From 380e3899d1ed69141d2f828739132ba9a40f664d Mon Sep 17 00:00:00 2001 From: Andrea Asperti Date: Sun, 6 Oct 2013 16:55:51 +0000 Subject: [PATCH] progress in the deifinition of the semantics of the shift move. -- --- matita/matita/lib/turing/basic_machines.ma | 238 +++++++++- matita/matita/lib/turing/if_machine.ma | 17 +- matita/matita/lib/turing/mono.ma | 1 + matita/matita/lib/turing/multi_to_mono.ma | 494 +++++++++++++++++++++ 4 files changed, 747 insertions(+), 3 deletions(-) create mode 100644 matita/matita/lib/turing/multi_to_mono.ma diff --git a/matita/matita/lib/turing/basic_machines.ma b/matita/matita/lib/turing/basic_machines.ma index f92afc7b9..1e5fa3d2e 100644 --- a/matita/matita/lib/turing/basic_machines.ma +++ b/matita/matita/lib/turing/basic_machines.ma @@ -32,7 +32,15 @@ lemma sem_write : ∀alpha,c.Realize ? (write alpha c) (R_write alpha c). #alpha #c #t @(ex_intro … 2) @ex_intro [|% [% |#ls #c #rs #Ht >Ht % ] ] qed. - + +definition R_write_strong ≝ λalpha,c,t1,t2. + t2 = midtape alpha (left ? t1) c (right ? t1). + +lemma sem_write_strong : ∀alpha,c.Realize ? (write alpha c) (R_write_strong alpha c). +#alpha #c #t @(ex_intro … 2) @ex_intro + [|% [% |cases t normalize // ] ] +qed. + (******************** moves the head one step to the right ********************) definition move_states ≝ initN 2. @@ -347,4 +355,230 @@ lemma sem_swap_l : ∀alpha,foo. [#b #rs #H destruct | #a #b #ls #rs #H destruct normalize // ] ] -qed. \ No newline at end of file +qed. + +(********************************** combine ***********************************) +(* replace the content x of a cell with a combiation f(x,y) of x and the content +y of the adiacent cell *) + +definition combf_states : FinSet → FinSet ≝ + λalpha:FinSet.FinProd (initN 4) alpha. + +definition combf0 : initN 4 ≝ mk_Sig ?? 0 (leb_true_to_le 1 4 (refl …)). +definition combf1 : initN 4 ≝ mk_Sig ?? 1 (leb_true_to_le 2 4 (refl …)). +definition combf2 : initN 4 ≝ mk_Sig ?? 2 (leb_true_to_le 3 4 (refl …)). +definition combf3 : initN 4 ≝ mk_Sig ?? 3 (leb_true_to_le 4 4 (refl …)). + +definition combf_r ≝ + λalpha:FinSet.λf.λfoo:alpha. + mk_TM alpha (combf_states alpha) + (λp.let 〈q,a〉 ≝ p in + let 〈q',b〉 ≝ q in + let q' ≝ pi1 nat (λi.i<4) q' in + match a with + [ None ⇒ 〈〈combf3,foo〉,None ?,N〉 (* if tape is empty then stop *) + | Some a' ⇒ + match q' with + [ O ⇒ (* q0 *) 〈〈combf1,a'〉,Some ? a',R〉 (* save in register and move R *) + | S q' ⇒ match q' with + [ O ⇒ (* q1 *) 〈〈combf2,f b a'〉,Some ? a',L〉 + (* combine in register and move L *) + | S q' ⇒ match q' with + [ O ⇒ (* q2 *) 〈〈combf3,foo〉,Some ? b,R〉 + (* copy from register and move R *) + | S q' ⇒ (* q3 *) 〈〈combf3,foo〉,None ?,N〉 (* final state *) + ] + ] + ]]) + 〈combf0,foo〉 + (λq.\fst q == combf3). + +definition Rcombf_r ≝ + λalpha,f,t1,t2. + (∀b,ls. + t1 = midtape alpha ls b [ ] → + t2 = rightof ? b ls) ∧ + (∀a,b,ls,rs. + t1 = midtape alpha ls b (a::rs) → + t2 = midtape alpha ((f b a)::ls) a rs). + +lemma sem_combf_r : ∀alpha,f,foo. + combf_r alpha f foo ⊨ Rcombf_r alpha f. +#alpha #f #foo * + [@(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (niltape ?))) + % [% |% [#b #ls | #a #b #ls #rs] #H destruct] + |#l0 #lt0 @(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (leftof ? l0 lt0))) + % [% | % [#b #ls | #a #b #ls #rs] #H destruct] + |#r0 #rt0 @(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (rightof ? r0 rt0))) + % [% |% [#b #ls | #a #b #ls #rs] #H destruct] + | #lt #c #rt @(ex_intro ?? 4) cases rt + [@ex_intro [|% [ % | % + [#b #ls #H destruct normalize // |#a #b #ls #rs #H destruct]]] + |#r0 #rt0 @ex_intro [| % [ % | % + [#b #ls #H destruct | #a #b #ls #rs #H destruct normalize // + ] + ] +qed. + +definition combf_l ≝ + λalpha:FinSet.λf.λfoo:alpha. + mk_TM alpha (combf_states alpha) + (λp.let 〈q,a〉 ≝ p in + let 〈q',b〉 ≝ q in + let q' ≝ pi1 nat (λi.i<4) q' in + match a with + [ None ⇒ 〈〈combf3,foo〉,None ?,N〉 (* if tape is empty then stop *) + | Some a' ⇒ + match q' with + [ O ⇒ (* q0 *) 〈〈combf1,a'〉,Some ? a',L〉 (* save in register and move R *) + | S q' ⇒ match q' with + [ O ⇒ (* q1 *) 〈〈combf2,f b a'〉,Some ? a',R〉 + (* combine in register and move L *) + | S q' ⇒ match q' with + [ O ⇒ (* q2 *) 〈〈combf3,foo〉,Some ? b,L〉 + (* copy from register and move R *) + | S q' ⇒ (* q3 *) 〈〈combf3,foo〉,None ?,N〉 (* final state *) + ] + ] + ]]) + 〈combf0,foo〉 + (λq.\fst q == combf3). + +definition Rcombf_l ≝ + λalpha,f,t1,t2. + (∀b,rs. + t1 = midtape alpha [ ] b rs → + t2 = leftof ? b rs) ∧ + (∀a,b,ls,rs. + t1 = midtape alpha (a::ls) b rs → + t2 = midtape alpha ls a ((f b a)::rs)). + +lemma sem_combf_l : ∀alpha,f,foo. + combf_l alpha f foo ⊨ Rcombf_l alpha f. +#alpha #f #foo * + [@(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (niltape ?))) + % [% |% [#b #ls | #a #b #ls #rs] #H destruct] + |#l0 #lt0 @(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (leftof ? l0 lt0))) + % [% | % [#b #ls | #a #b #ls #rs] #H destruct] + |#r0 #rt0 @(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (rightof ? r0 rt0))) + % [% |% [#b #ls | #a #b #ls #rs] #H destruct] + | #lt #c #rt @(ex_intro ?? 4) cases lt + [@ex_intro [|% [ % | % + [#b #ls #H destruct normalize // |#a #b #ls #rs #H destruct]]] + |#r0 #rt0 @ex_intro [| % [ % | % + [#b #ls #H destruct | #a #b #ls #rs #H destruct normalize // + ] + ] +qed. + +(********************************* new_combine ********************************) +(* replace the content x of a cell with a combiation f(x,y) of x and the content +y of the adiacent cell; if there is no adjacent cell, combines with a default +value foo *) + +definition ncombf_r ≝ + λalpha:FinSet.λf.λfoo:alpha. + mk_TM alpha (combf_states alpha) + (λp.let 〈q,a〉 ≝ p in + let 〈q',b〉 ≝ q in + let q' ≝ pi1 nat (λi.i<4) q' in + match a with + [ None ⇒ if (eqb q' 1)then (* if on right cell, combine in register and move L *) + 〈〈combf2,f b foo〉,None ?,L〉 + else 〈〈combf3,foo〉,None ?,N〉 (* else stop *) + | Some a' ⇒ + match q' with + [ O ⇒ (* q0 *) 〈〈combf1,a'〉,Some ? a',R〉 (* save in register and move R *) + | S q' ⇒ match q' with + [ O ⇒ (* q1 *) 〈〈combf2,f b a'〉,Some ? a',L〉 + (* combine in register and move L *) + | S q' ⇒ match q' with + [ O ⇒ (* q2 *) 〈〈combf3,foo〉,Some ? b,R〉 + (* copy from register and move R *) + | S q' ⇒ (* q3 *) 〈〈combf3,foo〉,None ?,N〉 (* final state *) + ] + ] + ]]) + 〈combf0,foo〉 + (λq.\fst q == combf3). + +definition Rncombf_r ≝ + λalpha,f,foo,t1,t2. + (∀b,ls. + t1 = midtape alpha ls b [ ] → + t2 = rightof ? (f b foo) ls) ∧ + (∀a,b,ls,rs. + t1 = midtape alpha ls b (a::rs) → + t2 = midtape alpha ((f b a)::ls) a rs). + +lemma sem_ncombf_r : ∀alpha,f,foo. + ncombf_r alpha f foo ⊨ Rncombf_r alpha f foo. +#alpha #f #foo * + [@(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (niltape ?))) + % [% |% [#b #ls | #a #b #ls #rs] #H destruct] + |#l0 #lt0 @(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (leftof ? l0 lt0))) + % [% | % [#b #ls | #a #b #ls #rs] #H destruct] + |#r0 #rt0 @(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (rightof ? r0 rt0))) + % [% |% [#b #ls | #a #b #ls #rs] #H destruct] + | #lt #c #rt @(ex_intro ?? 4) cases rt + [@ex_intro [|% [ % | % + [#b #ls #H destruct normalize // |#a #b #ls #rs #H destruct]]] + |#r0 #rt0 @ex_intro [| % [ % | % + [#b #ls #H destruct | #a #b #ls #rs #H destruct normalize // + ] + ] +qed. + +definition ncombf_l ≝ + λalpha:FinSet.λf.λfoo:alpha. + mk_TM alpha (combf_states alpha) + (λp.let 〈q,a〉 ≝ p in + let 〈q',b〉 ≝ q in + let q' ≝ pi1 nat (λi.i<4) q' in + match a with + [ None ⇒ if (eqb q' 1)then + (* if on left cell, combine in register and move R *) + 〈〈combf2,f b foo〉,None ?,R〉 + else 〈〈combf3,foo〉,None ?,N〉 (* else stop *) + | Some a' ⇒ + match q' with + [ O ⇒ (* q0 *) 〈〈combf1,a'〉,Some ? a',L〉 (* save in register and move R *) + | S q' ⇒ match q' with + [ O ⇒ (* q1 *) 〈〈combf2,f b a'〉,Some ? a',R〉 + (* combine in register and move L *) + | S q' ⇒ match q' with + [ O ⇒ (* q2 *) 〈〈combf3,foo〉,Some ? b,L〉 + (* copy from register and move R *) + | S q' ⇒ (* q3 *) 〈〈combf3,foo〉,None ?,N〉 (* final state *) + ] + ] + ]]) + 〈combf0,foo〉 + (λq.\fst q == combf3). + +definition Rncombf_l ≝ + λalpha,f,foo,t1,t2. + (∀b,rs. + t1 = midtape alpha [ ] b rs → + t2 = leftof ? (f b foo) rs) ∧ + (∀a,b,ls,rs. + t1 = midtape alpha (a::ls) b rs → + t2 = midtape alpha ls a ((f b a)::rs)). + +lemma sem_ncombf_l : ∀alpha,f,foo. + ncombf_l alpha f foo ⊨ Rncombf_l alpha f foo. +#alpha #f #foo * + [@(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (niltape ?))) + % [% |% [#b #ls | #a #b #ls #rs] #H destruct] + |#l0 #lt0 @(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (leftof ? l0 lt0))) + % [% | % [#b #ls | #a #b #ls #rs] #H destruct] + |#r0 #rt0 @(ex_intro ?? 2) @(ex_intro … (mk_config ?? 〈combf3,foo〉 (rightof ? r0 rt0))) + % [% |% [#b #ls | #a #b #ls #rs] #H destruct] + | #lt #c #rt @(ex_intro ?? 4) cases lt + [@ex_intro [|% [ % | % + [#b #ls #H destruct normalize // |#a #b #ls #rs #H destruct]]] + |#r0 #rt0 @ex_intro [| % [ % | % + [#b #ls #H destruct | #a #b #ls #rs #H destruct normalize // + ] + ] +qed. diff --git a/matita/matita/lib/turing/if_machine.ma b/matita/matita/lib/turing/if_machine.ma index 27e81f549..3c6d686ea 100644 --- a/matita/matita/lib/turing/if_machine.ma +++ b/matita/matita/lib/turing/if_machine.ma @@ -222,6 +222,20 @@ cases (true_or_false (cstate ?? outc1 == acc)) #Hacc ] qed. +lemma sem_if_app: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,R4,acc. + accRealize sig M1 acc Rtrue Rfalse → M2 ⊨ R2 → M3 ⊨ R3 → + (∀t1,t2,t3. (Rtrue t1 t3 ∧ R2 t3 t2) ∨ (Rfalse t1 t3 ∧ R3 t3 t2) → R4 t1 t2) → + ifTM sig M1 M2 M3 acc ⊨ R4. +#sig #M1 #M2 #M3 #Rtrue #Rfalse #R2 #R3 #R4 #acc +#HRacc #HRtrue #HRfalse #Hsub +#t cases (sem_if … HRacc HRtrue HRfalse t) +#k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc) +% [@Hloop] cases Houtc + [* #t3 * #Hleft #Hright @(Hsub … t3) %1 /2/ + |* #t3 * #Hleft #Hright @(Hsub … t3) %2 /2/ ] +qed. + +(* weak lemma sem_if_app: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,R4,acc. accRealize sig M1 acc Rtrue Rfalse → M2 ⊨ R2 → M3 ⊨ R3 → (∀t1,t2,t3. (Rtrue t1 t3 → R2 t3 t2) ∨ (Rfalse t1 t3 → R3 t3 t2) → R4 t1 t2) → @@ -234,7 +248,8 @@ lemma sem_if_app: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,R4,acc. [* #t3 * #Hleft #Hright @(Hsub … t3) %1 /2/ |* #t3 * #Hleft #Hright @(Hsub … t3) %2 /2/ ] qed. - +*) + (* we can probably use acc_sem_if to prove sem_if *) (* for sure we can use acc_sem_if_guarded to prove acc_sem_if *) lemma acc_sem_if: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc. diff --git a/matita/matita/lib/turing/mono.ma b/matita/matita/lib/turing/mono.ma index 6a006d581..a0358aa2d 100644 --- a/matita/matita/lib/turing/mono.ma +++ b/matita/matita/lib/turing/mono.ma @@ -9,6 +9,7 @@ \ / GNU General Public License Version 2 V_____________________________________________________________*) +include "basics/finset.ma". include "basics/vectors.ma". include "basics/finset.ma". (* include "basics/relations.ma". *) diff --git a/matita/matita/lib/turing/multi_to_mono.ma b/matita/matita/lib/turing/multi_to_mono.ma new file mode 100644 index 000000000..2af23367b --- /dev/null +++ b/matita/matita/lib/turing/multi_to_mono.ma @@ -0,0 +1,494 @@ +include "turing/basic_machines.ma". +include "turing/if_machine.ma". +include "basics/vector_finset.ma". +include "turing/auxiliary_machines1.ma". + +(* a multi_sig characheter is composed by n+1 sub-characters: n for each tape +of a multitape machine, and an additional one to mark the position of the head. +We extend the tape alphabet with two new symbols true and false. +false is used to pad shorter tapes, and true to mark the head of the tape *) + +definition sig_ext ≝ λsig. FinSum FinBool sig. +definition blank : ∀sig.sig_ext sig ≝ λsig. inl … false. +definition head : ∀sig.sig_ext sig ≝ λsig. inl … true. + +definition multi_sig ≝ λsig:FinSet.λn.FinVector (sig_ext sig) n. + +let rec all_blank sig n on n : multi_sig sig n ≝ + match n with + [ O ⇒ Vector_of_list ? [] + | S m ⇒ vec_cons ? (blank ?) m (all_blank sig m) + ]. + +lemma blank_all_blank: ∀sig,n,i. i ≤ n → + nth i ? (vec … (all_blank sig n)) (blank sig) = blank ?. +#sig #n elim n normalize + [#i #lei0 @(le_n_O_elim … lei0) normalize // + |#m #Hind #i cases i // #j #lej @Hind @le_S_S_to_le // + ] +qed. + +lemma all_blank_n: ∀sig,n. + nth n ? (vec … (all_blank sig n)) (blank sig) = blank ?. +#sig #n @blank_all_blank // +qed. + + +(* a machine that moves the i trace r: we reach the left margin of the i-trace +and make a (shifted) copy of the old tape up to the end of the right margin of +the i-trace. Then come back to the origin. *) + +(* definition move_r_i *) + +(* move_tape_i_step: + we cycle on normal chars *) +definition shift_i ≝ λsig,n,i.λa,b:Vector (sig_ext sig) n. + change_vec (sig_ext sig) n a (nth i ? b (blank ?)) i. + +(* vec is a coercion. Why should I insert it? *) +definition mti_step ≝ λsig:FinSet.λn,i. + ifTM (multi_sig sig n) (test_char ? (λc:multi_sig sig n.¬(nth i ? (vec … c) (blank ?))==blank ?)) + (single_finalTM … (ncombf_r (multi_sig sig n) (shift_i sig n i) (all_blank sig n))) + (nop ?) tc_true. + +definition Rmti_step_true ≝ +λsig,n,i,t1,t2. + ∃b:multi_sig sig n. (nth i ? (vec … b) (blank ?) ≠ blank ?) ∧ + ((∃ls,a,rs. + t1 = midtape (multi_sig sig n) ls b (a::rs) ∧ + t2 = midtape (multi_sig sig n) ((shift_i sig n i b a)::ls) a rs) ∨ + (∃ls. + t1 = midtape ? ls b [] ∧ + t2 = rightof ? (shift_i sig n i b (all_blank sig n)) ls)). + +(* 〈combf0,all_blank sig n〉 *) +definition Rmti_step_false ≝ + λsig,n,i,t1,t2. + (∀ls,b,rs. t1 = midtape (multi_sig sig n) ls b rs → + (nth i ? (vec … b) (blank ?) = blank ?)) ∧ t2 = t1. + +lemma sem_mti_step : + ∀sig,n,i. + mti_step sig n i ⊨ + [inr … (inl … (inr … start_nop)): Rmti_step_true sig n i, Rmti_step_false sig n i]. +#sig #n #i +@(acc_sem_if_app (multi_sig sig n) ?????????? + (sem_test_char …) (sem_ncombf_r (multi_sig sig n) (shift_i sig n i)(all_blank sig n)) + (sem_nop (multi_sig sig n))) + [#intape #outtape #tapea whd in ⊢ (%→%→%); * * #c * + #Hcur cases (current_to_midtape … Hcur) #ls * #rs #Hintape + #ctest #Htapea * #Hout1 #Hout2 @(ex_intro … c) % + [@(\Pf (injective_notb … )) @ctest] + generalize in match Hintape; -Hintape cases rs + [#Hintape %2 @(ex_intro …ls) % // @Hout1 >Htapea @Hintape + |#a #rs1 #Hintape %1 + @(ex_intro … ls) @(ex_intro … a) @(ex_intro … rs1) % // + @Hout2 >Htapea @Hintape + ] + |#intape #outtape #tapea whd in ⊢ (%→%→%); + * #Htest #tapea #outtape + % // #ls #b #rs + #intape lapply (Htest b ?) [>intape //] -Htest #Htest + lapply (injective_notb ? true Htest) -Htest #Htest @(\P Htest) + ] +qed. + +(* move tape i machine *) +definition mti ≝ + λsig,n,i.whileTM (multi_sig sig n) (mti_step sig n i) (inr … (inl … (inr … start_nop))). + +(* v2 is obtained from v1 shifting left the i-th trace *) +definition shift_l ≝ λsig,n,i,v1,v2. (* multi_sig sig n*) + |v1| = |v2| ∧ ∀j. S j < |v1| → + nth j ? v2 (all_blank sig n) = + change_vec ? n (nth j ? v1 (all_blank sig n)) + (nth i ? (vec … (nth (S j) ? v1 (all_blank sig n))) (blank ?)) i. + +axiom daemon: ∀P:Prop.P. + +definition R_mti ≝ + λsig,n,i,t1,t2. + (∀a,rs. t1 = rightof ? a rs → t2 = t1) ∧ + (∀a,ls,rs. + t1 = midtape (multi_sig sig n) ls a rs → + (nth i ? (vec … a) (blank ?) = blank ? ∧ t2 = t1) ∨ + ((∃rs1,b,rs2,rss. + rs = rs1@b::rs2 ∧ + nth i ? (vec … b) (blank ?) = (blank ?) ∧ + (∀x. mem ? x (a::rs1) → nth i ? (vec … x) (blank ?) ≠ (blank ?)) ∧ + shift_l sig n i (a::rs1) rss ∧ + t2 = midtape (multi_sig sig n) ((reverse ? rss)@ls) b rs2) ∨ + (∃b,rss. + (∀x. mem ? x (a::rs) → nth i ? (vec … x) (blank ?) ≠ (blank ?)) ∧ + shift_l sig n i (a::rs) (rss@[b]) ∧ + t2 = rightof (multi_sig sig n) (shift_i sig n i b (all_blank sig n)) + ((reverse ? rss)@ls)))). + +lemma sem_mti: + ∀sig,n,i. + WRealize (multi_sig sig n) (mti sig n i) (R_mti sig n i). +#sig #n #i #inc #j #outc #Hloop +lapply (sem_while … (sem_mti_step sig n i) inc j outc Hloop) [%] +-Hloop * #t1 * #Hstar @(star_ind_l ??????? Hstar) +[ whd in ⊢ (% → ?); * #H1 #H2 % + [#a #rs #Htape1 @H2 + |#a #ls #rs #Htapea % % [@(H1 … Htapea) |@H2] + ] +| #tapeb #tapec #Hstar1 #HRtrue #IH #HRfalse + lapply (IH HRfalse) -IH -HRfalse whd in ⊢ (%→%); + * #IH1 #IH2 % + [#b0 #ls #Htapeb cases Hstar1 #b * #_ * + [* #ls0 * #a * #rs0 * >Htapeb #H destruct (H) + |* #ls0 * >Htapeb #H destruct (H) + ] + |#b0 #ls #rs #Htapeb cases Hstar1 #b * #btest * + [* #ls1 * #a * #rs1 * >Htapeb #H destruct (H) #Htapec + %2 cases (IH2 … Htapec) + [(* case a = None *) + * #testa #Hout %1 + %{[ ]} %{a} %{rs1} %{[shift_i sig n i b a]} % + [%[%[% // |#x #Hb >(mem_single ??? Hb) // ] + |@daemon] + |>Hout >reverse_single @Htapec + ] + |* + [ (* case a \= None and exists b = None *) -IH1 -IH2 #IH + %1 cases IH -IH #rs10 * #b0 * #rs2 * #rss * * * * + #H1 #H2 #H3 #H4 #H5 + %{(a::rs10)} %{b0} %{rs2} %{(shift_i sig n i b a::rss)} + %[%[%[%[>H1 //|@H2] + |#x * [#eqxa >eqxa (*?? *) @daemon|@H3]] + |@daemon] + |>H5 >reverse_cons >associative_append // + ] + | (* case a \= None and we reach the end of the (full) tape *) -IH1 -IH2 #IH + %2 cases IH -IH #b0 * #rss * * #H1 #H2 #H3 + %{b0} %{(shift_i sig n i b a::rss)} + %[%[#x * [#eqxb >eqxb @btest|@H1] + |@daemon] + |>H3 >reverse_cons >associative_append // + ] + ] + ] + |(* b \= None but the left tape is empty *) + * #ls0 * >Htapeb #H destruct (H) #Htapec + %2 %2 %{b} %{[ ]} + %[%[#x * [#eqxb >eqxb @btest|@False_ind] + |@daemon (*shift of dingle char OK *)] + |>(IH1 … Htapec) >Htapec // + ] + ] +qed. + +lemma WF_mti_niltape: + ∀sig,n,i. WF ? (inv ? (Rmti_step_true sig n i)) (niltape ?). +#sig #n #i @wf #t1 whd in ⊢ (%→?); * #b * #_ * + [* #ls * #a * #rs * #H destruct|* #ls * #H destruct ] +qed. + +lemma WF_mti_rightof: + ∀sig,n,i,a,ls. WF ? (inv ? (Rmti_step_true sig n i)) (rightof ? a ls). +#sig #n #i #a #ls @wf #t1 whd in ⊢ (%→?); * #b * #_ * + [* #ls * #a * #rs * #H destruct|* #ls * #H destruct ] +qed. + +lemma WF_mti_leftof: + ∀sig,n,i,a,ls. WF ? (inv ? (Rmti_step_true sig n i)) (leftof ? a ls). +#sig #n #i #a #ls @wf #t1 whd in ⊢ (%→?); * #b * #_ * + [* #ls * #a * #rs * #H destruct|* #ls * #H destruct ] +qed. + +lemma terminate_mti: + ∀sig,n,i.∀t. Terminate ? (mti sig n i) t. +#sig #n #i #t @(terminate_while … (sem_mti_step sig n i)) [%] +cases t // #ls #c #rs lapply c -c lapply ls -ls elim rs + [#ls #c @wf #t1 whd in ⊢ (%→?); * #b * #_ * + [* #ls1 * #a * #rs1 * #H destruct + |* #ls1 * #H destruct #Ht1 >Ht1 // + ] + |#a #rs1 #Hind #ls #c @wf #t1 whd in ⊢ (%→?); * #b * #_ * + [* #ls1 * #a2 * #rs2 * #H destruct (H) #Ht1 >Ht1 // + |* #ls1 * #H destruct + ] + ] +qed. + +lemma ssem_mti: ∀sig,n,i. + Realize ? (mti sig n i) (R_mti sig n i). +/2/ qed. + +(******************************************************************************) +(* mtiL: complete move L for tape i. We reaching the left border of trace i, *) +(* add a blank if there is no more tape, then move the i-trace and finally *) +(* come back to the head position. *) +(******************************************************************************) + +definition no_blank ≝ λsig,n,i.λc:multi_sig sig n. + ¬(nth i ? (vec … c) (blank ?))==blank ?. + +definition no_head ≝ λsig,n.λc:multi_sig sig n. + ¬((nth n ? (vec … c) (blank ?))==head ?). + +definition mtiL ≝ λsig,n,i. + move_until ? L (no_blank sig n i) · + extend ? (all_blank sig n) · + ncombf_r (multi_sig …) (shift_i sig n i) (all_blank sig n) · + mti sig n i · + extend ? (all_blank sig n) · + move_until ? L (no_head sig n). + +let rec to_blank sig n i l on l ≝ + match l with + [ nil ⇒ [ ] + | cons a tl ⇒ + let ai ≝ nth i ? (vec … n a) (blank sig) in + if ai == blank ? then [ ] else ai::(to_blank sig n i tl)]. + +lemma to_blank_cons_b : ∀sig,n,i,a,l. + nth i ? (vec … n a) (blank sig) = blank ? → + to_blank sig n i (a::l) = [ ]. +#sig #n #i #a #l #H whd in match (to_blank ????); +>(\b H) // +qed. + +lemma to_blank_cons_nb: ∀sig,n,i,a,l. + nth i ? (vec … n a) (blank sig) ≠ blank ? → + to_blank sig n i (a::l) = + nth i ? (vec … n a) (blank sig)::(to_blank sig n i l). +#sig #n #i #a #l #H whd in match (to_blank ????); +>(\bf H) // +qed. + +(******************************* move_to_blank_L ******************************) +(* we compose machines together to reduce the number of output cases, and + improve semantics *) + +definition move_to_blank_L ≝ λsig,n,i. + (move_until ? L (no_blank sig n i)) · extend ? (all_blank sig n). + +definition R_move_to_blank_L ≝ λsig,n,i,t1,t2. +(current ? t1 = None ? → + t2 = midtape (multi_sig sig n) (left ? t1) (all_blank …) (right ? t1)) ∧ +∀ls,a,rs.t1 = midtape ? ls a rs → + ((no_blank sig n i a = false) ∧ t2 = t1) ∨ + (∃b,ls1,ls2. + (no_blank sig n i b = false) ∧ + (∀j.j ≤n → to_blank ?? j (ls1@b::ls2) = to_blank ?? j ls) ∧ + t2 = midtape ? ls2 b ((reverse ? (a::ls1))@rs)). + +theorem sem_move_to_blank_L: ∀sig,n,i. + move_to_blank_L sig n i ⊨ R_move_to_blank_L sig n i. +#sig #n #i +@(sem_seq_app ?????? + (ssem_move_until_L ? (no_blank sig n i)) (sem_extend ? (all_blank sig n))) +#tin #tout * #t1 * * #Ht1a #Ht1b * #Ht2a #Ht2b % + [#Hcur >(Ht1a Hcur) in Ht2a; /2 by / + |#ls #a #rs #Htin -Ht1a cases (Ht1b … Htin) + [* #Hnb #Ht1 -Ht1b -Ht2a >Ht1 in Ht2b; >Htin #H %1 + % [//|@H normalize % #H1 destruct (H1)] + |* + [(* we find the blank *) + * #ls1 * #b * #ls2 * * * #H1 #H2 #H3 #H4 %2 + %{b} %{ls1} %{ls2} + %[%[@H2|>H1 //] + |-Ht1b -Ht2a >H4 in Ht2b; #H5 @H5 + % normalize #H6 destruct (H6) + ] + |* #b * #lss * * #H1 #H2 #H3 %2 + %{(all_blank …)} %{ls} %{[ ]} + %[%[whd in match (no_blank ????); >blank_all_blank // @daemon + |@daemon (* make a lemma *)] + |-Ht1b -Ht2b >H3 in Ht2a; + whd in match (left ??); whd in match (right ??); #H4 + >H2 >reverse_append >reverse_single @H4 normalize // + ] + ] + ] +qed. + +(******************************************************************************) + +definition shift_i_L ≝ λsig,n,i. + ncombf_r (multi_sig …) (shift_i sig n i) (all_blank sig n) · + mti sig n i · + extend ? (all_blank sig n). + +definition R_shift_i_L ≝ λsig,n,i,t1,t2. + (* ∀b:multi_sig sig n.∀ls. + (t1 = midtape ? ls b [ ] → + t2 = midtape (multi_sig sig n) + ((shift_i sig n i b (all_blank sig n))::ls) (all_blank sig n) [ ]) ∧ *) + (∀a,ls,rs. + t1 = midtape ? ls a rs → + ((∃rs1,b,rs2,rss. + rs = rs1@b::rs2 ∧ + nth i ? (vec … b) (blank ?) = (blank ?) ∧ + (∀x. mem ? x rs1 → nth i ? (vec … x) (blank ?) ≠ (blank ?)) ∧ + shift_l sig n i (a::rs1) rss ∧ + t2 = midtape (multi_sig sig n) ((reverse ? rss)@ls) b rs2) ∨ + (∃b,rss. + (∀x. mem ? x rs → nth i ? (vec … x) (blank ?) ≠ (blank ?)) ∧ + shift_l sig n i (a::rs) (rss@[b]) ∧ + t2 = midtape (multi_sig sig n) + ((reverse ? (rss@[b]))@ls) (all_blank sig n) [ ]))). + +theorem sem_shift_i_L: ∀sig,n,i. shift_i_L sig n i ⊨ R_shift_i_L sig n i. +#sig #n #i +@(sem_seq_app ?????? + (sem_ncombf_r (multi_sig sig n) (shift_i sig n i)(all_blank sig n)) + (sem_seq ????? (ssem_mti sig n i) + (sem_extend ? (all_blank sig n)))) +#tin #tout * #t1 * * #Ht1a #Ht1b * #t2 * * #Ht2a #Ht2b * #Htout1 #Htout2 +(* #b #ls % + [#Htin lapply (Ht1a … Htin) -Ht1a -Ht1b #Ht1 + lapply (Ht2a … Ht1) -Ht2a -Ht2b #Ht2 >Ht2 in Htout1; + >Ht1 whd in match (left ??); whd in match (right ??); #Htout @Htout // *) +#a #ls #rs cases rs + [#Htin %2 %{(shift_i sig n i a (all_blank sig n))} %{[ ]} + %[%[#x @False_ind | @daemon] + |lapply (Ht1a … Htin) -Ht1a -Ht1b #Ht1 + lapply (Ht2a … Ht1) -Ht2a -Ht2b #Ht2 >Ht2 in Htout1; + >Ht1 whd in match (left ??); whd in match (right ??); #Htout @Htout // + ] + |#a1 #rs1 #Htin + lapply (Ht1b … Htin) -Ht1a -Ht1b #Ht1 + lapply (Ht2b … Ht1) -Ht2a -Ht2b * + [(* a1 is blank *) * #H1 #H2 %1 + %{[ ]} %{a1} %{rs1} %{[shift_i sig n i a a1]} + %[%[%[%[// |//] |#x @False_ind] | @daemon] + |>Htout2 [>H2 >reverse_single @Ht1 |>H2 >Ht1 normalize % #H destruct (H)] + ] + |* + [* #rs10 * #b * #rs2 * #rss * * * * #H1 #H2 #H3 #H4 + #Ht2 %1 + %{(a1::rs10)} %{b} %{rs2} %{(shift_i sig n i a a1::rss)} + %[%[%[%[>H1 //|//] |@H3] |@daemon ] + |>reverse_cons >associative_append + >H2 in Htout2; #Htout >Htout [@Ht2| >Ht2 normalize % #H destruct (H)] + ] + |* #b * #rss * * #H1 #H2 + #Ht2 %2 + %{(shift_i sig n i b (all_blank sig n))} %{(shift_i sig n i a a1::rss)} + %[%[@H1 |@daemon ] + |>Ht2 in Htout1; #Htout >Htout // + whd in match (left ??); whd in match (right ??); + >reverse_append >reverse_single >associative_append >reverse_cons + >associative_append // + ] + ] + ] + ] +qed. + + +definition Rmtil ≝ λsig,n,i,t1,t2. + ∀ls,a,rs. + t1 = midtape ? ls a rs → + nth n ? (vec … a) (blank ?) = head ? → + (∀x.mem ? x ls → no_head sig n x = true) → + (∀x.mem ? x rs → no_head sig n x = true) → + (∃ls1,a1,rs1. + t2 = midtape (multi_sig …) ls1 a1 rs1 ∧ + (∀j. j ≤ n → j ≠ i → to_blank ? n j ls1 = to_blank ? n j ls) ∧ + (∀j. j ≤ n → j ≠ i → to_blank ? n j rs1 = to_blank ? n j rs) ∧ + (nth i ? (vec … a) (blank ?) = blank ? → ls1 = ls) ∧ + (nth i ? (vec … a) (blank ?) ≠ blank ? → to_blank ? n i ls1 = nth i ? (vec … a) (blank ?)::to_blank ? n i ls) ∧ + (to_blank ? n i (a1::rs1)) = to_blank ? n i rs). + +theorem sem_Rmtil: ∀sig,n,i. mtiL sig n i ⊨ Rmtil sig n i. +#sig #n #i +@(sem_seq_app ?????? + (ssem_move_until_L ? (no_blank sig n i)) + (sem_seq ????? (sem_extend ? (all_blank sig n)) + (sem_seq ????? (sem_ncombf_r (multi_sig sig n) (shift_i sig n i)(all_blank sig n)) + (sem_seq ????? (ssem_mti sig n i) + (sem_seq ????? (sem_extend ? (all_blank sig n)) + (ssem_move_until_L ? (no_head sig n))))))) +#tin #tout * #t1 * * #_ #Ht1 * #t2 * * #Ht2a #Ht2b * #t3 * * #Ht3a #Ht3b +* #t4 * * #Ht4a #Ht4b * #t5 * * #Ht5a #Ht5b * #t6 #Htout +(* we start looking into Rmitl *) +#ls #a #rs #Htin (* tin is a midtape *) +#Hhead #Hnohead_ls #Hnohead_rs +cases (Ht1 … Htin) -Ht1 + [(* the current character on trace i is blank *) + -Ht2a * #Hblank #Ht1 Ht1a in Ht2b; + #Ht2b lapply (Ht2b ?) [% normalize #H destruct] -Ht2b -Ht1 -Ht1a + lapply Hnohead_rs -Hnohead_rs + (* by cases on rs *) cases rs + [#_ (* rs is empty *) #Ht2 -Ht3b lapply (Ht3a … Ht2) + #Ht3 -Ht4b lapply (Ht4a … Ht3) -Ht4a #Ht4 -Ht5b + >Ht4 in Ht5a; >Ht3 #Ht5a lapply (Ht5a (refl … )) -Ht5a #Ht5 + cases (Htout … Ht5) -Htout + [(* the current symbol on trace n is the head: this is absurd *) + * whd in ⊢ (??%?→?); >all_blank_n whd in ⊢ (??%?→?); #H destruct (H) + |* + [(* we return to the head *) + * #ls1 * #b * #ls2 * * * whd in ⊢ (??%?→?); + #H1 #H2 #H3 + (* ls1 must be empty *) + cut (ls1=[]) + [lapply H3 lapply H1 -H3 -H1 cases ls1 // #c #ls3 + whd in ⊢ (???%→?); #H1 destruct (H1) + >blank_all_blank [|@daemon] #H @False_ind + lapply (H … (change_vec (sig_ext sig) n a (blank sig) i) ?) + [%2 %1 // | whd in match (no_head ???); >nth_change_vec_neq [|@daemon] + >Hhead whd in ⊢ (??%?→?); #H1 destruct (H1)]] + #Hls1_nil >Hls1_nil in H1; whd in ⊢ (???%→?); #H destruct (H) + >reverse_single >blank_all_blank [|@daemon] + whd in match (right ??) ; >append_nil #Htout + %{ls2} %{(change_vec (sig_ext sig) n a (blank sig) i)} %{[all_blank sig n]} + %[%[%[%[%[//|//]|@daemon]|//] |(*absurd*)@daemon] + |normalize >nth_change_vec // @daemon] + |(* we do not find the head: this is absurd *) + * #b * #lss * * whd in match (left ??); #HF @False_ind + lapply (HF … (shift_i sig n i a (all_blank sig n)) ?) [%2 %1 //] + whd in match (no_head ???); >nth_change_vec_neq [|@daemon] + >Hhead whd in ⊢ (??%?→?); #H destruct (H) + ] + ] + |(* rs = c::rs1 *) + #c #rs1 #Hnohead_rs #Ht2 -Ht3a lapply (Ht3b … Ht2) -Ht3b + #Ht3 -Ht4a lapply (Ht4b … Ht3) -Ht4b * + [(* the first character is blank *) * + #Hblank #Ht4 -Ht5a >Ht4 in Ht5b; >Ht3 + normalize in ⊢ ((%→?)→?); #Ht5 lapply (Ht5 ?) [% #H destruct (H)] + -Ht2 -Ht3 -Ht4 -Ht5 #Ht5 cases (Htout … Ht5) -Htout + [(* the current symbol on trace n is the head: this is absurd *) + * >Hnohead_rs [#H destruct (H) |%1 //] + |* + [(* we return to the head *) + * #ls1 * #b * #ls2 * * * whd in ⊢ (??%?→?); + #H1 #H2 #H3 + (* ls1 must be empty *) + cut (ls1=[]) + [lapply H3 lapply H1 -H3 -H1 cases ls1 // #x #ls3 + whd in ⊢ (???%→?); #H1 destruct (H1) #H @False_ind + lapply (H (change_vec (sig_ext sig) n a (nth i (sig_ext sig) (vec … c) (blank sig)) i) ?) + [%2 %1 // | whd in match (no_head ???); >nth_change_vec_neq [|@daemon] + >Hhead whd in ⊢ (??%?→?); #H1 destruct (H1)]] + #Hls1_nil >Hls1_nil in H1; whd in ⊢ (???%→?); #H destruct (H) + >reverse_single #Htout + %{ls2} %{(change_vec (sig_ext sig) n a (nth i (sig_ext sig) (vec … c) (blank sig)) i)} + %{(c::rs1)} + %[%[%[%[%[@Htout|//]|//]|//] |(*absurd*)@daemon] + |>to_blank_cons_b + [>(to_blank_cons_b … Hblank) //| >nth_change_vec [@Hblank |@daemon]] + ] + |(* we do not find the head: this is absurd *) + * #b * #lss * * #HF @False_ind + lapply (HF … (shift_i sig n i a c) ?) [%2 %1 //] + whd in match (no_head ???); >nth_change_vec_neq [|@daemon] + >Hhead whd in ⊢ (??%?→?); #H destruct (H) + ] + ] + | + + (* end of the first case !! *) + + + + #Ht2 + + + + -- 2.39.2