From 4bdabe062ce32f10b5254425f644ca8ac5c0296a Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Thu, 4 Sep 2008 13:36:50 +0000 Subject: [PATCH] ... --- .../contribs/dama/dama/models/q_function.ma | 214 ++++++++++++++++++ .../formal_topology/concrete_spaces.ma | 16 +- 2 files changed, 228 insertions(+), 2 deletions(-) diff --git a/helm/software/matita/contribs/dama/dama/models/q_function.ma b/helm/software/matita/contribs/dama/dama/models/q_function.ma index 47dccaf5d..33898007a 100644 --- a/helm/software/matita/contribs/dama/dama/models/q_function.ma +++ b/helm/software/matita/contribs/dama/dama/models/q_function.ma @@ -114,8 +114,221 @@ definition rebase_spec ≝ (same_bases (bars (\fst p)) (bars (\snd p))) (same_values l1 (\fst p)) (same_values l2 (\snd p)). + +definition last ≝ + λT:Type.λd.λl:list T. \nth l d (pred (\len l)). + +notation > "\last" non associative with precedence 90 for @{'last}. +notation < "\last d l" non associative with precedence 70 for @{'last2 $d $l}. +interpretation "list last" 'last = (last _). +interpretation "list last applied" 'last2 d l = (last _ d l). + +definition head ≝ + λT:Type.λd.λl:list T.\nth l d O. + +notation > "\hd" non associative with precedence 90 for @{'hd}. +notation < "\hd d l" non associative with precedence 70 for @{'hd2 $d $l}. +interpretation "list head" 'hd = (head _). +interpretation "list head applied" 'hd2 d l = (head _ d l). + +alias symbol "lt" = "bar lt". +lemma inversion_sorted: + ∀a,l. sorted q2_lt (a::l) → a < \hd ▭ l ∨ l = []. +intros 2; elim l; [right;reflexivity] left; inversion H1; intros; +[1,2:destruct H2| destruct H5; assumption] +qed. + +lemma inversion_sorted2: + ∀a,b,l. sorted q2_lt (a::b::l) → a < b. +intros; inversion H; intros; [1,2:destruct H1] destruct H4; assumption; +qed. + +definition same_values_simpl ≝ + λl1,l2.∀p1,p2,p3,p4,p5,p6. + same_values (mk_q_f l1 p1 p2 p3) (mk_q_f l2 p4 p5 p6). + +inductive rebase_cases : list bar → list bar → (list bar) × (list bar) → Prop ≝ +| rb_fst_full : ∀b,h1,h2,xs,ys,r1,r2. 〈b,h1〉 < \hd ▭ ys → + \snd(\last ▭ (〈b,h1〉::xs)) = \snd(\last ▭ (〈b,h1〉::r1)) → + \snd(\last ▭ (〈b,h1〉::xs)) = \snd(\last ▭ (〈b,h2〉::r2)) → + rebase_cases (〈b,h1〉::xs) ys 〈〈b,h1〉::r1,〈b,h2〉::r2〉 +| rb_snd_full : ∀b,h1,h2,xs,ys,r1,r2. 〈b,h1〉 < \hd ▭ xs → + \snd(\last ▭ (〈b,h1〉::ys)) = \snd(\last ▭ (〈b,h1〉::r2)) → + \snd(\last ▭ (〈b,h1〉::ys)) = \snd(\last ▭ (〈b,h2〉::r1)) → + rebase_cases xs (〈b,h1〉::ys) 〈〈b,h2〉::r1,〈b,h1〉::r2〉 +| rb_all_full : ∀b,h1,h2,h3,h4,xs,ys,r1,r2. + \snd(\last ▭ (〈b,h1〉::xs)) = \snd(\last ▭ (〈b,h3〉::r1)) → + \snd(\last ▭ (〈b,h2〉::ys)) = \snd(\last ▭ (〈b,h4〉::r2)) → + rebase_cases (〈b,h1〉::xs) (〈b,h2〉::ys) 〈〈b,h3〉::r1,〈b,h4〉::r2〉 +| rb_all_empty : rebase_cases [] [] 〈[],[]〉. + +alias symbol "pi2" = "pair pi2". +alias symbol "pi1" = "pair pi1". +alias symbol "leq" = "natural 'less or equal to'". +inductive rebase_spec_aux_p (l1, l2:list bar) (p:(list bar) × (list bar)) : Prop ≝ +| prove_rebase_spec_aux: + rebase_cases l1 l2 p → + (sorted q2_lt (\fst p)) → + (sorted q2_lt (\snd p)) → True → True → (* + ((l1 ≠ [] ∧ \snd (\last ▭ (\fst p)) = 〈OQ,OQ〉) ∨ + (l1 = [] ∧ ∀i.\snd (\nth (\fst p) ▭ i) = 〈OQ,OQ〉)) → + ((l2 ≠ [] ∧ \snd (\last ▭ (\snd p)) = 〈OQ,OQ〉) ∨ + (l2 = [] ∧ ∀i.\snd (\nth (\snd p) ▭ i) = 〈OQ,OQ〉)) →*) + (same_bases (\fst p) (\snd p)) → + (same_values_simpl l1 (\fst p)) → + (same_values_simpl l2 (\snd p)) → + (*\len (\fst p) ≤ \len l1 + \len l2 → *) + (*\len (\fst p) = \len (\snd p) → *) + rebase_spec_aux_p l1 l2 p. + +lemma sort_q2lt_same_base: + ∀b,h1,h2,l. sorted q2_lt (〈b,h1〉::l) → sorted q2_lt (〈b,h2〉::l). +intros; cases (inversion_sorted ?? H); [2: rewrite > H1; apply (sorted_one q2_lt)] +lapply (sorted_tail q2_lt ?? H) as K; clear H; cases l in H1 K; simplify; intros; +[apply (sorted_one q2_lt);|apply (sorted_cons q2_lt);[2: assumption] apply H] +qed. + +lemma aux_preserves_sorting: + ∀b,b3,l2,l3,w. rebase_cases l2 l3 w → + sorted q2_lt (b::l2) → sorted q2_lt (b3::l3) → \fst b3 = \fst b → + sorted q2_lt (\fst w) → sorted q2_lt (\snd w) → same_bases (\fst w) (\snd w) → + sorted q2_lt (b :: \fst w). +intros 6; cases H; simplify; intros; +[ apply (sorted_cons q2_lt); [2:assumption] apply (inversion_sorted2 ??? H4); +| apply (sorted_cons q2_lt); [2:apply (sort_q2lt_same_base ???? H7);] + whd; rewrite < H6; apply (inversion_sorted2 ??? H5); +| apply (sorted_cons q2_lt); [2: assumption] apply (inversion_sorted2 ??? H3); +| apply (sorted_one q2_lt);] +qed. + +lemma aux_preserves_sorting2: + ∀b,b3,l2,l3,w. rebase_cases l2 l3 w → + sorted q2_lt (b::l2) → sorted q2_lt (b3::l3) → \fst b3 = \fst b → + sorted q2_lt (\fst w) → sorted q2_lt (\snd w) → same_bases (\fst w) (\snd w) → + sorted q2_lt (b :: \snd w). +intros 6; cases H; simplify; intros; +[ apply (sorted_cons q2_lt); [2:assumption] apply (inversion_sorted2 ??? H4); +| apply (sorted_cons q2_lt); [2:assumption] + whd; rewrite < H6; apply (inversion_sorted2 ??? H5); +| apply (sorted_cons q2_lt); [2: assumption] apply (inversion_sorted2 ??? H3); +| apply (sorted_one q2_lt);] +qed. + +definition rebase_spec_aux ≝ + λl1,l2:list bar.λp:(list bar) × (list bar). + sorted q2_lt l1 → (\snd (\last ▭ l1) = 〈OQ,OQ〉) → + sorted q2_lt l2 → (\snd (\last ▭ l2) = 〈OQ,OQ〉) → + rebase_spec_aux_p l1 l2 p. + +definition eject ≝ + λP.λp:∃x:(list bar) × (list bar).P x.match p with [ex_introT p _ ⇒ p]. +coercion eject. +definition inject ≝ λP.λp:(list bar) × (list bar).λh:P p. ex_introT ? P p h. +coercion inject with 0 1 nocomposites. + +definition rebase: ∀l1,l2:q_f.∃p:q_f × q_f.rebase_spec l1 l2 p. +intros 2 (f1 f2); cases f1 (b1 Hs1 Hb1 He1); cases f2 (b2 Hs2 Hb2 He2); clear f1 f2; +alias symbol "leq" = "natural 'less or equal to'". +alias symbol "minus" = "Q minus". +letin aux ≝ ( +let rec aux (l1,l2:list bar) (n : nat) on n : (list bar) × (list bar) ≝ +match n with +[ O ⇒ 〈[], []〉 +| S m ⇒ + match l1 with + [ nil ⇒ 〈copy l2, l2〉 + | cons he1 tl1 ⇒ + match l2 with + [ nil ⇒ 〈l1, copy l1〉 + | cons he2 tl2 ⇒ + let base1 ≝ \fst he1 in + let base2 ≝ \fst he2 in + let height1 ≝ \snd he1 in + let height2 ≝ \snd he2 in + match q_cmp base1 base2 with + [ q_leq Hp1 ⇒ + match q_cmp base2 base1 with + [ q_leq Hp2 ⇒ + let rc ≝ aux tl1 tl2 m in + 〈he1 :: \fst rc,he2 :: \snd rc〉 + | q_gt Hp ⇒ + let rest ≝ base2 - base1 in + let rc ≝ aux tl1 (〈rest,height2〉 :: tl2) m in + 〈〈base1,height1〉 :: \fst rc,〈base1,height2〉 :: \snd rc〉] + | q_gt Hp ⇒ + let rest ≝ base1 - base2 in + let rc ≝ aux (〈rest,height1〉 :: tl1) tl2 m in + 〈〈base2,height1〉 :: \fst rc,〈base2,height2〉 :: \snd rc〉]]]] +in aux : ∀l1,l2,m.∃z.\len l1 + \len l2 ≤ m → rebase_spec_aux l1 l2 z); +[7: clearbody aux; cases (aux b1 b2 (\len b1 + \len b2)) (res Hres); + exists; [split; constructor 1; [apply (\fst res)|5:apply (\snd res)]] + [1,4: apply hide; cases (Hres (le_n ?) Hs1 He1 Hs2 He2); assumption; + |2,5: apply hide; cases (Hres (le_n ?) Hs1 He1 Hs2 He2); lapply (H5 O) as K; + clear H1 H2 H3 H4 H5 H6 H7 Hres aux; unfold nth_base; + cases H in K He1 He2 Hb1 Hb2; simplify; intros; assumption; + |3,6: apply hide; cases (Hres (le_n ?) Hs1 He1 Hs2 He2); + cases H in He1 He2; simplify; intros; + [4,8: assumption; + |1,6,7: rewrite < H9; assumption; + |2,3,5: rewrite < H10; [2: symmetry] assumption;]] + split; cases (Hres (le_n ?) Hs1 He1 Hs2 He2); unfold same_values; intros; + [1: assumption + |2: simplify in match (\snd 〈?,?〉); simplify in match (\fst 〈?,?〉); apply H6; + |3: simplify in match (\snd 〈?,?〉); simplify in match (\fst 〈?,?〉); apply H7] +|3: cut (\fst b3 = \fst b) as E; [2: apply q_le_to_le_to_eq; assumption] + clear H6 H5 H4 H3 He2 Hb2 Hs2 b2 He1 Hb1 Hs1 b1; cases (aux l2 l3 n1); + clear aux; intro K; simplify in K; rewrite H16; rewrite < H7; symmetry; apply H17; | reflexivity] + | cases H8 in H5 H7; simplify; intros; [2,3: assumption] + [ rewrite < H7; rewrite > H16; apply H17; | reflexivity]] + |2: apply (aux_preserves_sorting ? b3 ??? H8); assumption; + |3: apply (aux_preserves_sorting2 ? b3 ??? H8); try assumption; + try reflexivity; cases (inversion_sorted ?? H4);[2:rewrite >H3; apply (sorted_one q2_lt);] + cases l2 in H3 H4; intros; [apply (sorted_one q2_lt)] + apply (sorted_cons q2_lt);[2:apply (sorted_tail q2_lt ?? H3);] whd; + rewrite > E; assumption; + |4: apply I + |5: apply I + |6: intro; elim i; intros; simplify; solve [symmetry;assumption|apply H13] + |7: unfold; intros; apply H14; + |8: + + clear H15 H14 H11 H12 H7 H5; cases H8; clear H8; cases H3; clear H3; + [1: apply (move_head ?? H4 H5 ?? H9); symmetry; assumption; + |2: apply (move_head ??? H5 ?? H9); [apply (soted_q2lt_rewrite_hd ??? E H6)] + symmetry; rewrite > (H13 O); assumption; + |3: apply (soted_q2lt_rewrite_hd ??? E); apply (move_head ?? H6 H7); [symmetry;] assumption; + |4: rewrite > H8; apply (sorted_one q2_lt);] + + cases l2 in H4 H8 H16; cases l3 in H6; + intros; cases H5; clear H5; cases H7; clear H7; + [1,2: cases (q_lt_corefl ? H5); + |3: rewrite >(?:\fst w = []); [apply (sorted_one q2_lt)] + simplify in H6; lapply (le_n_O_to_eq ? H6) as K; + cases (\fst w) in K; simplify; intro X [reflexivity|destruct X] + |4: + + rewrite >H8 in H5; cases (\fst w) in H9 H5; intros [apply (sorted_one q2_lt)] + + + + + + + + + definition same_values_simpl ≝ λl1,l2.∀p1,p2,p3,p4,p5,p6.same_values (mk_q_f l1 p1 p2 p3) (mk_q_f l2 p4 p5 p6). @@ -163,6 +376,7 @@ intros; elim l1; intros 4; |2: intro; symmetry; apply (copy_same_bases (a::l));]] qed. + definition eject ≝ λP.λp:∃x:(list bar) × (list bar).P x.match p with [ex_introT p _ ⇒ p]. coercion eject. diff --git a/helm/software/matita/library/formal_topology/concrete_spaces.ma b/helm/software/matita/library/formal_topology/concrete_spaces.ma index 568f3c052..0fc4d365b 100644 --- a/helm/software/matita/library/formal_topology/concrete_spaces.ma +++ b/helm/software/matita/library/formal_topology/concrete_spaces.ma @@ -66,9 +66,21 @@ qed. interpretation "fintersectsS" 'fintersects U V = (fintersectsS _ U V). -(* + definition relS: ∀o: basic_pair. concr o → Ω \sup (form o) → CProp. - apply (λo:basic_pair.λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y); + + + apply (λo:basic_pair.λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ + (* OK: FunClass_2_OF_binary_relation (concr o) (form o) (rel o) x y *) + ?); + change in x with (carr1 (setoid1_of_setoid (concr o))); + apply (FunClass_2_OF_binary_relation ?? (rel ?) x y); +x ⊩ y); + + rel (concr o) o -> binary_relation ... + rel ? = seotid1_OF_setoid ? + carr rel ? = Type_OF_objs1 (concr o) -> + carr (setoid1_of_REL (concr o)) interpretation "basic pair relation for subsets" 'Vdash2 x y = (relS _ x y). interpretation "basic pair relation for subsets (non applied)" 'Vdash = (relS _). -- 2.39.2