From 4a073df57b56bf6d89ec0f806d5471388940deda Mon Sep 17 00:00:00 2001 From: Enrico Zoli Date: Fri, 3 Nov 2006 16:58:51 +0000 Subject: [PATCH] Integration f_algebras declassed. We suppose to prove everything on integration_riesz_spaces. However, the definition or weak order unit is complex because of the sup on sequences. --- matita/dama/integration_algebras.ma | 115 ++++++++++++++++++---------- 1 file changed, 76 insertions(+), 39 deletions(-) diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index 2a2aae51d..1ebfad834 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -33,6 +33,20 @@ record vector_space (K:field): Type \def interpretation "Vector space external product" 'times a b = (cic:/matita/integration_algebras/emult.con _ _ a b). +record is_semi_norm (R:real) (V: vector_space R) + (semi_norm:Type_OF_vector_space ? V→R) : Prop +\def + { sn_positive: ∀x:V. 0 ≤ semi_norm x; + sn_omogeneous: ∀a:R.∀x:V. semi_norm (a*x) = (abs ? a) * semi_norm x; + sn_triangle_inequality: ∀x,y:V. semi_norm (x + y) ≤ semi_norm x + semi_norm y + }. + +record is_norm (R:real) (V:vector_space R) (norm:Type_OF_vector_space ? V → R) + : Prop \def + { n_semi_norm:> is_semi_norm ? ? norm; + n_properness: ∀x:V. norm x = 0 → x = 0 + }. + record is_lattice (C:Type) (join,meet:C→C→C) : Prop \def { (* abelian semigroup properties *) l_comm_j: symmetric ? join; @@ -90,6 +104,47 @@ record archimedean_riesz_space (K:ordered_field_ch0) : Type \def ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space }. +record is_integral (K) (R:archimedean_riesz_space K) (I:Type_OF_archimedean_riesz_space ? R→K) : Prop +\def + { i_positive: ∀f:R. le ? R 0 f → of_le K 0 (I f); + i_linear1: ∀f,g:R. I (f + g) = I f + I g; + i_linear2: ∀f:R.∀k:K. I (emult ? R k f) = k*(I f) + }. + +definition is_weak_unit ≝ +(* This definition is by Spitters. He cites Fremlin 353P, but: + 1. that theorem holds only in f-algebras (as in Spitters, but we are + defining it on Riesz spaces) + 2. Fremlin proves |x|/\u=0 \to u=0. How do we remove the absolute value? + λR:real.λV:archimedean_riesz_space R.λunit: V. + ∀x:V. meet x unit = 0 → u = 0. +*) λR:real.λV:archimedean_riesz_space R.λe:V.True. + +record integration_riesz_space (R:real) : Type \def + { irs_archimedean_riesz_space:> archimedean_riesz_space R; + irs_unit: Type_OF_archimedean_riesz_space ? irs_archimedean_riesz_space; + irs_weak_unit: is_weak_unit ? ? irs_unit; + integral: Type_OF_archimedean_riesz_space ? irs_archimedean_riesz_space → R; + irs_integral_properties: is_integral R irs_archimedean_riesz_space integral; + irs_limit1: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn.integral (meet ? irs_archimedean_riesz_space f + ((sum_field R n)*irs_unit))) + (integral f); + irs_limit2: + ∀f:irs_archimedean_riesz_space. + tends_to ? + (λn. + integral (meet ? irs_archimedean_riesz_space f + ((inv ? (sum_field R (S n)) + (not_eq_sum_field_zero R (S n) (le_S_S O n (le_O_n n))) + ) * irs_unit))) 0; + irs_quotient_space1: + ∀f,g:irs_archimedean_riesz_space. + f=g → integral (absolute_value ? irs_archimedean_riesz_space (f - g)) = 0 + }. + record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop ≝ { (* ring properties *) @@ -99,66 +154,48 @@ record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) }. -record algebra (K: field) (V:vector_space K) : Type \def +record algebra (K: field) (V:vector_space K) (a_one:V) : Type \def { a_mult: V → V → V; - a_one: V; a_algebra_properties: is_algebra K V a_mult a_one }. interpretation "Algebra product" 'times a b = (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). -interpretation "Algebra one" 'one = - (cic:/matita/integration_algebras/a_one.con _ _ _). - definition ring_of_algebra ≝ - λK.λV:vector_space K.λA:algebra ? V. - mk_ring V (a_mult ? ? A) (a_one ? ? A) - (a_ring ? ? ? ? (a_algebra_properties ? ? A)). + λK.λV:vector_space K.λone:Type_OF_vector_space ? V.λA:algebra ? V one. + mk_ring V (a_mult ? ? ? A) one + (a_ring ? ? ? ? (a_algebra_properties ? ? ? A)). coercion cic:/matita/integration_algebras/ring_of_algebra.con. -record is_f_algebra (K) (S:archimedean_riesz_space K) (A:algebra ? S) : Prop +record is_f_algebra (K) (S:archimedean_riesz_space K) (one: S) + (A:algebra ? S one) : Prop \def { compat_mult_le: ∀f,g:S. - le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? A f g); + le ? S 0 f → le ? S 0 g → le ? S 0 (a_mult ? ? ? A f g); compat_mult_meet: ∀f,g,h:S. - meet ? S f g = 0 → meet ? S (a_mult ? ? A h f) g = 0 + meet ? S f g = 0 → meet ? S (a_mult ? ? ? A h f) g = 0 }. -record f_algebra (K:ordered_field_ch0) : Type \def -{ fa_archimedean_riesz_space:> archimedean_riesz_space K; - fa_algebra:> algebra ? fa_archimedean_riesz_space; - fa_f_algebra_properties: is_f_algebra ? fa_archimedean_riesz_space fa_algebra +record f_algebra (K:ordered_field_ch0) (R:archimedean_riesz_space K) + (one:Type_OF_archimedean_riesz_space ? R) : +Type \def +{ fa_algebra:> algebra ? R one; + fa_f_algebra_properties: is_f_algebra ? ? ? fa_algebra }. (* to be proved; see footnote 2 in the paper by Spitters *) -axiom symmetric_a_mult: ∀K.∀A:f_algebra K. symmetric ? (a_mult ? ? A). - -record is_integral (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop -\def - { i_positive: ∀f:Type_OF_f_algebra ? A. le ? (lattice_OF_f_algebra ? A) 0 f → of_le K 0 (I f); - i_linear1: ∀f,g:Type_OF_f_algebra ? A. I (f + g) = I f + I g; - i_linear2: ∀f:A.∀k:K. I (emult ? A k f) = k*(I f) - }. +axiom symmetric_a_mult: + ∀K,R,one.∀A:f_algebra K R one. symmetric ? (a_mult ? ? ? A). (* Here we are avoiding a construction (the quotient space to define f=g iff I(|f-g|)=0 *) -record is_integration_f_algebra (K) (A:f_algebra K) (I:Type_OF_f_algebra ? A→K) : Prop -\def - { ifa_integral: is_integral ? ? I; - ifa_limit1: - ∀f:A. tends_to ? (λn.I(meet ? A f ((sum_field K n)*(a_one ? ? A)))) (I f); - ifa_limit2: - ∀f:A. - tends_to ? - (λn. - I (meet ? A f - ((inv ? (sum_field K (S n)) - (not_eq_sum_field_zero K (S n) (le_S_S O n (le_O_n n))) - ) * (a_one ? ? A)))) 0; - ifa_quotient_space1: - ∀f,g:A. f=g → I(absolute_value ? A (f - g)) = 0 - }. +record integration_f_algebra (R:real) : Type \def + { ifa_integration_riesz_space:> integration_riesz_space R; + ifa_f_algebra:> + f_algebra ? ifa_integration_riesz_space + (irs_unit ? ifa_integration_riesz_space) + }. \ No newline at end of file -- 2.39.2