (*apply (ex_intro ? ? a1). + split + [ assumption + | rewrite > H8. + assumption + ]*) + | assumption + ] +| assumption +] +qed. + +theorem bijn_transpose : \forall n,i,j. i \le n \to j \le n \to +bijn (transpose i j) n. +intros. +unfold bijn. +unfold transpose. +intros. +cut (m = i \lor \lnot m = i) +[ elim Hcut + [ apply (ex_intro ? ? j). + split + [ assumption + | apply (eqb_elim j i) + [ intro. + (*dopo circa 360 secondi l'esecuzione di auto in questo punto non era ancora terminata*) + simplify. + auto + (*rewrite > H3. + rewrite > H4. + reflexivity*) + | rewrite > (eqb_n_n j). + simplify. + intros. + auto + (*apply sym_eq. + assumption*) + ] + ] + | cut (m = j \lor \lnot m = j) + [ elim Hcut1 + [ apply (ex_intro ? ? i). + split + [ assumption + | (*dopo circa 5 minuti, l'esecuzione di auto in questo punto non era ancora terminata*) + rewrite > (eqb_n_n i). + auto + (*simplify. + apply sym_eq. + assumption*) + ] + | apply (ex_intro ? ? m). + split + [ assumption + | rewrite > (not_eq_to_eqb_false m i) + [ (*dopo circa 5 minuti, l'esecuzione di auto in questo punto non era ancora terminata*) + rewrite > (not_eq_to_eqb_false m j) + [ auto + (*simplify. + reflexivity*) + | assumption + ] + | assumption + ] + ] + ] + | apply (decidable_eq_nat m j) + ] + ] +| apply (decidable_eq_nat m i) +] +qed. + +theorem bijn_transpose_r: \forall f:nat\to nat.\forall n,i,j. i \le n \to j \le n \to +bijn f n \to bijn (\lambda p.f (transpose i j p)) n. +intros.auto. +(*apply (bijn_fg f ?) +[ assumption +| apply (bijn_transpose n i j) + [ assumption + | assumption + ] +]*) +qed. + +theorem bijn_transpose_l: \forall f:nat\to nat.\forall n,i,j. i \le n \to j \le n \to +bijn f n \to bijn (\lambda p.transpose i j (f p)) n. +intros. +auto. +(*apply (bijn_fg ? f) +[ apply (bijn_transpose n i j) + [ assumption + | assumption + ] +| assumption +]*) +qed. + +theorem permut_to_bijn: \forall n:nat.\forall f:nat\to nat. +permut f n \to bijn f n. +intro. +elim n +[ unfold bijn. + intros. + apply (ex_intro ? ? m). + split + [ assumption + | apply (le_n_O_elim m ? (\lambda p. f p = p)) + [ assumption + | unfold permut in H. + elim H. + apply sym_eq. + auto + (*apply le_n_O_to_eq. + apply H2. + apply le_n*) + ] + ] +| apply (eq_to_bijn (\lambda p. + (transpose (f (S n1)) (S n1)) (transpose (f (S n1)) (S n1) (f p))) f) + [ intros. + apply transpose_transpose + | apply (bijn_fg (transpose (f (S n1)) (S n1))) + [ apply bijn_transpose + [ unfold permut in H1. + elim H1.auto + (*apply H2. + apply le_n*) + | apply le_n + ] + | apply bijn_n_Sn + [ apply H. + auto + (*apply permut_S_to_permut_transpose. + assumption*) + | auto + (*unfold transpose. + rewrite > (eqb_n_n (f (S n1))). + simplify. + reflexivity*) + ] + ] + ] +] +qed. + +let rec invert_permut n f m \def + match eqb m (f n) with + [true \Rightarrow n + |false \Rightarrow + match n with + [O \Rightarrow O + |(S p) \Rightarrow invert_permut p f m]]. + +theorem invert_permut_f: \forall f:nat \to nat. \forall n,m:nat. +m \le n \to injn f n\to invert_permut n f (f m) = m. +intros 4. +elim H +[ apply (nat_case1 m) + [ intro. + simplify. + (*l'applicazione di auto in questo punto, dopo alcuni minuti, non aveva ancora dato risultati*) + rewrite > (eqb_n_n (f O)). + auto + (*simplify. + reflexivity*) + | intros.simplify. + (*l'applicazione di auto in questo punto, dopo alcuni minuti, non aveva ancora dato risultati*) + rewrite > (eqb_n_n (f (S m1))). + auto + (*simplify. + reflexivity*) + ] +| simplify. + rewrite > (not_eq_to_eqb_false (f m) (f (S n1))) + [ (*l'applicazione di auto in questo punto, dopo parecchi secondi, non aveva ancora prodotto un risultato*) + simplify. + auto + (*apply H2. + apply injn_Sn_n. + assumption*) + | unfold Not. + intro. + absurd (m = S n1) + [ apply H3;auto + (*[ apply le_S. + assumption + | apply le_n + | assumption + ]*) + | unfold Not. + intro. + apply (not_le_Sn_n n1). + rewrite < H5. + assumption + ] + ] +] +qed. + +theorem injective_invert_permut: \forall f:nat \to nat. \forall n:nat. +permut f n \to injn (invert_permut n f) n. +intros. +unfold injn. +intros. +cut (bijn f n) +[ unfold bijn in Hcut. + generalize in match (Hcut i H1). + intro. + generalize in match (Hcut j H2). + intro. + elim H4. + elim H6. + elim H5. + elim H9. + rewrite < H8. + rewrite < H11. + apply eq_f. + rewrite < (invert_permut_f f n a) + [ rewrite < (invert_permut_f f n a1) + [ rewrite > H8. + rewrite > H11. + assumption + | assumption + | unfold permut in H.elim H. + assumption + ] + | assumption + | unfold permut in H. + elim H. + assumption + ] +| auto + (*apply permut_to_bijn. + assumption*) +] +qed. + +theorem permut_invert_permut: \forall f:nat \to nat. \forall n:nat. +permut f n \to permut (invert_permut n f) n. +intros. +unfold permut. +split +[ intros. + simplify. + elim n + [ simplify. + elim (eqb i (f O));auto + (*[ simplify. + apply le_n + | simplify. + apply le_n + ]*) + | simplify. + elim (eqb i (f (S n1))) + [ auto + (*simplify. + apply le_n*) + | simplify. + auto + (*apply le_S. + assumption*) + ] + ] +| auto + (*apply injective_invert_permut. + assumption.*) +] +qed. + +theorem f_invert_permut: \forall f:nat \to nat. \forall n,m:nat. +m \le n \to permut f n\to f (invert_permut n f m) = m. +intros. +apply (injective_invert_permut f n H1) +[ unfold permut in H1. + elim H1. + apply H2. + cut (permut (invert_permut n f) n) + [ unfold permut in Hcut. + elim Hcut.auto + (*apply H4. + assumption*) + | apply permut_invert_permut. + (*NB qui auto non chiude il goal*) + assumption + ] +| assumption +| apply invert_permut_f + [ cut (permut (invert_permut n f) n) + [ unfold permut in Hcut. + elim Hcut. + auto + (*apply H2. + assumption*) + | auto + (*apply permut_invert_permut. + assumption*) + ] + | unfold permut in H1. + elim H1. + assumption + ] +] +qed. + +theorem permut_n_to_eq_n: \forall h:nat \to nat.\forall n:nat. +permut h n \to (\forall m:nat. m < n \to h m = m) \to h n = n. +intros. +unfold permut in H. +elim H. +cut (invert_permut n h n < n \lor invert_permut n h n = n) +[ elim Hcut + [ rewrite < (f_invert_permut h n n) in \vdash (? ? ? %) + [ apply eq_f. + rewrite < (f_invert_permut h n n) in \vdash (? ? % ?) + [ auto + (*apply H1. + assumption*) + | apply le_n + | (*qui auto NON chiude il goal*) + assumption + ] + | apply le_n + | (*qui auto NON chiude il goal*) + assumption + ] + | rewrite < H4 in \vdash (? ? % ?). + apply (f_invert_permut h) + [ apply le_n + | (*qui auto NON chiude il goal*) + assumption + ] + ] +| apply le_to_or_lt_eq. + cut (permut (invert_permut n h) n) + [ unfold permut in Hcut. + elim Hcut. + auto + (*apply H4. + apply le_n*) + | apply permut_invert_permut. + (*NB aui auto non chiude il goal*) + assumption + ] +] +qed. + +theorem permut_n_to_le: \forall h:nat \to nat.\forall k,n:nat. +k \le n \to permut h n \to (\forall m:nat. m < k \to h m = m) \to +\forall j. k \le j \to j \le n \to k \le h j. +intros. +unfold permut in H1. +elim H1. +cut (h j < k \lor \not(h j < k)) +[ elim Hcut + [ absurd (k \le j) + [ assumption + | apply lt_to_not_le. + cut (h j = j) + [ rewrite < Hcut1. + assumption + | apply H6;auto + (*[ apply H5. + assumption + | assumption + | apply H2. + assumption + ]*) + ] + ] + | auto + (*apply not_lt_to_le. + assumption*) + ] +| apply (decidable_lt (h j) k) +] +qed. + +(* applications *) + +let rec map_iter_i k (g:nat \to nat) f (i:nat) \def + match k with + [ O \Rightarrow g i + | (S k) \Rightarrow f (g (S (k+i))) (map_iter_i k g f i)]. + +theorem eq_map_iter_i: \forall g1,g2:nat \to nat. +\forall f:nat \to nat \to nat. \forall n,i:nat. +(\forall m:nat. i\le m \to m \le n+i \to g1 m = g2 m) \to +map_iter_i n g1 f i = map_iter_i n g2 f i. +intros 5. +elim n +[ simplify. + auto + (*apply H + [ apply le_n + | apply le_n + ]*) +| simplify. + apply eq_f2 + [ auto + (*apply H1 + [ simplify. + apply le_S. + apply le_plus_n + | simplify. + apply le_n + ]*) + | apply H. + intros. + apply H1;auto + (*[ assumption + | simplify. + apply le_S. + assumption + ]*) + ] +] +qed. + +(* map_iter examples *) + +theorem eq_map_iter_i_sigma: \forall g:nat \to nat. \forall n,m:nat. +map_iter_i n g plus m = sigma n g m. +intros. +elim n +[ auto + (*simplify. + reflexivity*) +| simplify. + auto + (*apply eq_f. + assumption*) +] +qed. + +theorem eq_map_iter_i_pi: \forall g:nat \to nat. \forall n,m:nat. +map_iter_i n g times m = pi n g m. +intros. +elim n +[ auto + (*simplify. + reflexivity*) +| simplify. + auto + (*apply eq_f. + assumption*) +] +qed. + +theorem eq_map_iter_i_fact: \forall n:nat. +map_iter_i n (\lambda m.m) times (S O) = (S n)!. +intros. +elim n +[ auto + (*simplify. + reflexivity*) +| change with + (((S n1)+(S O))*(map_iter_i n1 (\lambda m.m) times (S O)) = (S(S n1))*(S n1)!). + rewrite < plus_n_Sm. + rewrite < plus_n_O. + apply eq_f. + (*NB: qui auto non chiude il goal!!!*) + assumption +] +qed. + + +theorem eq_map_iter_i_transpose_l : \forall f:nat\to nat \to nat.associative nat f \to +symmetric2 nat nat f \to \forall g:nat \to nat. \forall n,k:nat. +map_iter_i (S k) g f n = map_iter_i (S k) (\lambda m. g (transpose (k+n) (S k+n) m)) f n. +intros. +apply (nat_case1 k) +[ intros. + simplify. + fold simplify (transpose n (S n) (S n)). + auto + (*rewrite > transpose_i_j_i. + rewrite > transpose_i_j_j. + apply H1*) +| intros. + change with + (f (g (S (S (m+n)))) (f (g (S (m+n))) (map_iter_i m g f n)) = + f (g (transpose (S m + n) (S (S m) + n) (S (S m)+n))) + (f (g (transpose (S m + n) (S (S m) + n) (S m+n))) + (map_iter_i m (\lambda m1. g (transpose (S m+n) (S (S m)+n) m1)) f n))). + rewrite > transpose_i_j_i. + rewrite > transpose_i_j_j. + rewrite < H. + rewrite < H. + rewrite < (H1 (g (S m + n))). + apply eq_f. + apply eq_map_iter_i. + intros. + simplify. + unfold transpose. + rewrite > (not_eq_to_eqb_false m1 (S m+n)) + [ rewrite > (not_eq_to_eqb_false m1 (S (S m)+n)) + [ auto + (*simplify. + reflexivity*) + | apply (lt_to_not_eq m1 (S ((S m)+n))). + auto + (*unfold lt. + apply le_S_S. + change with (m1 \leq S (m+n)). + apply le_S. + assumption*) + ] + | apply (lt_to_not_eq m1 (S m+n)). + simplify.auto + (*unfold lt. + apply le_S_S. + assumption*) + ] +] +qed. + +theorem eq_map_iter_i_transpose_i_Si : \forall f:nat\to nat \to nat.associative nat f \to +symmetric2 nat nat f \to \forall g:nat \to nat. \forall n,k,i:nat. n \le i \to i \le k+n \to +map_iter_i (S k) g f n = map_iter_i (S k) (\lambda m. g (transpose i (S i) m)) f n. +intros 6. +elim k +[ cut (i=n) + [ rewrite > Hcut. + (*qui auto non chiude il goal*) + apply (eq_map_iter_i_transpose_l f H H1 g n O) + | apply antisymmetric_le + [ assumption + | assumption + ] + ] +| cut (i < S n1 + n \lor i = S n1 + n) + [ elim Hcut + [ change with + (f (g (S (S n1)+n)) (map_iter_i (S n1) g f n) = + f (g (transpose i (S i) (S (S n1)+n))) (map_iter_i (S n1) (\lambda m. g (transpose i (S i) m)) f n)). + apply eq_f2 + [ unfold transpose. + rewrite > (not_eq_to_eqb_false (S (S n1)+n) i) + [ rewrite > (not_eq_to_eqb_false (S (S n1)+n) (S i)) + [ auto + (*simplify. + reflexivity*) + | simplify. + unfold Not. + intro. + apply (lt_to_not_eq i (S n1+n)) + [ assumption + | auto + (*apply inj_S. + apply sym_eq. + assumption*) + ] + ] + | simplify. + unfold Not. + intro. + apply (lt_to_not_eq i (S (S n1+n))) + [ auto + (*simplify. + unfold lt. + apply le_S_S. + assumption*) + | auto + (*apply sym_eq. + assumption*) + ] + ] + | apply H2;auto + (*[ assumption + | apply le_S_S_to_le. + assumption + ]*) + ] + | rewrite > H5. + (*qui auto non chiude il goal*) + apply (eq_map_iter_i_transpose_l f H H1 g n (S n1)). + ] + | auto + (*apply le_to_or_lt_eq. + assumption*) + ] +] +qed. + +theorem eq_map_iter_i_transpose: +\forall f:nat\to nat \to nat. +associative nat f \to symmetric2 nat nat f \to \forall n,k,o:nat. +\forall g:nat \to nat. \forall i:nat. n \le i \to S (o + i) \le S k+n \to +map_iter_i (S k) g f n = map_iter_i (S k) (\lambda m. g (transpose i (S(o + i)) m)) f n. +intros 6. +apply (nat_elim1 o). +intro. +apply (nat_case m ?) +[ intros. + apply (eq_map_iter_i_transpose_i_Si ? H H1);auto + (*[ exact H3 + | apply le_S_S_to_le. + assumption + ]*) +| intros. + apply (trans_eq ? ? (map_iter_i (S k) (\lambda m. g (transpose i (S(m1 + i)) m)) f n)) + [ apply H2 + [ auto + (*unfold lt. + apply le_n*) + | assumption + | apply (trans_le ? (S(S (m1+i)))) + [ auto + (*apply le_S. + apply le_n*) + | (*qui auto non chiude il goal, chiuso invece da assumption*) + assumption + ] + ] + | apply (trans_eq ? ? (map_iter_i (S k) (\lambda m. g + (transpose i (S(m1 + i)) (transpose (S(m1 + i)) (S(S(m1 + i))) m))) f n)) + [ (*qui auto dopo alcuni minuti non aveva ancora terminato la propria esecuzione*) + apply (H2 O ? ? (S(m1+i))) + [ auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | auto + (*apply (trans_le ? i) + [ assumption + | change with (i \le (S m1)+i). + apply le_plus_n + ]*) + | (*qui auto non chiude il goal*) + exact H4 + ] + | apply (trans_eq ? ? (map_iter_i (S k) (\lambda m. g + (transpose i (S(m1 + i)) + (transpose (S(m1 + i)) (S(S(m1 + i))) + (transpose i (S(m1 + i)) m)))) f n)) + [ (*qui auto dopo alcuni minuti non aveva ancora terminato la propria esecuzione*) + apply (H2 m1) + [ auto + (*unfold lt. + apply le_n*) + | assumption + | apply (trans_le ? (S(S (m1+i)))) + [ auto + (*apply le_S. + apply le_n*) + | (*qui auto NON CHIUDE il goal*) + assumption + ] + ] + | apply eq_map_iter_i. + intros. + apply eq_f. + apply sym_eq. + apply eq_transpose + [ unfold Not. + intro. + apply (not_le_Sn_n i). + rewrite < H7 in \vdash (? ? %). + auto + (*apply le_S_S. + apply le_S. + apply le_plus_n*) + | unfold Not. + intro. + apply (not_le_Sn_n i). + rewrite > H7 in \vdash (? ? %). + auto + (*apply le_S_S. + apply le_plus_n*) + | unfold Not. + intro. + auto + (*apply (not_eq_n_Sn (S m1+i)). + apply sym_eq. + assumption*) + ] + ] + ] + ] +] +qed. + +theorem eq_map_iter_i_transpose1: \forall f:nat\to nat \to nat.associative nat f \to +symmetric2 nat nat f \to \forall n,k,i,j:nat. +\forall g:nat \to nat. n \le i \to i < j \to j \le S k+n \to +map_iter_i (S k) g f n = map_iter_i (S k) (\lambda m. g (transpose i j m)) f n. +intros. +simplify in H3. +cut ((S i) < j \lor (S i) = j) +[ elim Hcut + [ cut (j = S ((j - (S i)) + i)) + [ rewrite > Hcut1. + apply (eq_map_iter_i_transpose f H H1 n k (j - (S i)) g i) + [ assumption + | rewrite < Hcut1. + assumption + ] + | rewrite > plus_n_Sm. + auto + (*apply plus_minus_m_m. + apply lt_to_le. + assumption*) + ] + | rewrite < H5. + apply (eq_map_iter_i_transpose_i_Si f H H1 g) + [ auto + (*simplify. + assumption*) + | apply le_S_S_to_le. + auto + (*apply (trans_le ? j) + [ assumption + | assumption + ]*) + ] + ] +| auto + (*apply le_to_or_lt_eq. + assumption*) +] +qed. + +theorem eq_map_iter_i_transpose2: \forall f:nat\to nat \to nat.associative nat f \to +symmetric2 nat nat f \to \forall n,k,i,j:nat. +\forall g:nat \to nat. n \le i \to i \le (S k+n) \to n \le j \to j \le (S k+n) \to +map_iter_i (S k) g f n = map_iter_i (S k) (\lambda m. g (transpose i j m)) f n. +intros. +apply (nat_compare_elim i j) +[ intro. + (*qui auto non chiude il goal*) + apply (eq_map_iter_i_transpose1 f H H1 n k i j g H2 H6 H5) +| intro. + rewrite > H6. + apply eq_map_iter_i. + intros. + auto + (*rewrite > (transpose_i_i j). + reflexivity*) +| intro. + apply (trans_eq ? ? (map_iter_i (S k) (\lambda m:nat.g (transpose j i m)) f n)) + [ apply (eq_map_iter_i_transpose1 f H H1 n k j i g H4 H6 H3) + | apply eq_map_iter_i. + intros. + auto + (*apply eq_f. + apply transpose_i_j_j_i*) + ] +] +qed. + +theorem permut_to_eq_map_iter_i:\forall f:nat\to nat \to nat.associative nat f \to +symmetric2 nat nat f \to \forall k,n:nat.\forall g,h:nat \to nat. +permut h (k+n) \to (\forall m:nat. m \lt n \to h m = m) \to +map_iter_i k g f n = map_iter_i k (\lambda m.g(h m)) f n. +intros 4. +elim k +[ simplify. + rewrite > (permut_n_to_eq_n h) + [ reflexivity + | (*qui auto non chiude il goal*) + assumption + | (*qui auto non chiude il goal*) + assumption + ] +| apply (trans_eq ? ? (map_iter_i (S n) (\lambda m.g ((transpose (h (S n+n1)) (S n+n1)) m)) f n1)) + [ unfold permut in H3. + elim H3. + apply (eq_map_iter_i_transpose2 f H H1 n1 n ? ? g) + [ apply (permut_n_to_le h n1 (S n+n1)) + [ apply le_plus_n + | (*qui auto non chiude il goal*) + assumption + | (*qui auto non chiude il goal*) + assumption + | apply le_plus_n + | apply le_n + ] + | auto + (*apply H5. + apply le_n*) + | apply le_plus_n + | apply le_n + ] + | apply (trans_eq ? ? (map_iter_i (S n) (\lambda m. + (g(transpose (h (S n+n1)) (S n+n1) + (transpose (h (S n+n1)) (S n+n1) (h m)))) )f n1)) + [ simplify. + fold simplify (transpose (h (S n+n1)) (S n+n1) (S n+n1)). + apply eq_f2 + [ auto + (*apply eq_f. + rewrite > transpose_i_j_j. + rewrite > transpose_i_j_i. + rewrite > transpose_i_j_j. + reflexivity.*) + | apply (H2 n1 (\lambda m.(g(transpose (h (S n+n1)) (S n+n1) m)))) + [ apply permut_S_to_permut_transpose. + (*qui auto non chiude il goal*) + assumption + | intros. + unfold transpose. + rewrite > (not_eq_to_eqb_false (h m) (h (S n+n1))) + [ rewrite > (not_eq_to_eqb_false (h m) (S n+n1)) + [ simplify. + auto + (*apply H4. + assumption*) + | rewrite > H4 + [ auto + (*apply lt_to_not_eq. + apply (trans_lt ? n1) + [ assumption + | simplify. + unfold lt. + apply le_S_S. + apply le_plus_n + ]*) + | assumption + ] + ] + | unfold permut in H3. + elim H3. + simplify. + unfold Not. + intro. + apply (lt_to_not_eq m (S n+n1)) + [ auto + (*apply (trans_lt ? n1) + [ assumption + | simplify. + unfold lt. + apply le_S_S. + apply le_plus_n + ]*) + | unfold injn in H7. + apply (H7 m (S n+n1)) + [ auto + (*apply (trans_le ? n1) + [ apply lt_to_le. + assumption + | apply le_plus_n + ]*) + | apply le_n + | assumption + ] + ] + ] + ] + ] + | apply eq_map_iter_i. + intros. + auto + (*rewrite > transpose_transpose. + reflexivity*) + ] + ] +] +qed. \ No newline at end of file diff --git a/matita/library_auto/nat/plus.ma b/matita/library_auto/nat/plus.ma new file mode 100644 index 000000000..b1bd03c86 --- /dev/null +++ b/matita/library_auto/nat/plus.ma @@ -0,0 +1,97 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/plus". + +include "nat/nat.ma". + +let rec plus n m \def + match n with + [ O \Rightarrow m + | (S p) \Rightarrow S (plus p m) ]. + +(*CSC: the URI must disappear: there is a bug now *) +interpretation "natural plus" 'plus x y = (cic:/matita/nat/plus/plus.con x y). + +theorem plus_n_O: \forall n:nat. n = n+O. +intros.elim n +[ auto + (*simplify. + reflexivity*) +| auto + (*simplify. + apply eq_f. + assumption.*) +] +qed. + +theorem plus_n_Sm : \forall n,m:nat. S (n+m) = n+(S m). +intros.elim n +[ auto + (*simplify. + reflexivity.*) +| simplify. + auto + (* + apply eq_f. + assumption.*)] +qed. + +theorem sym_plus: \forall n,m:nat. n+m = m+n. +intros.elim n +[ auto + (*simplify. + apply plus_n_O.*) +| simplify. + auto + (*rewrite > H. + apply plus_n_Sm.*)] +qed. + +theorem associative_plus : associative nat plus. +unfold associative.intros.elim x +[auto + (*simplify. + reflexivity.*) +|simplify. + auto + (*apply eq_f. + assumption.*) +] +qed. + +theorem assoc_plus : \forall n,m,p:nat. (n+m)+p = n+(m+p) +\def associative_plus. + +theorem injective_plus_r: \forall n:nat.injective nat nat (\lambda m.n+m). +intro.simplify.intros 2.elim n +[ exact H +| auto + (*apply H.apply inj_S.apply H1.*) +] +qed. + +theorem inj_plus_r: \forall p,n,m:nat. p+n = p+m \to n=m +\def injective_plus_r. + +theorem injective_plus_l: \forall m:nat.injective nat nat (\lambda n.n+m). +intro.simplify.intros.auto. +(*apply (injective_plus_r m). +rewrite < sym_plus. +rewrite < (sym_plus y). +assumption.*) +qed. + +theorem inj_plus_l: \forall p,n,m:nat. n+p = m+p \to n=m +\def injective_plus_l. diff --git a/matita/library_auto/nat/primes.ma b/matita/library_auto/nat/primes.ma new file mode 100644 index 000000000..978b259c2 --- /dev/null +++ b/matita/library_auto/nat/primes.ma @@ -0,0 +1,1007 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/primes". + +include "nat/div_and_mod.ma". +include "nat/minimization.ma". +include "nat/sigma_and_pi.ma". +include "nat/factorial.ma". + +inductive divides (n,m:nat) : Prop \def +witness : \forall p:nat.m = times n p \to divides n m. + +interpretation "divides" 'divides n m = (cic:/matita/nat/primes/divides.ind#xpointer(1/1) n m). +interpretation "not divides" 'ndivides n m = + (cic:/matita/logic/connectives/Not.con (cic:/matita/nat/primes/divides.ind#xpointer(1/1) n m)). + +theorem reflexive_divides : reflexive nat divides. +unfold reflexive. +intros. +exact (witness x x (S O) (times_n_SO x)). +qed. + +theorem divides_to_div_mod_spec : +\forall n,m. O < n \to n \divides m \to div_mod_spec m n (m / n) O. +intros. +elim H1. +rewrite > H2. +constructor 1 +[ assumption +| apply (lt_O_n_elim n H). + intros. + auto + (*rewrite < plus_n_O. + rewrite > div_times. + apply sym_times*) +] +qed. + +theorem div_mod_spec_to_divides : +\forall n,m,p. div_mod_spec m n p O \to n \divides m. +intros. +elim H. +auto. +(*apply (witness n m p). +rewrite < sym_times. +rewrite > (plus_n_O (p*n)). +assumption*) +qed. + +theorem divides_to_mod_O: +\forall n,m. O < n \to n \divides m \to (m \mod n) = O. +intros. +apply (div_mod_spec_to_eq2 m n (m / n) (m \mod n) (m / n) O) +[ auto + (*apply div_mod_spec_div_mod. + assumption*) +| auto + (*apply divides_to_div_mod_spec;assumption*) +] +qed. + +theorem mod_O_to_divides: +\forall n,m. O< n \to (m \mod n) = O \to n \divides m. +intros. +apply (witness n m (m / n)). +rewrite > (plus_n_O (n * (m / n))). +rewrite < H1. +rewrite < sym_times. +auto. +(* Andrea: perche' hint non lo trova ?*) +(*apply div_mod. +assumption.*) +qed. + +theorem divides_n_O: \forall n:nat. n \divides O. +intro. +auto. +(*apply (witness n O O). +apply times_n_O.*) +qed. + +theorem divides_n_n: \forall n:nat. n \divides n. +auto. +(*intro. +apply (witness n n (S O)). +apply times_n_SO.*) +qed. + +theorem divides_SO_n: \forall n:nat. (S O) \divides n. +intro. +auto. +(*apply (witness (S O) n n). +simplify. +apply plus_n_O.*) +qed. + +theorem divides_plus: \forall n,p,q:nat. +n \divides p \to n \divides q \to n \divides p+q. +intros. +elim H. +elim H1. +apply (witness n (p+q) (n2+n1)). +auto. +(*rewrite > H2. +rewrite > H3. +apply sym_eq. +apply distr_times_plus.*) +qed. + +theorem divides_minus: \forall n,p,q:nat. +divides n p \to divides n q \to divides n (p-q). +intros. +elim H. +elim H1. +apply (witness n (p-q) (n2-n1)). +auto. +(*rewrite > H2. +rewrite > H3. +apply sym_eq. +apply distr_times_minus.*) +qed. + +theorem divides_times: \forall n,m,p,q:nat. +n \divides p \to m \divides q \to n*m \divides p*q. +intros. +elim H. +elim H1. +apply (witness (n*m) (p*q) (n2*n1)). +rewrite > H2. +rewrite > H3. +apply (trans_eq nat ? (n*(m*(n2*n1)))) +[ apply (trans_eq nat ? (n*(n2*(m*n1)))) + [ apply assoc_times + | apply eq_f. + apply (trans_eq nat ? ((n2*m)*n1)) + [ auto + (*apply sym_eq. + apply assoc_times*) + | rewrite > (sym_times n2 m). + apply assoc_times + ] + ] +| auto + (*apply sym_eq. + apply assoc_times*) +] +qed. + +theorem transitive_divides: transitive ? divides. +unfold. +intros. +elim H. +elim H1. +apply (witness x z (n2*n)). +auto. +(*rewrite > H3. +rewrite > H2. +apply assoc_times.*) +qed. + +variant trans_divides: \forall n,m,p. + n \divides m \to m \divides p \to n \divides p \def transitive_divides. + +theorem eq_mod_to_divides:\forall n,m,p. O< p \to +mod n p = mod m p \to divides p (n-m). +intros. +cut (n \le m \or \not n \le m) +[ elim Hcut + [ cut (n-m=O) + [ auto + (*rewrite > Hcut1. + apply (witness p O O). + apply times_n_O*) + | auto + (*apply eq_minus_n_m_O. + assumption*) + ] + | apply (witness p (n-m) ((div n p)-(div m p))). + rewrite > distr_times_minus. + rewrite > sym_times. + rewrite > (sym_times p). + cut ((div n p)*p = n - (mod n p)) + [ rewrite > Hcut1. + rewrite > eq_minus_minus_minus_plus. + rewrite > sym_plus. + rewrite > H1. + auto + (*rewrite < div_mod + [ reflexivity + | assumption + ]*) + | apply sym_eq. + apply plus_to_minus. + rewrite > sym_plus. + auto + (*apply div_mod. + assumption*) + ] + ] +| apply (decidable_le n m) +] +qed. + +theorem antisymmetric_divides: antisymmetric nat divides. +unfold antisymmetric. +intros. +elim H. +elim H1. +apply (nat_case1 n2) +[ intro. + rewrite > H3. + rewrite > H2. + rewrite > H4. + rewrite < times_n_O. + reflexivity +| intros. + apply (nat_case1 n) + [ intro. + rewrite > H2. + rewrite > H3. + rewrite > H5. + auto + (*rewrite < times_n_O. + reflexivity*) + | intros. + apply antisymmetric_le + [ rewrite > H2. + rewrite > times_n_SO in \vdash (? % ?). + apply le_times_r. + rewrite > H4. + auto + (*apply le_S_S. + apply le_O_n*) + | rewrite > H3. + rewrite > times_n_SO in \vdash (? % ?). + apply le_times_r. + rewrite > H5. + auto + (*apply le_S_S. + apply le_O_n*) + ] + ] +] +qed. + +(* divides le *) +theorem divides_to_le : \forall n,m. O < m \to n \divides m \to n \le m. +intros. +elim H1. +rewrite > H2. +cut (O < n2) +[ apply (lt_O_n_elim n2 Hcut). + intro. + auto + (*rewrite < sym_times. + simplify. + rewrite < sym_plus. + apply le_plus_n*) +| elim (le_to_or_lt_eq O n2) + [ assumption + | absurd (O H2. + rewrite < H3. + rewrite < times_n_O. + apply (not_le_Sn_n O) + ] + | apply le_O_n + ] +] +qed. + +theorem divides_to_lt_O : \forall n,m. O < m \to n \divides m \to O < n. +intros. +elim H1. +elim (le_to_or_lt_eq O n (le_O_n n)) +[ assumption +| rewrite < H3. + absurd (O < m) + [ assumption + | rewrite > H2. + rewrite < H3. + auto + (*simplify. + exact (not_le_Sn_n O)*) + ] +] +qed. + +(* boolean divides *) +definition divides_b : nat \to nat \to bool \def +\lambda n,m :nat. (eqb (m \mod n) O). + +theorem divides_b_to_Prop : +\forall n,m:nat. O < n \to +match divides_b n m with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. +intros. +unfold divides_b. +apply eqb_elim +[ intro. + simplify. + auto + (*apply mod_O_to_divides;assumption*) +| intro. + simplify. + unfold Not. + intro. + auto + (*apply H1. + apply divides_to_mod_O;assumption*) +] +qed. + +theorem divides_b_true_to_divides : +\forall n,m:nat. O < n \to +(divides_b n m = true ) \to n \divides m. +intros. +change with +match true with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. +rewrite < H1. +apply divides_b_to_Prop. +assumption. +qed. + +theorem divides_b_false_to_not_divides : +\forall n,m:nat. O < n \to +(divides_b n m = false ) \to n \ndivides m. +intros. +change with +match false with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. +rewrite < H1. +apply divides_b_to_Prop. +assumption. +qed. + +theorem decidable_divides: \forall n,m:nat.O < n \to +decidable (n \divides m). +intros. +unfold decidable. +cut +(match divides_b n m with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m] \to n \divides m \lor n \ndivides m) +[ apply Hcut. + apply divides_b_to_Prop. + assumption +| elim (divides_b n m) + [ left. + (*qui auto non chiude il goal, chiuso dalla sola apply H1*) + apply H1 + | right. + (*qui auto non chiude il goal, chiuso dalla sola apply H1*) + apply H1 + ] +] +qed. + +theorem divides_to_divides_b_true : \forall n,m:nat. O < n \to +n \divides m \to divides_b n m = true. +intros. +cut (match (divides_b n m) with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m] \to ((divides_b n m) = true)) +[ apply Hcut. + apply divides_b_to_Prop. + assumption +| elim (divides_b n m) + [ reflexivity + | absurd (n \divides m) + [ assumption + | (*qui auto non chiude il goal, chiuso dalla sola applicazione di assumption*) + assumption + ] + ] +] +qed. + +theorem not_divides_to_divides_b_false: \forall n,m:nat. O < n \to +\lnot(n \divides m) \to (divides_b n m) = false. +intros. +cut (match (divides_b n m) with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m] \to ((divides_b n m) = false)) +[ apply Hcut. + apply divides_b_to_Prop. + assumption +| elim (divides_b n m) + [ absurd (n \divides m) + [ (*qui auto non chiude il goal, chiuso dalla sola tattica assumption*) + assumption + | assumption + ] + | reflexivity + ] +] +qed. + +(* divides and pi *) +theorem divides_f_pi_f : \forall f:nat \to nat.\forall n,m,i:nat. +m \le i \to i \le n+m \to f i \divides pi n f m. +intros 5. +elim n +[ simplify. + cut (i = m) + [ auto + (*rewrite < Hcut. + apply divides_n_n*) + | apply antisymmetric_le + [ assumption + | assumption + ] + ] +| simplify. + cut (i < S n1+m \lor i = S n1 + m) + [ elim Hcut + [ apply (transitive_divides ? (pi n1 f m)) + [ apply H1. + auto + (*apply le_S_S_to_le. + assumption*) + | auto + (*apply (witness ? ? (f (S n1+m))). + apply sym_times*) + ] + | auto + (*rewrite > H3. + apply (witness ? ? (pi n1 f m)). + reflexivity*) + ] + | auto + (*apply le_to_or_lt_eq. + assumption*) + ] +] +qed. + +(* +theorem mod_S_pi: \forall f:nat \to nat.\forall n,i:nat. +i < n \to (S O) < (f i) \to (S (pi n f)) \mod (f i) = (S O). +intros.cut (pi n f) \mod (f i) = O. +rewrite < Hcut. +apply mod_S.apply trans_lt O (S O).apply le_n (S O).assumption. +rewrite > Hcut.assumption. +apply divides_to_mod_O.apply trans_lt O (S O).apply le_n (S O).assumption. +apply divides_f_pi_f.assumption. +qed. +*) + +(* divides and fact *) +theorem divides_fact : \forall n,i:nat. +O < i \to i \le n \to i \divides n!. +intros 3. +elim n +[ absurd (O H3. + apply (witness ? ? n1!). + reflexivity*) + ] +] +qed. + +theorem mod_S_fact: \forall n,i:nat. +(S O) < i \to i \le n \to (S n!) \mod i = (S O). +intros. +cut (n! \mod i = O) +[ rewrite < Hcut. + apply mod_S + [ auto + (*apply (trans_lt O (S O)) + [ apply (le_n (S O)) + | assumption + ]*) + | rewrite > Hcut. + assumption + ] +| auto + (*apply divides_to_mod_O + [ apply (trans_lt O (S O)) + [ apply (le_n (S O)) + | assumption + ] + | apply divides_fact + [ apply (trans_lt O (S O)) + [ apply (le_n (S O)) + | assumption + ] + | assumption + ] + ]*) +] +qed. + +theorem not_divides_S_fact: \forall n,i:nat. +(S O) < i \to i \le n \to i \ndivides S n!. +intros. +apply divides_b_false_to_not_divides +[ auto + (*apply (trans_lt O (S O)) + [ apply (le_n (S O)) + | assumption + ]*) +| unfold divides_b. + rewrite > mod_S_fact;auto + (*[ simplify. + reflexivity + | assumption + | assumption + ]*) +] +qed. + +(* prime *) +definition prime : nat \to Prop \def +\lambda n:nat. (S O) < n \land +(\forall m:nat. m \divides n \to (S O) < m \to m = n). + +theorem not_prime_O: \lnot (prime O). +unfold Not. +unfold prime. +intro. +elim H. +apply (not_le_Sn_O (S O) H1). +qed. + +theorem not_prime_SO: \lnot (prime (S O)). +unfold Not. +unfold prime. +intro. +elim H. +apply (not_le_Sn_n (S O) H1). +qed. + +(* smallest factor *) +definition smallest_factor : nat \to nat \def +\lambda n:nat. +match n with +[ O \Rightarrow O +| (S p) \Rightarrow + match p with + [ O \Rightarrow (S O) + | (S q) \Rightarrow min_aux q (S(S q)) (\lambda m.(eqb ((S(S q)) \mod m) O))]]. + +(* it works ! +theorem example1 : smallest_prime_factor (S(S(S O))) = (S(S(S O))). +normalize.reflexivity. +qed. + +theorem example2: smallest_prime_factor (S(S(S(S O)))) = (S(S O)). +normalize.reflexivity. +qed. + +theorem example3 : smallest_prime_factor (S(S(S(S(S(S(S O))))))) = (S(S(S(S(S(S(S O))))))). +simplify.reflexivity. +qed. *) + +theorem lt_SO_smallest_factor: +\forall n:nat. (S O) < n \to (S O) < (smallest_factor n). +intro. +apply (nat_case n) +[ auto + (*intro. + apply False_ind. + apply (not_le_Sn_O (S O) H)*) +| intro. + apply (nat_case m) + [ auto + (*intro. apply False_ind. + apply (not_le_Sn_n (S O) H)*) + | intros. + change with + (S O < min_aux m1 (S(S m1)) (\lambda m.(eqb ((S(S m1)) \mod m) O))). + apply (lt_to_le_to_lt ? (S (S O))) + [ apply (le_n (S(S O))) + | cut ((S(S O)) = (S(S m1)) - m1) + [ rewrite > Hcut. + apply le_min_aux + | apply sym_eq. + apply plus_to_minus. + auto + (*rewrite < sym_plus. + simplify. + reflexivity*) + ] + ] + ] +] +qed. + +theorem lt_O_smallest_factor: \forall n:nat. O < n \to O < (smallest_factor n). +intro. +apply (nat_case n) +[ auto + (*intro. + apply False_ind. + apply (not_le_Sn_n O H)*) +| intro. + apply (nat_case m) + [ auto + (*intro. + simplify. + unfold lt. + apply le_n*) + | intros. + apply (trans_lt ? (S O)) + [ auto + (*unfold lt. + apply le_n*) + | apply lt_SO_smallest_factor. + auto + (*unfold lt. + apply le_S_S. + apply le_S_S. + apply le_O_n*) + ] + ] +] +qed. + +theorem divides_smallest_factor_n : +\forall n:nat. O < n \to smallest_factor n \divides n. +intro. +apply (nat_case n) +[ intro. + auto + (*apply False_ind. + apply (not_le_Sn_O O H)*) +| intro. + apply (nat_case m) + [ intro. + auto + (*simplify. + apply (witness ? ? (S O)). + simplify. + reflexivity*) + | intros. + apply divides_b_true_to_divides + [ apply (lt_O_smallest_factor ? H) + | change with + (eqb ((S(S m1)) \mod (min_aux m1 (S(S m1)) + (\lambda m.(eqb ((S(S m1)) \mod m) O)))) O = true). + apply f_min_aux_true. + apply (ex_intro nat ? (S(S m1))). + split + [ auto + (*split + [ apply le_minus_m + | apply le_n + ]*) + | auto + (*rewrite > mod_n_n + [ reflexivity + | apply (trans_lt ? (S O)) + [ apply (le_n (S O)) + | unfold lt. + apply le_S_S. + apply le_S_S. + apply le_O_n + ] + ]*) + ] + ] + ] +] +qed. + +theorem le_smallest_factor_n : +\forall n:nat. smallest_factor n \le n. +intro. +apply (nat_case n) +[ auto + (*simplify. + apply le_n*) +| intro. + auto + (*apply (nat_case m) + [ simplify. + apply le_n + | intro. + apply divides_to_le + [ unfold lt. + apply le_S_S. + apply le_O_n + | apply divides_smallest_factor_n. + unfold lt. + apply le_S_S. + apply le_O_n + ] + ]*) +] +qed. + +theorem lt_smallest_factor_to_not_divides: \forall n,i:nat. +(S O) < n \to (S O) < i \to i < (smallest_factor n) \to i \ndivides n. +intros 2. +apply (nat_case n) +[ intro. + apply False_ind. + apply (not_le_Sn_O (S O) H) +| intro. + apply (nat_case m) + [ intro. + apply False_ind. + apply (not_le_Sn_n (S O) H) + | intros. + apply divides_b_false_to_not_divides + [ auto + (*apply (trans_lt O (S O)) + [ apply (le_n (S O)) + | assumption + ]*) + | unfold divides_b. + apply (lt_min_aux_to_false + (\lambda i:nat.eqb ((S(S m1)) \mod i) O) (S(S m1)) m1 i) + [ cut ((S(S O)) = (S(S m1)-m1)) + [ rewrite < Hcut. + exact H1 + | apply sym_eq. + apply plus_to_minus. + auto + (*rewrite < sym_plus. + simplify. + reflexivity*) + ] + | exact H2 + ] + ] + ] +] +qed. + +theorem prime_smallest_factor_n : +\forall n:nat. (S O) < n \to prime (smallest_factor n). +intro. +change with ((S(S O)) \le n \to (S O) < (smallest_factor n) \land +(\forall m:nat. m \divides smallest_factor n \to (S O) < m \to m = (smallest_factor n))). +intro. +split +[ apply lt_SO_smallest_factor. + assumption +| intros. + cut (le m (smallest_factor n)) + [ elim (le_to_or_lt_eq m (smallest_factor n) Hcut) + [ absurd (m \divides n) + [ apply (transitive_divides m (smallest_factor n)) + [ assumption + | apply divides_smallest_factor_n. + auto + (*apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | exact H + ]*) + ] + | apply lt_smallest_factor_to_not_divides;auto + (*[ exact H + | assumption + | assumption + ]*) + ] + | assumption + ] + | apply divides_to_le + [ apply (trans_lt O (S O)) + [ apply (le_n (S O)) + | apply lt_SO_smallest_factor. + exact H + ] + | assumption + ] + ] +] +qed. + +theorem prime_to_smallest_factor: \forall n. prime n \to +smallest_factor n = n. +intro. +apply (nat_case n) +[ intro. + auto + (*apply False_ind. + apply (not_prime_O H)*) +| intro. + apply (nat_case m) + [ intro. + auto + (*apply False_ind. + apply (not_prime_SO H)*) + | intro. + change with + ((S O) < (S(S m1)) \land + (\forall m:nat. m \divides S(S m1) \to (S O) < m \to m = (S(S m1))) \to + smallest_factor (S(S m1)) = (S(S m1))). + intro. + elim H. + auto + (*apply H2 + [ apply divides_smallest_factor_n. + apply (trans_lt ? (S O)) + [ unfold lt. + apply le_n + | assumption + ] + | apply lt_SO_smallest_factor. + assumption + ]*) + ] +] +qed. + +(* a number n > O is prime iff its smallest factor is n *) +definition primeb \def \lambda n:nat. +match n with +[ O \Rightarrow false +| (S p) \Rightarrow + match p with + [ O \Rightarrow false + | (S q) \Rightarrow eqb (smallest_factor (S(S q))) (S(S q))]]. + +(* it works! +theorem example4 : primeb (S(S(S O))) = true. +normalize.reflexivity. +qed. + +theorem example5 : primeb (S(S(S(S(S(S O)))))) = false. +normalize.reflexivity. +qed. + +theorem example6 : primeb (S(S(S(S((S(S(S(S(S(S(S O)))))))))))) = true. +normalize.reflexivity. +qed. + +theorem example7 : primeb (S(S(S(S(S(S((S(S(S(S((S(S(S(S(S(S(S O))))))))))))))))))) = true. +normalize.reflexivity. +qed. *) + +theorem primeb_to_Prop: \forall n. +match primeb n with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)]. +intro. +apply (nat_case n) +[ simplify. + auto + (*unfold Not. + unfold prime. + intro. + elim H. + apply (not_le_Sn_O (S O) H1)*) +| intro. + apply (nat_case m) + [ simplify. + auto + (*unfold Not. + unfold prime. + intro. + elim H. + apply (not_le_Sn_n (S O) H1)*) + | intro. + change with + match eqb (smallest_factor (S(S m1))) (S(S m1)) with + [ true \Rightarrow prime (S(S m1)) + | false \Rightarrow \lnot (prime (S(S m1)))]. + apply (eqb_elim (smallest_factor (S(S m1))) (S(S m1))) + [ intro. + simplify. + rewrite < H. + apply prime_smallest_factor_n. + auto + (*unfold lt. + apply le_S_S. + apply le_S_S. + apply le_O_n*) + | intro. + simplify. + change with (prime (S(S m1)) \to False). + intro. + auto + (*apply H. + apply prime_to_smallest_factor. + assumption*) + ] + ] +] +qed. + +theorem primeb_true_to_prime : \forall n:nat. +primeb n = true \to prime n. +intros. +change with +match true with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)]. +rewrite < H. +(*qui auto non chiude il goal*) +apply primeb_to_Prop. +qed. + +theorem primeb_false_to_not_prime : \forall n:nat. +primeb n = false \to \lnot (prime n). +intros. +change with +match false with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)]. +rewrite < H. +(*qui auto non chiude il goal*) +apply primeb_to_Prop. +qed. + +theorem decidable_prime : \forall n:nat.decidable (prime n). +intro. +unfold decidable. +cut +(match primeb n with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)] \to (prime n) \lor \lnot (prime n)) +[ apply Hcut. + (*qui auto non chiude il goal*) + apply primeb_to_Prop +| elim (primeb n) + [ left. + (*qui auto non chiude il goal*) + apply H + | right. + (*qui auto non chiude il goal*) + apply H + ] +] +qed. + +theorem prime_to_primeb_true: \forall n:nat. +prime n \to primeb n = true. +intros. +cut (match (primeb n) with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)] \to ((primeb n) = true)) +[ apply Hcut. + (*qui auto non chiude il goal*) + apply primeb_to_Prop +| elim (primeb n) + [ reflexivity. + | absurd (prime n) + [ assumption + | (*qui auto non chiude il goal*) + assumption + ] + ] +] +qed. + +theorem not_prime_to_primeb_false: \forall n:nat. +\lnot(prime n) \to primeb n = false. +intros. +cut (match (primeb n) with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)] \to ((primeb n) = false)) +[ apply Hcut. + (*qui auto non chiude il goal*) + apply primeb_to_Prop +| elim (primeb n) + [ absurd (prime n) + [ (*qui auto non chiude il goal*) + assumption + | assumption + ] + | reflexivity + ] +] +qed. + diff --git a/matita/library_auto/nat/relevant_equations.ma b/matita/library_auto/nat/relevant_equations.ma new file mode 100644 index 000000000..59881be7b --- /dev/null +++ b/matita/library_auto/nat/relevant_equations.ma @@ -0,0 +1,57 @@ +(**************************************************************************) +(* __ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/relevant_equations". + +include "nat/times.ma". +include "nat/minus.ma". +include "nat/gcd.ma". +(* if gcd is compiled before this, the applys will take too much *) + +theorem times_plus_l: \forall n,m,p:nat. (n+m)*p = n*p + m*p. +intros. +apply (trans_eq ? ? (p*(n+m))) +[ apply sym_times +| apply (trans_eq ? ? (p*n+p*m));auto + (*[ apply distr_times_plus + | apply eq_f2; + apply sym_times + ]*) +] +qed. + +theorem times_minus_l: \forall n,m,p:nat. (n-m)*p = n*p - m*p. +intros. +apply (trans_eq ? ? (p*(n-m))) +[ apply sym_times +| apply (trans_eq ? ? (p*n-p*m));auto + (*[ apply distr_times_minus + | apply eq_f2; + apply sym_times + ]*) +] +qed. + +theorem times_plus_plus: \forall n,m,p,q:nat. (n + m)*(p + q) = +n*p + n*q + m*p + m*q. +intros. +auto. +(*apply (trans_eq nat ? ((n*(p+q) + m*(p+q)))) +[ apply times_plus_l +| rewrite > distr_times_plus. + rewrite > distr_times_plus. + rewrite < assoc_plus. + reflexivity +]*) +qed. diff --git a/matita/library_auto/nat/sigma_and_pi.ma b/matita/library_auto/nat/sigma_and_pi.ma new file mode 100644 index 000000000..a8824eb90 --- /dev/null +++ b/matita/library_auto/nat/sigma_and_pi.ma @@ -0,0 +1,139 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/sigma_and_pi". + +include "nat/factorial.ma". +include "nat/exp.ma". +include "nat/lt_arith.ma". + +let rec sigma n f m \def + match n with + [ O \Rightarrow (f m) + | (S p) \Rightarrow (f (S p+m))+(sigma p f m)]. + +let rec pi n f m \def + match n with + [ O \Rightarrow f m + | (S p) \Rightarrow (f (S p+m))*(pi p f m)]. + +theorem eq_sigma: \forall f,g:nat \to nat. +\forall n,m:nat. +(\forall i:nat. m \le i \to i \le m+n \to f i = g i) \to +(sigma n f m) = (sigma n g m). +intros 3. +elim n +[ simplify. + auto + (*apply H + [ apply le_n + | rewrite < plus_n_O. + apply le_n + ]*) +| simplify. + apply eq_f2 + [ apply H1 + [ auto + (*change with (m \le (S n1)+m). + apply le_plus_n*) + | auto + (*rewrite > (sym_plus m). + apply le_n*) + ] + | apply H. + intros. + apply H1 + [ assumption + | auto + (*rewrite < plus_n_Sm. + apply le_S. + assumption*) + ] + ] +] +qed. + +theorem eq_pi: \forall f,g:nat \to nat. +\forall n,m:nat. +(\forall i:nat. m \le i \to i \le m+n \to f i = g i) \to +(pi n f m) = (pi n g m). +intros 3. +elim n +[ simplify. + auto + (*apply H + [ apply le_n + | rewrite < plus_n_O. + apply le_n + ] *) +| simplify. + apply eq_f2 + [ apply H1 + [ auto + (*change with (m \le (S n1)+m). + apply le_plus_n*) + | auto + (*rewrite > (sym_plus m). + apply le_n*) + ] + | apply H. + intros. + apply H1 + [ assumption + | auto + (*rewrite < plus_n_Sm. + apply le_S. + assumption*) + ] + ] +] +qed. + +theorem eq_fact_pi: \forall n. (S n)! = pi n (\lambda m.m) (S O). +intro. +elim n +[ auto + (*simplify. + reflexivity*) +| change with ((S(S n1))*(S n1)! = ((S n1)+(S O))*(pi n1 (\lambda m.m) (S O))). + rewrite < plus_n_Sm. + rewrite < plus_n_O. + auto + (*apply eq_f. + assumption*) +] +qed. + +theorem exp_pi_l: \forall f:nat\to nat.\forall n,m,a:nat. +(exp a (S n))*pi n f m= pi n (\lambda p.a*(f p)) m. +intros. +elim n +[ auto + (*simplify. + rewrite < times_n_SO. + reflexivity*) +| simplify. + rewrite < H. + rewrite > assoc_times. + rewrite > assoc_times in\vdash (? ? ? %). + apply eq_f. + rewrite < assoc_times. + rewrite < assoc_times. + auto + (*apply eq_f2 + [ apply sym_times + | reflexivity + ]*) +] +qed. diff --git a/matita/library_auto/nat/times.ma b/matita/library_auto/nat/times.ma new file mode 100644 index 000000000..cd2005309 --- /dev/null +++ b/matita/library_auto/nat/times.ma @@ -0,0 +1,131 @@ +(**************************************************************************) +(* __ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/times". + +include "nat/plus.ma". + +let rec times n m \def + match n with + [ O \Rightarrow O + | (S p) \Rightarrow m+(times p m) ]. + +(*CSC: the URI must disappear: there is a bug now *) +interpretation "natural times" 'times x y = (cic:/matita/nat/times/times.con x y). + +theorem times_n_O: \forall n:nat. O = n*O. +intros.elim n +[ auto + (*simplify. + reflexivity.*) +| simplify. (* qui auto non funziona: Uncaught exception: Invalid_argument ("List.map2")*) + assumption. +] +qed. + +theorem times_n_Sm : +\forall n,m:nat. n+(n*m) = n*(S m). +intros.elim n +[ auto. + (*simplify.reflexivity.*) +| simplify. + auto + (*apply eq_f. + rewrite < H. + transitivity ((n1+m)+n1*m) + [ symmetry. + apply assoc_plus. + | transitivity ((m+n1)+n1*m) + [ apply eq_f2. + apply sym_plus. + reflexivity. + | apply assoc_plus. + ] + ]*) +] +qed. + +(* NOTA: + se non avessi semplificato con auto tutto il secondo ramo della tattica + elim n, avrei comunque potuto risolvere direttamente con auto entrambi + i rami generati dalla prima applicazione della tattica transitivity + (precisamente transitivity ((n1+m)+n1*m) + *) + +theorem times_n_SO : \forall n:nat. n = n * S O. +intros. +rewrite < times_n_Sm. +auto paramodulation. (*termina la dim anche solo con auto*) +(*rewrite < times_n_O. +rewrite < plus_n_O. +reflexivity.*) +qed. + +theorem times_SSO_n : \forall n:nat. n + n = S (S O) * n. +intros. +simplify. +auto paramodulation. (* termina la dim anche solo con auto*) +(*rewrite < plus_n_O. +reflexivity.*) +qed. + +theorem symmetric_times : symmetric nat times. +unfold symmetric. +intros.elim x +[ auto + (*simplify.apply times_n_O.*) +| simplify. + auto + (*rewrite > H.apply times_n_Sm.*) +] +qed. + +variant sym_times : \forall n,m:nat. n*m = m*n \def +symmetric_times. + +theorem distributive_times_plus : distributive nat times plus. +unfold distributive. +intros.elim x;simplify +[ reflexivity. +| auto + (*rewrite > H. + rewrite > assoc_plus. + rewrite > assoc_plus. + apply eq_f. + rewrite < assoc_plus. + rewrite < (sym_plus ? z). + rewrite > assoc_plus. + reflexivity.*) +] +qed. + +variant distr_times_plus: \forall n,m,p:nat. n*(m+p) = n*m + n*p +\def distributive_times_plus. + +theorem associative_times: associative nat times. +unfold associative.intros. +elim x;simplify +[ apply refl_eq +| auto + (*rewrite < sym_times. + rewrite > distr_times_plus. + rewrite < sym_times. + rewrite < (sym_times (times n y) z). + rewrite < H. + apply refl_eq.*) +] +qed. + +variant assoc_times: \forall n,m,p:nat. (n*m)*p = n*(m*p) \def +associative_times. diff --git a/matita/library_auto/nat/totient.ma b/matita/library_auto/nat/totient.ma new file mode 100644 index 000000000..682694819 --- /dev/null +++ b/matita/library_auto/nat/totient.ma @@ -0,0 +1,172 @@ +(**************************************************************************) +(* __ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/totient". + +include "nat/count.ma". +include "nat/chinese_reminder.ma". + +definition totient : nat \to nat \def +\lambda n. count n (\lambda m. eqb (gcd m n) (S O)). + +theorem totient3: totient (S(S(S O))) = (S(S O)). +reflexivity. +qed. + +theorem totient6: totient (S(S(S(S(S(S O)))))) = (S(S O)). +reflexivity. +qed. + +theorem totient_times: \forall n,m:nat. (gcd m n) = (S O) \to +totient (n*m) = (totient n)*(totient m). +intro. +apply (nat_case n) +[ intros. + auto + (*simplify. + reflexivity*) +| intros 2. + apply (nat_case m1) + [ rewrite < sym_times. + rewrite < (sym_times (totient O)). + simplify. + intro. + reflexivity + | intros. + unfold totient. + apply (count_times m m2 ? ? ? + (\lambda b,a. cr_pair (S m) (S m2) a b) + (\lambda x. x \mod (S m)) (\lambda x. x \mod (S m2))) + [ intros. + unfold cr_pair. + apply (le_to_lt_to_lt ? (pred ((S m)*(S m2)))) + [ unfold min. + apply le_min_aux_r + | auto + (*unfold lt. + apply (nat_case ((S m)*(S m2))) + [ apply le_n + | intro. + apply le_n + ]*) + ] + | intros. + generalize in match (mod_cr_pair (S m) (S m2) a b H1 H2 H). + intro. + elim H3. + apply H4 + | intros. + generalize in match (mod_cr_pair (S m) (S m2) a b H1 H2 H). + intro. + elim H3. + apply H5 + | intros. + generalize in match (mod_cr_pair (S m) (S m2) a b H1 H2 H). + intro. + elim H3. + apply eqb_elim + [ intro. + rewrite > eq_to_eqb_true + [ rewrite > eq_to_eqb_true + [ reflexivity + | rewrite < H4. + rewrite > sym_gcd. + rewrite > gcd_mod + [ apply (gcd_times_SO_to_gcd_SO ? ? (S m2)) + [ auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | assumption + ] + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + ] + ] + | rewrite < H5. + rewrite > sym_gcd. + rewrite > gcd_mod + [ apply (gcd_times_SO_to_gcd_SO ? ? (S m)) + [ auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | auto + (*rewrite > sym_times. + assumption*) + ] + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + ] + ] + | intro. + apply eqb_elim + [ intro. + apply eqb_elim + [ intro. + apply False_ind. + apply H6. + apply eq_gcd_times_SO + [ auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + | rewrite < gcd_mod + [ auto + (*rewrite > H4. + rewrite > sym_gcd. + assumption*) + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + ] + | rewrite < gcd_mod + [ auto + (*rewrite > H5. + rewrite > sym_gcd. + assumption*) + | auto + (*unfold lt. + apply le_S_S. + apply le_O_n*) + ] + ] + | intro. + reflexivity + ] + | intro. + reflexivity + ] + ] + ] + ] +] +qed. \ No newline at end of file -- 2.39.2