From 3949b3222c3ca9be2279beda4cbcf7cd49400d73 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Tue, 7 Feb 2006 18:26:27 +0000 Subject: [PATCH] Added a few basic definitions of subgroups and left cosets (together with their extreme notation!) --- matita/library/algebra/groups.ma | 130 ++++++++++++++++++++++++++++++- 1 file changed, 129 insertions(+), 1 deletion(-) diff --git a/matita/library/algebra/groups.ma b/matita/library/algebra/groups.ma index 5c5e1f00c..ed1caebe3 100644 --- a/matita/library/algebra/groups.ma +++ b/matita/library/algebra/groups.ma @@ -176,4 +176,132 @@ rewrite > (inv_is_left_inverse ? G'); rewrite < (f_morph ? ? f); rewrite > (inv_is_left_inverse ? G); apply (morphism_to_eq_f_1_1 ? ? f). -qed. \ No newline at end of file +qed. + +record monomorphism (G,G':Group) : Type ≝ + { morphism: morphism G G'; + injective: injective ? ? (image ? ? morphism) + }. + +(* Subgroups *) + +record subgroup (G:Group) : Type ≝ + { group: Group; + embed: monomorphism group G + }. + +notation "hvbox(x \sub H)" with precedence 79 +for @{ 'subgroupimage $H $x }. + +interpretation "Subgroup image" 'subgroupimage H x = + (cic:/matita/algebra/groups/image.con _ _ + (cic:/matita/algebra/groups/morphism.con _ _ + (cic:/matita/algebra/groups/embed.con _ H)) + x). + +definition belongs_to_subgroup ≝ + λG.λH:subgroup G.λx:G.∃y.x=y \sub H. + +notation "hvbox(x ∈ H)" with precedence 79 +for @{ 'belongs_to $x $H }. + +interpretation "Belongs to subgroup" 'belongs_to x H = + (cic:/matita/algebra/groups/belongs_to_subgroup.con _ H x). + +(* Left cosets *) + +record left_coset (G:Group) : Type ≝ + { element: G; + subgrp: subgroup G + }. + +(* Here I would prefer 'magma_op, but this breaks something in the next definition *) +interpretation "Left_coset" 'times x C = + (cic:/matita/algebra/groups/left_coset.ind#xpointer(1/1/1) _ x C). + +definition belongs_to_left_coset ≝ + λG:Group.λC:left_coset G.λx:G. + ∃y.x=(element ? C)·y \sub (subgrp ? C). + +interpretation "Belongs to left_coset" 'belongs_to x C = + (cic:/matita/algebra/groups/belongs_to_left_coset.con _ C x). + +definition left_coset_eq ≝ + λG.λC,C':left_coset G. + ∀x.((element ? C)·x \sub (subgrp ? C)) ∈ C'. + +interpretation "Left cosets equality" 'eq C C' = + (cic:/matita/algebra/groups/left_coset_eq.con _ C C'). + +definition left_coset_disjoint ≝ + λG.λC,C':left_coset G. + ∀x.¬(((element ? C)·x \sub (subgrp ? C)) ∈ C'). + +notation "hvbox(a break ∥ b)" + non associative with precedence 45 +for @{ 'disjoint $a $b }. + +interpretation "Left cosets disjoint" 'disjoint C C' = + (cic:/matita/algebra/groups/left_coset_disjoint.con _ C C'). + +(* The following should be a one-shot alias! *) +alias symbol "belongs_to" (instance 0) = "Belongs to subgroup". +theorem foo: + ∀G.∀x,y:(Type_of_Group G).∀H:subgroup G. + (x \sup -1 ·y) ∈ H → (mk_left_coset ? x H) = (mk_left_coset ? y H). +intros; +unfold left_coset_eq; +simplify in ⊢ (? → ? ? ? (? ? ? (? ? ? (? ? ? (? ? %)) ?))); +simplify in ⊢ (? → ? ? ? (? ? % ?)); +simplify in ⊢ (? % → ?); +intros; +unfold belongs_to_left_coset; +simplify in ⊢ (? ? (λy:?.? ? ? (? ? ? (? ? ? (? ? ? (? ? %)) ?)))); +simplify in ⊢ (? ? (λy:? %.?)); +simplify in ⊢ (? ? (λy:?.? ? ? (? ? % ?))); +unfold belongs_to_subgroup in H1; +elim H1; +clear H1; +exists; +[ +| +]. +qed. + +(*theorem foo: + \forall G:Group. \forall x1,x2:G. \forall H:subgroup G. + x1*x2^-1 \nin H \to x1*H does_not_overlap x2*H + +theorem foo: + \forall x:G. \forall H:subgroup G. x \in x*H + +definition disjoinct + (T: Type) (n:nat) (S: \forall x:nat. x < n -> {S:Type * (S -> T)}) +:= + \forall i,j:nat. i < n \to j < n \to ... + + +check + (λG.λH,H':left_coset G.λx:Type_of_Group (group ? (subgrp ? H)). (embed ? (subgrp ? H) x)). + +definition left_coset_eq ≝ + λG.λH,H':left_coset G. + ∀x:group ? (subgrp ? H). + ex (group ? (subgroup ? H')) (λy. + (element ? H)·(embed ? (subgrp ? H) x) = + (element ? H')·(embed ? (subgrp ? H') y)). + +(*record left_coset (G:Group) : Type ≝ + { subgroup: Group; + subgroup_is_subgroup: subgroup ≤ G; + element: G + }. + +definition left_coset_eq ≝ + λG.λH,H':left_coset G. + ∀x:subgroup ? H. + ex (subgroup ? H') (λy. + (element ? H)·(embed ? ? (subgroup_is_subgroup ? H) ˜ x) = + (element ? H')·(embed ? ? (subgroup_is_subgroup ? H') ˜ y)). +*) +*) \ No newline at end of file -- 2.39.2