From 27d1aed8770f2237d15aee1fedbdd612b19f22e3 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Mon, 30 Oct 2006 18:03:04 +0000 Subject: [PATCH] Up to integration f-algebras. --- matita/dama/integration_algebras.ma | 85 ++++++++++++++++++++++------- 1 file changed, 65 insertions(+), 20 deletions(-) diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index 06f85c73c..fa76d2d98 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -51,7 +51,7 @@ record abelian_group : Type \def opp: carrier → carrier; ag_abelian_group_properties: is_abelian_group ? plus zero opp }. - + notation "0" with precedence 89 for @{ 'zero }. @@ -63,6 +63,12 @@ interpretation "Ring plus" 'plus a b = interpretation "Ring opp" 'uminus a = (cic:/matita/integration_algebras/opp.con _ a). + +definition minus ≝ + λG:abelian_group.λa,b:G. a + -b. + +interpretation "Ring minus" 'minus a b = + (cic:/matita/integration_algebras/minus.con _ a b). theorem plus_assoc: ∀G:abelian_group. associative ? (plus G). intro; @@ -277,7 +283,8 @@ lemma not_eq_x_zero_to_lt_zero_mult_x_x: generalize in match (of_mult_compat ? ? ? ? ? ? ? ? F ? ? H2 H2); intro; *) -axiom not_eq_sum_field_zero: ∀F,n. n > O → sum_field F n ≠ 0. +(* The ordering is not necessary. *) +axiom not_eq_sum_field_zero: ∀F:ordered_field_ch0.∀n. O vector_space rs_ordered_field_ch0; +record riesz_space (K:ordered_field_ch0) : Type \def + { rs_vector_space:> vector_space K; rs_lattice:> lattice rs_vector_space; rs_riesz_space_properties: is_riesz_space ? rs_vector_space rs_lattice }. -definition absolute_value \def λS:riesz_space.λf.join ? S f (-f). +definition absolute_value \def λK.λS:riesz_space K.λf.join ? S f (-f). -record is_archimedean_riesz_space (S:riesz_space) : Prop +record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop \def { ars_archimedean: ∃u.∀n.∀a.∀p:n > O. le ? S - (absolute_value S a) + (absolute_value ? S a) (emult ? S - (inv ? (sum_field (rs_ordered_field_ch0 S) n) (not_eq_sum_field_zero ? n p)) + (inv ? (sum_field K n) (not_eq_sum_field_zero ? n p)) u) → a = 0 }. -record archimedean_riesz_space : Type \def - { ars_riesz_space:> riesz_space; - ars_archimedean_property: is_archimedean_riesz_space ars_riesz_space +record archimedean_riesz_space (K:ordered_field_ch0) : Type \def + { ars_riesz_space:> riesz_space K; + ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space }. record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop @@ -372,8 +378,8 @@ record algebra (K: field) (V:vector_space K) : Type \def interpretation "Algebra product" 'times a b = (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). -interpretation "Field one" 'one = - (cic:/matita/integration_algebras/a_one.con _). +interpretation "Algebra one" 'one = + (cic:/matita/integration_algebras/a_one.con _ _ _). definition ring_of_algebra ≝ λK.λV:vector_space K.λA:algebra ? V. @@ -382,8 +388,7 @@ definition ring_of_algebra ≝ coercion cic:/matita/integration_algebras/ring_of_algebra.con. -record is_f_algebra (S:archimedean_riesz_space) - (A:algebra (rs_ordered_field_ch0 (ars_riesz_space S)) S) : Prop +record is_f_algebra (K) (S:archimedean_riesz_space K) (A:algebra ? S) : Prop \def { compat_mult_le: ∀f,g:S. @@ -393,11 +398,51 @@ record is_f_algebra (S:archimedean_riesz_space) meet ? S f g = 0 → meet ? S (a_mult ? ? A h f) g = 0 }. -record f_algebra : Type \def -{ fa_archimedean_riesz_space:> archimedean_riesz_space; +record f_algebra (K:ordered_field_ch0) : Type \def +{ fa_archimedean_riesz_space:> archimedean_riesz_space K; fa_algebra:> algebra ? fa_archimedean_riesz_space; - fa_f_algebra_properties: is_f_algebra fa_archimedean_riesz_space fa_algebra + fa_f_algebra_properties: is_f_algebra ? fa_archimedean_riesz_space fa_algebra }. (* to be proved; see footnote 2 in the paper by Spitters *) -axiom symmetric_a_mult: ∀A:f_algebra. symmetric ? (a_mult ? ? A). +axiom symmetric_a_mult: ∀K.∀A:f_algebra K. symmetric ? (a_mult ? ? A). + + +definition tends_to : ∀F:ordered_field_ch0.∀f:nat→F.∀l:F.Prop. + alias symbol "leq" = "Ordered field le". + alias id "le" = "cic:/matita/nat/orders/le.ind#xpointer(1/1)". + apply + (λF:ordered_field_ch0.λf:nat → F.λl:F. + ∀n:nat.∃m:nat.∀j:nat. le m j → + l - (inv F (sum_field F (S n)) ?) ≤ f j ∧ + f j ≤ l + (inv F (sum_field F (S n)) ?)); + apply not_eq_sum_field_zero; + unfold; + auto new. +qed. + +record is_integral (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop +\def + { i_positive: ∀f:Type_OF_f_algebra ? A. le ? (lattice_OF_f_algebra ? A) 0 f → of_le K 0 (I f); + i_linear1: ∀f,g:Type_OF_f_algebra ? A. I (f + g) = I f + I g; + i_linear2: ∀f:A.∀k:K. I (emult ? A k f) = k*(I f) + }. + +(* Here we are avoiding a construction (the quotient space to define + f=g iff I(|f-g|)=0 *) +record is_integration_f_algebra (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop +\def + { ifa_integral: is_integral ? ? I; + ifa_limit1: + ∀f:A. tends_to ? (λn.I(meet ? A f ((sum_field K n)*(a_one ? ? A)))) (I f); + ifa_limit2: + ∀f:A. + tends_to ? + (λn. + I (meet ? A f + ((inv ? (sum_field K (S n)) + (not_eq_sum_field_zero K (S n) (le_S_S O n (le_O_n n))) + ) * (a_one ? ? A)))) 0; + ifa_quotient_space1: + ∀f,g:A. f=g → I(absolute_value ? A (f - g)) = 0 + }. \ No newline at end of file -- 2.39.2