From 3a4509b8e569181979f5b15808361c83eb1ae49a Mon Sep 17 00:00:00 2001 From: Ferruccio Guidi Date: Thu, 9 Apr 2020 15:52:50 +0200 Subject: [PATCH] renaming in basics/relations MIME-Version: 1.0 Content-Type: text/plain; charset=utf8 Content-Transfer-Encoding: 8bit + we rename adefinition that was clashing with λδ --- matita/matita/lib/basics/relations.ma | 8 ++++---- matita/matita/lib/lambda/terms/parallel_reduction.ma | 6 +++--- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/matita/matita/lib/basics/relations.ma b/matita/matita/lib/basics/relations.ma index 3133682db..9da779ee4 100644 --- a/matita/matita/lib/basics/relations.ma +++ b/matita/matita/lib/basics/relations.ma @@ -56,12 +56,12 @@ definition antisymmetric: ∀A.∀R:relation A.Prop definition singlevalued: ∀A,B. predicate (relation2 A B) ≝ λA,B,R. ∀a,b1. R a b1 → ∀b2. R a b2 → b1 = b2. -definition confluent1: ∀A. relation A → predicate A ≝ λA,R,a0. - ∀a1. R a0 a1 → ∀a2. R a0 a2 → - ∃∃a. R a1 a & R a2 a. +definition pw_confluent: ∀A. relation A → predicate A ≝ λA,R,a0. + ∀a1. R a0 a1 → ∀a2. R a0 a2 → + ∃∃a. R a1 a & R a2 a. definition confluent: ∀A. predicate (relation A) ≝ λA,R. - ∀a0. confluent1 … R a0. + ∀a0. pw_confluent … R a0. (* triangular confluence of two relations *) definition Conf3: ∀A,B. relation2 A B → relation A → Prop ≝ λA,B,S,R. diff --git a/matita/matita/lib/lambda/terms/parallel_reduction.ma b/matita/matita/lib/lambda/terms/parallel_reduction.ma index 111d794b0..b2d2c2ff9 100644 --- a/matita/matita/lib/lambda/terms/parallel_reduction.ma +++ b/matita/matita/lib/lambda/terms/parallel_reduction.ma @@ -102,14 +102,14 @@ lemma pred_dsubst: dsubstable pred. ] qed. -lemma pred_conf1_vref: ∀i. confluent1 … pred (#i). +lemma pred_conf1_vref: ∀i. pw_confluent … pred (#i). #i #M1 #H1 #M2 #H2 <(pred_inv_vref … H1) -H1 [3: // |2: skip ] (**) (* simplify line *) <(pred_inv_vref … H2) -H2 [3: // |2: skip ] (**) (* simplify line *) /2 width=3/ qed-. -lemma pred_conf1_abst: ∀A. confluent1 … pred A → confluent1 … pred (𝛌.A). +lemma pred_conf1_abst: ∀A. pw_confluent … pred A → pw_confluent … pred (𝛌.A). #A #IH #M1 #H1 #M2 #H2 elim (pred_inv_abst … H1 …) -H1 [3: // |2: skip ] #A1 #HA1 #H destruct (**) (* simplify line *) elim (pred_inv_abst … H2 …) -H2 [3: // |2: skip ] #A2 #HA2 #H destruct (**) (* simplify line *) @@ -117,7 +117,7 @@ elim (IH … HA1 … HA2) -A /3 width=3/ qed-. lemma pred_conf1_appl_beta: ∀B,B1,B2,C,C2,M1. - (∀M0. |M0| < |B|+|𝛌.C|+1 → confluent1 ? pred M0) → (**) (* ? needed in place of … *) + (∀M0. |M0| < |B|+|𝛌.C|+1 → pw_confluent ? pred M0) → (**) (* ? needed in place of … *) B ⤇ B1 → B ⤇ B2 → 𝛌.C ⤇ M1 → C ⤇ C2 → ∃∃M. @B1.M1 ⤇ M & [↙B2]C2 ⤇ M. #B #B1 #B2 #C #C2 #M1 #IH #HB1 #HB2 #H1 #HC2 -- 2.39.2