From 47173a864325b6bcaf2d3cb70afcd14be97764ae Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Tue, 13 Nov 2007 17:52:09 +0000 Subject: [PATCH] End of groups :-) --- matita/dama/groups.ma | 93 ++++++++++++++++++++++++++----------------- 1 file changed, 56 insertions(+), 37 deletions(-) diff --git a/matita/dama/groups.ma b/matita/dama/groups.ma index a35b43d3b..3e30e0474 100644 --- a/matita/dama/groups.ma +++ b/matita/dama/groups.ma @@ -76,7 +76,7 @@ lemma strong_ext_to_ext: ∀A:apartness.∀op:A→A. strong_ext ? op → ext ? o intros 6 (A op SEop x y Exy); intro Axy; apply Exy; apply SEop; assumption; qed. -lemma f_plusl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x+y ≈ x+z. +lemma feq_plusl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x+y ≈ x+z. intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_ext ? x)); assumption; qed. @@ -103,49 +103,68 @@ apply (ap_rewl ??? ((-x + x) + y)); [1: apply (feq_plusr ???? (opp_inverse ??)); |2: apply (ap_rewl ???? (zero_neutral ? y)); apply (ap_rewr ??? (0 + z)); [1: apply (feq_plusr ???? (opp_inverse ??)); - |2: apply (ap_rewr ???? (zero_neutral ? z)); assumption;]]]] + |2: apply (ap_rewr ???? (zero_neutral ??)); assumption;]]]] qed. -lemma plus_canc: ∀G:abelian_group.∀x,y,z:G. x+y ≈ x+z → y ≈ z. -intros 6 (G x y z E Ayz); apply E; apply fap_plusl; assumption; -qed. +lemma fap_plusr: ∀G:abelian_group.∀x,y,z:G. y # z → y+x # z+x. +intros (G x y z Ayz); apply (plus_strong_extr ? (-x)); +apply (ap_rewl ??? (y + (x + -x))); +[1: apply (eq_symmetric ??? (plus_assoc ????)); +|2: apply (ap_rewr ??? (z + (x + -x))); + [1: apply (eq_symmetric ??? (plus_assoc ????)); + |2: apply (ap_rewl ??? (y + (-x+x)) (feq_plusl ???? (plus_comm ???))); + apply (ap_rewl ??? (y + 0) (feq_plusl ???? (opp_inverse ??))); + apply (ap_rewl ??? (0 + y) (plus_comm ???)); + apply (ap_rewl ??? y (zero_neutral ??)); + apply (ap_rewr ??? (z + (-x+x)) (feq_plusl ???? (plus_comm ???))); + apply (ap_rewr ??? (z + 0) (feq_plusl ???? (opp_inverse ??))); + apply (ap_rewr ??? (0 + z) (plus_comm ???)); + apply (ap_rewr ??? z (zero_neutral ??)); + assumption]] +qed. + +lemma plus_cancl: ∀G:abelian_group.∀y,z,x:G. x+y ≈ x+z → y ≈ z. +intros 6 (G y z x E Ayz); apply E; apply fap_plusl; assumption; +qed. -(* - -theorem eq_opp_plus_plus_opp_opp: ∀G:abelian_group.∀x,y:G. -(x+y) = -x + -y. - intros; - apply (cancellationlaw ? (x+y)); - rewrite < plus_comm; - rewrite > opp_inverse; - rewrite > plus_assoc; - rewrite > plus_comm in ⊢ (? ? ? (? ? ? (? ? ? %))); - rewrite < plus_assoc in ⊢ (? ? ? (? ? ? %)); - rewrite > plus_comm; - rewrite > plus_comm in ⊢ (? ? ? (? ? (? ? % ?) ?)); - rewrite > opp_inverse; - rewrite > zero_neutral; - rewrite > opp_inverse; - reflexivity. +lemma plus_cancr: ∀G:abelian_group.∀y,z,x:G. y+x ≈ z+x → y ≈ z. +intros 6 (G y z x E Ayz); apply E; apply fap_plusr; assumption; qed. -theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x=x. - intros; - apply (cancellationlaw ? (-x)); - rewrite > opp_inverse; - rewrite > plus_comm; - rewrite > opp_inverse; - reflexivity. +theorem eq_opp_plus_plus_opp_opp: + ∀G:abelian_group.∀x,y:G. -(x+y) ≈ -x + -y. +intros (G x y); apply (plus_cancr ??? (x+y)); +apply (eq_transitive ?? 0); [apply (opp_inverse ??)] +apply (eq_transitive ?? (-x + -y + x + y)); [2: apply (eq_symmetric ??? (plus_assoc ????))] +apply (eq_transitive ?? (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm] +apply (eq_transitive ?? (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;] +apply (eq_transitive ?? (-y + 0 + y)); + [2: apply feq_plusr; apply feq_plusl; apply eq_symmetric; apply opp_inverse] +apply (eq_transitive ?? (-y + y)); + [2: apply feq_plusr; apply eq_symmetric; + apply (eq_transitive ?? (0+-y)); [apply plus_comm|apply zero_neutral]] +apply eq_symmetric; apply opp_inverse. qed. -theorem eq_zero_opp_zero: ∀G:abelian_group.0=-0. +theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x ≈ x. +intros (G x); apply (plus_cancl ??? (-x)); +apply (eq_transitive ?? (--x + -x)); [apply plus_comm] +apply (eq_transitive (carr G) (plus G (opp G (opp G x)) (opp G x)) (zero G) (plus G (opp G x) x) ? ?); + [apply (opp_inverse G (opp G x)). + |apply (eq_symmetric (carr G) (plus G (opp G x) x) (zero G) ?). + apply (opp_inverse G x). + ] +qed. + +theorem eq_zero_opp_zero: ∀G:abelian_group.0 ≈ -0. [ assumption | intros; - apply (cancellationlaw ? 0); - rewrite < plus_comm in ⊢ (? ? ? %); - rewrite > opp_inverse; - rewrite > zero_neutral; - reflexivity - ]. +apply (eq_transitive (carr G) (zero G) (plus G (opp G (zero G)) (zero G)) (opp G (zero G)) ? ?); + [apply (eq_symmetric (carr G) (plus G (opp G (zero G)) (zero G)) (zero G) ?). + apply (opp_inverse G (zero G)). + |apply (eq_transitive (carr G) (plus G (opp G (zero G)) (zero G)) (plus G (zero G) (opp G (zero G))) (opp G (zero G)) ? ?); + [apply (plus_comm G (opp G (zero G)) (zero G)). + |apply (zero_neutral G (opp G (zero G))). + ] + ]] qed. - -*) \ No newline at end of file -- 2.39.2