From 40c2f7eaa04e0baae6933f87260abaa7c2f78dd1 Mon Sep 17 00:00:00 2001 From: Enrico Zoli Date: Tue, 24 Oct 2006 16:52:08 +0000 Subject: [PATCH] Added unit to rings. --- .../matita/dama/integration_algebras.ma | 88 ++++++++++--------- 1 file changed, 46 insertions(+), 42 deletions(-) diff --git a/helm/software/matita/dama/integration_algebras.ma b/helm/software/matita/dama/integration_algebras.ma index 2a2545766..0339a0889 100644 --- a/helm/software/matita/dama/integration_algebras.ma +++ b/helm/software/matita/dama/integration_algebras.ma @@ -98,39 +98,64 @@ qed. (****************************** rings *********************************) -record is_ring (G:abelian_group) (mult:G→G→G) : Prop +record is_ring (G:abelian_group) (mult:G→G→G) (one:G) : Prop ≝ - { (* multiplicative semigroup properties *) + { (* multiplicative monoid properties *) mult_assoc_: associative ? mult; + one_neutral_left_: left_neutral ? mult one; + one_neutral_right_: right_neutral ? mult one; (* ring properties *) mult_plus_distr_left_: distributive_left ? mult (plus G); - mult_plus_distr_right_: distributive_right ? mult (plus G) + mult_plus_distr_right_: distributive_right ? mult (plus G); + not_eq_zero_one_: (0 ≠ one) }. record ring : Type \def { r_abelian_group:> abelian_group; mult: r_abelian_group → r_abelian_group → r_abelian_group; - r_ring_properties: is_ring r_abelian_group mult + one: r_abelian_group; + r_ring_properties: is_ring r_abelian_group mult one }. theorem mult_assoc: ∀R:ring.associative ? (mult R). intros; - apply (mult_assoc_ ? ? (r_ring_properties R)). + apply (mult_assoc_ ? ? ? (r_ring_properties R)). +qed. + +theorem one_neutral_left: ∀R:ring.left_neutral ? (mult R) (one R). + intros; + apply (one_neutral_left_ ? ? ? (r_ring_properties R)). +qed. + +theorem one_neutral_right: ∀R:ring.right_neutral ? (mult R) (one R). + intros; + apply (one_neutral_right_ ? ? ? (r_ring_properties R)). qed. theorem mult_plus_distr_left: ∀R:ring.distributive_left ? (mult R) (plus R). intros; - apply (mult_plus_distr_left_ ? ? (r_ring_properties R)). + apply (mult_plus_distr_left_ ? ? ? (r_ring_properties R)). qed. theorem mult_plus_distr_right: ∀R:ring.distributive_right ? (mult R) (plus R). intros; - apply (mult_plus_distr_right_ ? ? (r_ring_properties R)). + apply (mult_plus_distr_right_ ? ? ? (r_ring_properties R)). +qed. + +theorem not_eq_zero_one: ∀R:ring.0 ≠ one R. + intros; + apply (not_eq_zero_one_ ? ? ? (r_ring_properties R)). qed. interpretation "Ring mult" 'times a b = (cic:/matita/integration_algebras/mult.con _ a b). +notation "1" with precedence 89 +for @{ 'one }. + +interpretation "Field one" 'one = + (cic:/matita/integration_algebras/one.con _). + lemma eq_mult_zero_x_zero: ∀R:ring.∀x:R.0*x=0. intros; generalize in match (zero_neutral R 0); intro; @@ -157,19 +182,14 @@ rewrite > zero_neutral in H; assumption. qed. -record is_field (R:ring) (one:R) (inv:∀x:R.x ≠ 0 → R) : Prop +record is_field (R:ring) (inv:∀x:R.x ≠ 0 → R) : Prop ≝ { (* multiplicative abelian properties *) mult_comm_: symmetric ? (mult R); - (* multiplicative monoid properties *) - one_neutral_: left_neutral ? (mult R) one; (* multiplicative group properties *) - inv_inverse_: ∀x.∀p: x ≠ 0. mult ? (inv x p) x = one; - (* integral domain *) - not_eq_zero_one_: (0 ≠ one) + inv_inverse_: ∀x.∀p: x ≠ 0. mult ? (inv x p) x = 1 }. - lemma opp_opp: \forall R:ring. \forall x:R. (-(-x))=x. intros; apply (cancellationlaw ? (-x) ? ?); @@ -188,38 +208,18 @@ let rec sum (C:Type) (plus:C→C→C) (zero,one:C) (n:nat) on n ≝ record field : Type \def { f_ring:> ring; - one: f_ring; inv: ∀x:f_ring. x ≠ 0 → f_ring; - field_properties: is_field f_ring one inv + field_properties: is_field f_ring inv }. -notation "1" with precedence 89 -for @{ 'one }. - -interpretation "Field one" 'one = - (cic:/matita/integration_algebras/one.con _). - theorem mult_comm: ∀F:field.symmetric ? (mult F). intro; - apply (mult_comm_ ? ? ? (field_properties F)). -qed. - -theorem one_neutral: ∀F:field.left_neutral ? (mult F) 1. - intro; - apply (one_neutral_ ? ? ? (field_properties F)). + apply (mult_comm_ ? ? (field_properties F)). qed. theorem inv_inverse: ∀F:field.∀x.∀p: x ≠ 0. mult ? (inv F x p) x = 1. intro; - apply (inv_inverse_ ? ? ? (field_properties F)). -qed. - -theorem not_eq_zero_one: ∀F:field.0 ≠ 1. - [2: - intro; - apply (not_eq_zero_one_ ? ? ? (field_properties F)) - | skip - ] + apply (inv_inverse_ ? ? (field_properties F)). qed. definition sum_field ≝ @@ -356,10 +356,10 @@ record archimedean_riesz_space : Type \def ars_archimedean_property: is_archimedean_riesz_space ars_riesz_space }. -record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) : Prop +record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop ≝ { (* ring properties *) - a_ring: is_ring V mult; + a_ring: is_ring V mult one; (* algebra properties *) a_associative_left: ∀a,f,g. a * (mult f g) = mult (a * f) g; a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) @@ -367,16 +367,20 @@ record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) : Prop record algebra (K: field) (V:vector_space K) : Type \def { a_mult: V → V → V; - a_algebra_properties: is_algebra K V a_mult + a_one: V; + a_algebra_properties: is_algebra K V a_mult a_one }. interpretation "Algebra product" 'times a b = (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). +interpretation "Field one" 'one = + (cic:/matita/integration_algebras/a_one.con _). + definition ring_of_algebra ≝ λK.λV:vector_space K.λA:algebra ? V. - mk_ring V (a_mult ? ? A) - (a_ring ? ? ? (a_algebra_properties ? ? A)). + mk_ring V (a_mult ? ? A) (a_one ? ? A) + (a_ring ? ? ? ? (a_algebra_properties ? ? A)). coercion cic:/matita/integration_algebras/ring_of_algebra.con. -- 2.39.2