From 346e1c6dc1fd23139ea51fa826105fc93c454754 Mon Sep 17 00:00:00 2001 From: Andrea Asperti Date: Wed, 2 May 2012 10:33:34 +0000 Subject: [PATCH] while machine --- matita/matita/lib/turing/while_machine.ma | 476 ++++++++++++++++++++++ 1 file changed, 476 insertions(+) create mode 100644 matita/matita/lib/turing/while_machine.ma diff --git a/matita/matita/lib/turing/while_machine.ma b/matita/matita/lib/turing/while_machine.ma new file mode 100644 index 000000000..f2767940c --- /dev/null +++ b/matita/matita/lib/turing/while_machine.ma @@ -0,0 +1,476 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_____________________________________________________________*) + +include "turing/mono.ma". +include "basics/star.ma". + +definition while_trans ≝ λsig. λM : TM sig. λq:states sig M. λp. + let 〈s,a〉 ≝ p in + if s == q then 〈start ? M, None ?〉 + else trans ? M p. + +definition whileTM ≝ λsig. λM : TM sig. λqacc: states ? M. + mk_TM sig + (states ? M) + (while_trans sig M qacc) + (start sig M) + (λs.halt sig M s ∧ ¬ s==qacc). + +axiom daemon : ∀X:Prop.X. + +lemma while_trans_false : ∀sig,M,q,p. + \fst p ≠ q → trans sig (whileTM sig M q) p = trans sig M p. +#sig #M #q * #q1 #a #Hq normalize >(\bf Hq) normalize // +qed. + +lemma loop_lift_acc : ∀A,B,k,lift,f,g,h,hlift,c1,c2,subh. + (∀x.subh x = true → h x = true) → + (∀x.subh x = false → hlift (lift x) = h x) → + (∀x.h x = false → lift (f x) = g (lift x)) → + subh c2 = false → + loop A k f h c1 = Some ? c2 → + loop B k g hlift (lift c1) = Some ? (lift … c2). +#A #B #k #lift #f #g #h #hlift #c1 #c2 #subh #Hsubh #Hlift #Hfg #Hc2 +generalize in match c1; elim k +[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) +|#k0 #IH #c0 whd in ⊢ (??%? → ??%?); + cases (true_or_false (h c0)) #Hc0 >Hc0 + [ normalize #Heq destruct (Heq) >(Hlift … Hc2) >Hc0 // + | normalize >(Hlift c0) + [>Hc0 normalize <(Hfg … Hc0) @IH + |cases (true_or_false (subh c0)) // + #H H @Hsubh // + ] + ] +qed. + +theorem sem_while: ∀sig,M,acc,Rtrue,Rfalse. + halt sig M acc = true → + accRealize sig M acc Rtrue Rfalse → + Realize sig (whileTM sig M acc) ((star ? Rtrue) ∘ Rfalse). +#sig #M #acc #Rtrue #Rfalse #Hacctrue #HaccR #t +cases (HaccR t) #k * #outc * * #Hloop #HMtrue #HMfalse +cases (true_or_false (cstate ?? outc == acc)) #Hacc + [ + |@(ex_intro … k) @(ex_intro … outc) % + [@(loop_lift_acc ?? k (λc.c) … Hloop) + [@(λc. (cstate ?? c) == acc) + |* #q #a #eqacc >(\P eqacc) // + |#c #eqacc normalize >eqacc normalize + cases (halt sig M ?) normalize // + |* #s #a #halts whd in ⊢ (??%?); + whd in ⊢ (???%); >while_trans_false + [ % | @(not_to_not … not_eq_true_false) #eqs + (trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq whd in ⊢ (???%); // + | @(loop_Some ?????? Hloop10) ] + ||4:cases outc1 #s1 #t1 % + |5: + + @(loop_liftR … Hloop2) + |whd in ⊢ (??(???%)?);whd in ⊢ (??%?); + generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10 + >(trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq // + | @(loop_Some ?????? Hloop10) ] + ] +| @(ex_intro … (ctape ? (seq sig M1 M2) (lift_confL … outc1))) + % // +] +qed. +(* We do not distinuish an input tape *) + +record TM (sig:FinSet): Type[1] ≝ +{ states : FinSet; + trans : states × (option sig) → states × (option (sig × move)); + start: states; + halt : states → bool +}. + +record config (sig:FinSet) (M:TM sig): Type[0] ≝ +{ cstate : states sig M; + ctape: tape sig +}. + +definition option_hd ≝ λA.λl:list A. + match l with + [nil ⇒ None ? + |cons a _ ⇒ Some ? a + ]. + +definition tape_move ≝ λsig.λt: tape sig.λm:option (sig × move). + match m with + [ None ⇒ t + | Some m1 ⇒ + match \snd m1 with + [ R ⇒ mk_tape sig ((\fst m1)::(left ? t)) (tail ? (right ? t)) + | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m1)::(right ? t)) + ] + ]. + +definition step ≝ λsig.λM:TM sig.λc:config sig M. + let current_char ≝ option_hd ? (right ? (ctape ?? c)) in + let 〈news,mv〉 ≝ trans sig M 〈cstate ?? c,current_char〉 in + mk_config ?? news (tape_move sig (ctape ?? c) mv). + +let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ + match n with + [ O ⇒ None ? + | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) + ]. + +lemma loop_incr : ∀A,f,p,k1,k2,a1,a2. + loop A k1 f p a1 = Some ? a2 → + loop A (k2+k1) f p a1 = Some ? a2. +#A #f #p #k1 #k2 #a1 #a2 generalize in match a1; elim k1 +[normalize #a0 #Hfalse destruct +|#k1' #IH #a0 Hpa0 whd in ⊢ (??%? → ??%?); // @IH +] +qed. + +lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → + ∀k1,k2,a1,a2,a3,a4. + loop A k1 f p a1 = Some ? a2 → + f a2 = a3 → q a2 = false → + loop A k2 f q a3 = Some ? a4 → + loop A (k1+k2) f q a1 = Some ? a4. +#Sig #f #p #q #Hpq #k1 elim k1 + [normalize #k2 #a1 #a2 #a3 #a4 #H destruct + |#k1' #Hind #k2 #a1 #a2 #a3 #a4 normalize in ⊢ (%→?); + cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); + [#eqa1a2 destruct #eqa2a3 #Hqa2 #H + whd in ⊢ (??(??%???)?); >plus_n_Sm @loop_incr + whd in ⊢ (??%?); >Hqa2 >eqa2a3 @H + |normalize >(Hpq … pa1) normalize + #H1 #H2 #H3 @(Hind … H2) // + ] + ] +qed. + +(* +lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → + ∀k1,k2,a1,a2,a3. + loop A k1 f p a1 = Some ? a2 → + loop A k2 f q a2 = Some ? a3 → + loop A (k1+k2) f q a1 = Some ? a3. +#Sig #f #p #q #Hpq #k1 elim k1 + [normalize #k2 #a1 #a2 #a3 #H destruct + |#k1' #Hind #k2 #a1 #a2 #a3 normalize in ⊢ (%→?→?); + cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); + [#eqa1a2 destruct #H @loop_incr // + |normalize >(Hpq … pa1) normalize + #H1 #H2 @(Hind … H2) // + ] + ] +qed. +*) + +definition initc ≝ λsig.λM:TM sig.λt. + mk_config sig M (start sig M) t. + +definition Realize ≝ λsig.λM:TM sig.λR:relation (tape sig). +∀t.∃i.∃outc. + loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc ∧ + R t (ctape ?? outc). + +(* Compositions *) + +definition seq_trans ≝ λsig. λM1,M2 : TM sig. +λp. let 〈s,a〉 ≝ p in + match s with + [ inl s1 ⇒ + if halt sig M1 s1 then 〈inr … (start sig M2), None ?〉 + else + let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in + 〈inl … news1,m〉 + | inr s2 ⇒ + let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in + 〈inr … news2,m〉 + ]. + +definition seq ≝ λsig. λM1,M2 : TM sig. + mk_TM sig + (FinSum (states sig M1) (states sig M2)) + (seq_trans sig M1 M2) + (inl … (start sig M1)) + (λs.match s with + [ inl _ ⇒ false | inr s2 ⇒ halt sig M2 s2]). + +definition Rcomp ≝ λA.λR1,R2:relation A.λa1,a2. + ∃am.R1 a1 am ∧ R2 am a2. + +(* +definition injectRl ≝ λsig.λM1.λM2.λR. + λc1,c2. ∃c11,c12. + inl … (cstate sig M1 c11) = cstate sig (seq sig M1 M2) c1 ∧ + inl … (cstate sig M1 c12) = cstate sig (seq sig M1 M2) c2 ∧ + ctape sig M1 c11 = ctape sig (seq sig M1 M2) c1 ∧ + ctape sig M1 c12 = ctape sig (seq sig M1 M2) c2 ∧ + R c11 c12. + +definition injectRr ≝ λsig.λM1.λM2.λR. + λc1,c2. ∃c21,c22. + inr … (cstate sig M2 c21) = cstate sig (seq sig M1 M2) c1 ∧ + inr … (cstate sig M2 c22) = cstate sig (seq sig M1 M2) c2 ∧ + ctape sig M2 c21 = ctape sig (seq sig M1 M2) c1 ∧ + ctape sig M2 c22 = ctape sig (seq sig M1 M2) c2 ∧ + R c21 c22. + +definition Rlink ≝ λsig.λM1,M2.λc1,c2. + ctape sig (seq sig M1 M2) c1 = ctape sig (seq sig M1 M2) c2 ∧ + cstate sig (seq sig M1 M2) c1 = inl … (halt sig M1) ∧ + cstate sig (seq sig M1 M2) c2 = inr … (start sig M2). *) + +interpretation "relation composition" 'compose R1 R2 = (Rcomp ? R1 R2). + +definition lift_confL ≝ + λsig,M1,M2,c.match c with + [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inl … s) t ]. +definition lift_confR ≝ + λsig,M1,M2,c.match c with + [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inr … s) t ]. + +definition halt_liftL ≝ + λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2). + match s with + [ inl s1 ⇒ halt sig M1 s1 + | inr _ ⇒ true ]. (* should be vacuous in all cases we use halt_liftL *) + +definition halt_liftR ≝ + λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2). + match s with + [ inl _ ⇒ false + | inr s2 ⇒ halt sig M2 s2 ]. + +lemma p_halt_liftL : ∀sig,M1,M2,c. + halt sig M1 (cstate … c) = + halt_liftL sig M1 M2 (cstate … (lift_confL … c)). +#sig #M1 #M2 #c cases c #s #t % +qed. + +lemma trans_liftL : ∀sig,M1,M2,s,a,news,move. + halt ? M1 s = false → + trans sig M1 〈s,a〉 = 〈news,move〉 → + trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,move〉. +#sig (*#M1*) * #Q1 #T1 #init1 #halt1 #M2 #s #a #news #move +#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % +qed. + +lemma config_eq : + ∀sig,M,c1,c2. + cstate sig M c1 = cstate sig M c2 → + ctape sig M c1 = ctape sig M c2 → c1 = c2. +#sig #M1 * #s1 #t1 * #s2 #t2 // +qed. + +lemma step_lift_confL : ∀sig,M1,M2,c0. + halt ? M1 (cstate ?? c0) = false → + step sig (seq sig M1 M2) (lift_confL sig M1 M2 c0) = + lift_confL sig M1 M2 (step sig M1 c0). +#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s * #lt +#rs #Hhalt +whd in ⊢ (???(????%));whd in ⊢ (???%); +lapply (refl ? (trans ?? 〈s,option_hd sig rs〉)) +cases (trans ?? 〈s,option_hd sig rs〉) in ⊢ (???% → %); +#s0 #m0 #Heq whd in ⊢ (???%); +whd in ⊢ (??(???%)?); whd in ⊢ (??%?); +>(trans_liftL … Heq) +[% | //] +qed. + +lemma loop_liftL : ∀sig,k,M1,M2,c1,c2. + loop ? k (step sig M1) (λc.halt sig M1 (cstate ?? c)) c1 = Some ? c2 → + loop ? k (step sig (seq sig M1 M2)) + (λc.halt_liftL sig M1 M2 (cstate ?? c)) (lift_confL … c1) = + Some ? (lift_confL … c2). +#sig #k #M1 #M2 #c1 #c2 generalize in match c1; +elim k +[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) +|#k0 #IH #c0 whd in ⊢ (??%? → ??%?); + lapply (refl ? (halt ?? (cstate sig M1 c0))) + cases (halt ?? (cstate sig M1 c0)) in ⊢ (???% → ?); #Hc0 >Hc0 + [ >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = true) + [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % + | // ] + | >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = false) + [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f + @step_lift_confL // + | // ] +qed. + +STOP! + +lemma loop_liftR : ∀sig,k,M1,M2,c1,c2. + loop ? k (step sig M2) (λc.halt sig M2 (cstate ?? c)) c1 = Some ? c2 → + loop ? k (step sig (seq sig M1 M2)) + (λc.halt sig (seq sig M1 M2) (cstate ?? c)) (lift_confR … c1) = + Some ? (lift_confR … c2). +#sig #k #M1 #M2 #c1 #c2 +elim k +[normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) +|#k0 #IH whd in ⊢ (??%? → ??%?); + lapply (refl ? (halt ?? (cstate sig M2 c1))) + cases (halt ?? (cstate sig M2 c1)) in ⊢ (???% → ?); #Hc0 >Hc0 + [ >(?: halt ?? (cstate sig (seq ? M1 M2) (lift_confR … c1)) = true) + [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) + | (* ... *) ] + | >(?: halt ?? (cstate sig (seq ? M1 M2) (lift_confR … c1)) = false) + [whd in ⊢ (??%? → ??%?); #Hc2 Hhalt % +qed. + +lemma eq_ctape_lift_conf_L : ∀sig,M1,M2,outc. + ctape sig (seq sig M1 M2) (lift_confL … outc) = ctape … outc. +#sig #M1 #M2 #outc cases outc #s #t % +qed. + +lemma eq_ctape_lift_conf_R : ∀sig,M1,M2,outc. + ctape sig (seq sig M1 M2) (lift_confR … outc) = ctape … outc. +#sig #M1 #M2 #outc cases outc #s #t % +qed. + +theorem sem_seq: ∀sig,M1,M2,R1,R2. + Realize sig M1 R1 → Realize sig M2 R2 → + Realize sig (seq sig M1 M2) (R1 ∘ R2). +#sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t +cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 +cases (HR2 (ctape sig M1 outc1)) #k2 * #outc2 * #Hloop2 #HM2 +@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) +% +[@(loop_split ??????????? (loop_liftL … Hloop1)) + [* * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + ||4:cases outc1 #s1 #t1 % + |5:@(loop_liftR … Hloop2) + |whd in ⊢ (??(???%)?);whd in ⊢ (??%?); + generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10 + >(trans_liftL_true sig M1 M2 ??) + [ whd in ⊢ (??%?); whd in ⊢ (???%); + @config_eq // + | @(loop_Some ?????? Hloop10) ] + ] +| @(ex_intro … (ctape ? (seq sig M1 M2) (lift_confL … outc1))) + % // +] +qed. + +(* boolean machines: machines with two distinguished halting states *) + + + +(* old stuff *) +definition empty_tapes ≝ λsig.λn. +mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?. +elim n // normalize // +qed. + +definition init ≝ λsig.λM:TM sig.λi:(list sig). + mk_config ?? + (start sig M) + (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M))) + [ ]. + +definition stop ≝ λsig.λM:TM sig.λc:config sig M. + halt sig M (state sig M c). + +let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ + match n with + [ O ⇒ None ? + | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) + ]. + +(* Compute ? M f states that f is computed by M *) +definition Compute ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). +∀l.∃i.∃c. + loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ + out ?? c = f l. + +(* for decision problems, we accept a string if on termination +output is not empty *) + +definition ComputeB ≝ λsig.λM:TM sig.λf:(list sig) → bool. +∀l.∃i.∃c. + loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ + (isnilb ? (out ?? c) = false). + +(* alternative approach. +We define the notion of computation. The notion must be constructive, +since we want to define functions over it, like lenght and size + +Perche' serve Type[2] se sposto a e b a destra? *) + +inductive cmove (A:Type[0]) (f:A→A) (p:A →bool) (a,b:A): Type[0] ≝ + mk_move: p a = false → b = f a → cmove A f p a b. + +inductive cstar (A:Type[0]) (M:A→A→Type[0]) : A →A → Type[0] ≝ +| empty : ∀a. cstar A M a a +| more : ∀a,b,c. M a b → cstar A M b c → cstar A M a c. + +definition computation ≝ λsig.λM:TM sig. + cstar ? (cmove ? (step sig M) (stop sig M)). + +definition Compute_expl ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). + ∀l.∃c.computation sig M (init sig M l) c → + (stop sig M c = true) ∧ out ?? c = f l. + +definition ComputeB_expl ≝ λsig.λM:TM sig.λf:(list sig) → bool. + ∀l.∃c.computation sig M (init sig M l) c → + (stop sig M c = true) ∧ (isnilb ? (out ?? c) = false). -- 2.39.2