From 4d4ea7cf3ab9ca05fa41c3f7b680cb10232acb82 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Mon, 20 Oct 2008 13:47:30 +0000 Subject: [PATCH] ... --- .../matita/contribs/didactic/algebra.ma | 84 +++++++++++++++++++ 1 file changed, 84 insertions(+) create mode 100644 helm/software/matita/contribs/didactic/algebra.ma diff --git a/helm/software/matita/contribs/didactic/algebra.ma b/helm/software/matita/contribs/didactic/algebra.ma new file mode 100644 index 000000000..eabbdb110 --- /dev/null +++ b/helm/software/matita/contribs/didactic/algebra.ma @@ -0,0 +1,84 @@ + +include "nat/times.ma". +include "nat/compare.ma". + +definition if_then_else ≝ λT:Type.λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. +notation > "'if' term 19 e 'then' term 19 t 'else' term 90 f" non associative with precedence 90 for @{ 'if_then_else $e $t $f }. +notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 90 for @{ 'if_then_else $e $t $f }. +interpretation "Formula if_then_else" 'if_then_else e t f = (if_then_else _ e t f). + +inductive F : Type ≝ +| X : ℕ → F +| EPlus : F → F → F +| ETimes : F → F → F +| EZero : F +| EOne : F +. + +let rec val (E : F) (v : ℕ → ℕ) on E : ℕ := + match E with + [ X i ⇒ v i + | EPlus e1 e2 ⇒ (val e1 v) + (val e2 v) + | ETimes e1 e2 ⇒ (val e1 v) * (val e2 v) + | EZero ⇒ 0 + | EOne ⇒ 1 + ] + . + +definition v201 ≝ λx. + if (eqb x 0) then 2 + else if (eqb x 1) then 0 + else if (eqb x 2) then 1 + else 0 +. + +eval normalize on + (val + (EPlus (X 3) + (ETimes EOne (X 2))) v201). + +let rec subst (E : F) (G : F) (i : ℕ) on E : F := + match E with + [ X j => if (eqb i j) then G else (X j) + | EPlus e1 e2 => EPlus (subst e1 G i) (subst e2 G i) + | ETimes e1 e2 => ETimes (subst e1 G i) (subst e2 G i) + | EZero => EZero + | EOne => EOne + ] + . + +eval normalize on + (subst + (EPlus (X 0) (ETimes (X 1) (X 2))) + (EOne) + 1) + . + +definition equiv := + λe1,e2.∀v. val e1 v = val e2 v. + +theorem sostituzione : + ∀E1,E2,G,i. + equiv E1 E2 → equiv (subst G E1 i) (subst G E2 i). +assume E1 : F. +assume E2 : F. +assume G : F. +assume i : ℕ. +suppose (equiv E1 E2) (H). +we proceed by induction on G to prove + (equiv (subst G E1 i) (subst G E2 i)). +case X. + assume n : ℕ. + the thesis becomes + (equiv + (if (eqb i n) then E1 else (X n)) + (subst (X n) E2 i)). + the thesis becomes + (equiv + (if (eqb i n) then E1 else (X n)) + (if (eqb i n) then E2 else (X n))). + we proceed by cases ... + + + + \ No newline at end of file -- 2.39.2