From 3e4dee5271019834cfe061d43789380cb3871b7c Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Sun, 4 Jan 2009 20:33:56 +0000 Subject: [PATCH] 1. CProp_n fixed to be equal to Type_n to better understand what is happening with universe levels 2. major proof step: I have proved (up to universe inconsistency :-( that every RELation induces an OA morphism. In particular, these means: A) having correctly defined the four images on subsets B) having proved the fundamental symmetry C) having proved the two fundamental adjunctions --- .../formal_topology/overlap/categories.ma | 22 ++-- .../formal_topology/overlap/relations.ma | 104 ++++++++++++++---- .../formal_topology/overlap/subsets.ma | 12 +- 3 files changed, 100 insertions(+), 38 deletions(-) diff --git a/helm/software/matita/contribs/formal_topology/overlap/categories.ma b/helm/software/matita/contribs/formal_topology/overlap/categories.ma index 86bc2529c..67db8176c 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/categories.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/categories.ma @@ -31,15 +31,17 @@ coercion Type_OF_Type1. coercion Type_OF_Type2. coercion Type_OF_Type3. -definition CProp0 := CProp. -definition CProp1 := CProp. -definition CProp2 := CProp. +definition CProp0 := Type0. +definition CProp1 := Type1. +definition CProp2 := Type2. +(* definition CProp0_lt_CProp1 := (CProp0 : CProp1). definition CProp1_lt_CProp2 := (CProp1 : CProp2). definition CProp_OF_CProp0: CProp0 → CProp := λx.x. definition CProp_OF_CProp1: CProp1 → CProp := λx.x. definition CProp_OF_CProp2: CProp2 → CProp := λx.x. +*) record equivalence_relation (A:Type0) : Type1 ≝ { eq_rel:2> A → A → CProp0; @@ -194,7 +196,7 @@ definition CPROP: setoid1. | intros 1; split; intro; assumption | intros 3; cases H; split; assumption | intros 5; cases H; cases H1; split; intro; - [ apply (H4 (H2 x1)) | apply (H3 (H5 z1))]]] + [ apply (f2 (f x1)) | apply (f1 (f3 z1))]]] qed. alias symbol "eq" = "setoid1 eq". @@ -233,8 +235,8 @@ definition if_morphism: binary_morphism1 CPROP CPROP CPROP. constructor 1; [ apply (λA,B. A → B) | intros; split; intros; - [ apply (if ?? e1); apply H; apply (fi ?? e); assumption - | apply (fi ?? e1); apply H; apply (if ?? e); assumption]] + [ apply (if ?? e1); apply f; apply (fi ?? e); assumption + | apply (fi ?? e1); apply f; apply (if ?? e); assumption]] qed. (* @@ -303,8 +305,8 @@ definition unary_morphism_setoid: setoid → setoid → setoid1. | constructor 1; [ intros (f g); apply (∀a:s. eq ? (f a) (g a)); | intros 1; simplify; intros; apply refl; - | simplify; intros; apply sym; apply H; - | simplify; intros; apply trans; [2: apply H; | skip | apply H1]]] + | simplify; intros; apply sym; apply f; + | simplify; intros; apply trans; [2: apply f; | skip | apply f1]]] qed. definition SET: category1. @@ -354,8 +356,8 @@ definition unary_morphism1_setoid1: setoid1 → setoid1 → setoid2. alias symbol "eq" = "setoid1 eq". apply (∀a: carr1 s. f a = g a); | intros 1; simplify; intros; apply refl1; - | simplify; intros; apply sym1; apply H; - | simplify; intros; apply trans1; [2: apply H; | skip | apply H1]]] + | simplify; intros; apply sym1; apply f; + | simplify; intros; apply trans1; [2: apply f; | skip | apply f1]]] qed. definition SET1: category2. diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations.ma b/helm/software/matita/contribs/formal_topology/overlap/relations.ma index c99239beb..f5141a2ed 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/relations.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/relations.ma @@ -174,34 +174,69 @@ lemma extS_com: ∀o1,o2,o3,c1,c2,S. extS o1 o3 (c2 ∘ c1) S = extS o1 o2 c1 (e assumption] qed. *) -axiom daemon: False. +(* senza questo exT "fresco", universe inconsistency *) +inductive exT (A:Type0) (P:A→CProp0) : CProp0 ≝ + ex_introT: ∀w:A. P w → exT A P. + +lemma hint: ∀U. carr U → Type_OF_setoid1 ?(*(setoid1_of_SET U)*). + [ apply setoid1_of_SET; apply U + | intros; apply c;] +qed. +coercion hint. + (* the same as ⋄ for a basic pair *) -definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) ?(*(Ω \sup V)*). -cases daemon; qed. +definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:U. x ♮r y ∧ x ∈ S}); - intros; simplify; split; intro; cases H; exists [1,3: apply w] + [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | (*∃x:U. x ♮r y ∧ x ∈ S*) + exT ? (λx:carr U.x ♮r y ∧ x ∈ S) }); + intros; simplify; split; intro; cases e1; exists [1,3: apply w] [ apply (. (#‡e)‡#); assumption | apply (. (#‡e ^ -1)‡#); assumption] - | intros; split; simplify; intros; cases H; exists [1,3: apply w] + | intros; split; simplify; intros; cases e2; exists [1,3: apply w] [ apply (. #‡(#‡e1)); cases x; split; try assumption; apply (if ?? (e ??)); assumption | apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; apply (if ?? (e ^ -1 ??)); assumption]] qed. -(* (* the same as □ for a basic pair *) definition minus_star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V). intros; constructor 1; - [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:U. x ♮r y → x ∈ S}); - intros; simplify; split; intros; apply H1; - [ apply (. #‡H \sup -1); assumption - | apply (. #‡H); assumption] - | intros; split; simplify; intros; [ apply (. #‡H1); | apply (. #‡H1 \sup -1)] - apply H2; [ apply (if ?? (H \sup -1 ??)); | apply (if ?? (H ??)) ] assumption] + [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:carr U. x ♮r y → x ∈ S}); + intros; simplify; split; intros; apply f; + [ apply (. #‡e ^ -1); assumption + | apply (. #‡e); assumption] + | intros; split; simplify; intros; [ apply (. #‡e1); | apply (. #‡e1 ^ -1)] + apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] +qed. + +(* the same as * for a basic pair *) +definition star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup V) (Ω \sup U). + intros; constructor 1; + [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | ∀y:carr V. x ♮r y → y ∈ S}); + intros; simplify; split; intros; apply f; + [ apply (. e ^ -1‡#); assumption + | apply (. e‡#); assumption] + | intros; split; simplify; intros; [ apply (. #‡e1); | apply (. #‡e1 ^ -1)] + apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] +qed. + +(* the same as - for a basic pair *) +definition minus_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup V) (Ω \sup U). + intros; constructor 1; + [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | (*∃x:U. x ♮r y ∧ x ∈ S*) + exT ? (λy:carr V.x ♮r y ∧ y ∈ S) }); + intros; simplify; split; intro; cases e1; exists [1,3: apply w] + [ apply (. (e‡#)‡#); assumption + | apply (. (e ^ -1‡#)‡#); assumption] + | intros; split; simplify; intros; cases e2; exists [1,3: apply w] + [ apply (. #‡(#‡e1)); cases x; split; try assumption; + apply (if ?? (e ??)); assumption + | apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; + apply (if ?? (e ^ -1 ??)); assumption]] qed. +(* (* minus_image is the same as ext *) theorem image_id: ∀o,U. image o o (id1 REL o) U = U. @@ -263,12 +298,37 @@ include "o-algebra.ma". definition orelation_of_relation: ∀o1,o2:REL. arrows1 ? o1 o2 → ORelation (SUBSETS o1) (SUBSETS o2). intros; constructor 1; - [ - | - | - | - | - | - | - ] -qed. \ No newline at end of file + [ constructor 1; + [ apply (λU.image ?? t U); + | intros; apply (#‡e); ] + | constructor 1; + [ apply (λU.minus_star_image ?? t U); + | intros; apply (#‡e); ] + | constructor 1; + [ apply (λU.star_image ?? t U); + | intros; apply (#‡e); ] + | constructor 1; + [ apply (λU.minus_image ?? t U); + | intros; apply (#‡e); ] + | intros; split; intro; + [ change in f with (∀a. a ∈ image ?? t p → a ∈ q); + change with (∀a:o1. a ∈ p → a ∈ star_image ?? t q); + intros 4; apply f; exists; [apply a] split; assumption; + | change in f with (∀a:o1. a ∈ p → a ∈ star_image ?? t q); + change with (∀a. a ∈ image ?? t p → a ∈ q); + intros; cases f1; cases x; clear f1 x; apply (f ? f3); assumption; ] + | intros; split; intro; + [ change in f with (∀a. a ∈ minus_image ?? t p → a ∈ q); + change with (∀a:o2. a ∈ p → a ∈ minus_star_image ?? t q); + intros 4; apply f; exists; [apply a] split; assumption; + | change in f with (∀a:o2. a ∈ p → a ∈ minus_star_image ?? t q); + change with (∀a. a ∈ minus_image ?? t p → a ∈ q); + intros; cases f1; cases x; clear f1 x; apply (f ? f3); assumption; ] + | intros; split; intro; cases f; clear f; + [ cases x; cases x2; clear x x2; exists; [apply w1] + [ assumption; + | exists; [apply w] split; assumption] + | cases x1; cases x2; clear x1 x2; exists; [apply w1] + [ exists; [apply w] split; assumption; + | assumption; ]]] +qed. sistemare anche l'hint da un'altra parte e capire l'exT (doppio!) \ No newline at end of file diff --git a/helm/software/matita/contribs/formal_topology/overlap/subsets.ma b/helm/software/matita/contribs/formal_topology/overlap/subsets.ma index 9847d4c55..73872bfed 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/subsets.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/subsets.ma @@ -16,7 +16,7 @@ include "categories.ma". record powerset_carrier (A: objs1 SET) : Type1 ≝ { mem_operator: unary_morphism1 A CPROP }. -definition subseteq_operator: ∀A: SET. powerset_carrier A → powerset_carrier A → CProp1 ≝ +definition subseteq_operator: ∀A: SET. powerset_carrier A → powerset_carrier A → CProp0 ≝ λA:objs1 SET.λU,V.∀a:A. mem_operator ? U a → mem_operator ? V a. theorem transitive_subseteq_operator: ∀A. transitive2 ? (subseteq_operator A). @@ -147,14 +147,14 @@ definition big_intersects: [ intro; whd; whd in I; apply ({x | ∀i:I. x ∈ t i}); simplify; intros; split; intros; [ apply (. (e‡#)); | apply (. (e \sup -1‡#)); ] - apply H; + apply f; | intros; split; intros 2; simplify in f ⊢ %; intro; [ apply (. (#‡(e i))); apply f; | apply (. (#‡(e i)\sup -1)); apply f]] qed. (* senza questo exT "fresco", universe inconsistency *) -inductive exT (A:Type) (P:A→CProp) : CProp ≝ +inductive exT (A:Type0) (P:A→CProp0) : CProp0 ≝ ex_introT: ∀w:A. P w → exT A P. definition big_union: @@ -162,7 +162,7 @@ definition big_union: intros; constructor 1; [ intro; whd; whd in A; whd in I; apply ({x | (*∃i:carr I. x ∈ t i*) exT (carr I) (λi. x ∈ t i)}); - simplify; intros; split; intros; cases H; clear H; exists; [1,3:apply w] + simplify; intros; split; intros; cases e1; clear e1; exists; [1,3:apply w] [ apply (. (e‡#)); | apply (. (e \sup -1‡#)); ] apply x; | intros; split; intros 2; simplify in f ⊢ %; cases f; clear f; exists; [1,3:apply w] @@ -208,8 +208,8 @@ definition SUBSETS: objs1 SET → OAlgebra. | (* senza questa change, universe inconsistency *) whd; change in ⊢ (? ? (λ_:%.?)) with (carr I); exists; [apply w] assumption]] - | intros; intros 2; cases (H (singleton ? a) ?); + | intros; intros 2; cases (f (singleton ? a) ?); [ exists; [apply a] [assumption | change with (a = a); apply refl1;] | change in x1 with (a = w); change with (mem A a q); apply (. (x1 \sup -1‡#)); assumption]] -qed. \ No newline at end of file +qed. -- 2.39.2