From 515b66b082bf6e1553d1aa75ba632b99a4d88e27 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Sat, 8 Dec 2007 10:36:00 +0000 Subject: [PATCH] the is_structure is a bad idea if you don't have canonical structures. --- helm/software/matita/dama/metric_lattice.ma | 16 ++++++---------- 1 file changed, 6 insertions(+), 10 deletions(-) diff --git a/helm/software/matita/dama/metric_lattice.ma b/helm/software/matita/dama/metric_lattice.ma index b5261b9dc..0bfc3db67 100644 --- a/helm/software/matita/dama/metric_lattice.ma +++ b/helm/software/matita/dama/metric_lattice.ma @@ -33,24 +33,20 @@ qed. coercion cic:/matita/metric_lattice/ml_mspace.con. -record is_mlattice (R : todgroup) (ml: mlattice_ R) : Type ≝ { - ml_prop1: ∀a,b:ml. 0 < δ a b → a # b; - ml_prop2: ∀a,b,c:ml. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ δ b c -}. - record mlattice (R : todgroup) : Type ≝ { ml_carr :> mlattice_ R; - ml_props:> is_mlattice R ml_carr + ml_prop1: ∀a,b:ml_carr. 0 < δ a b → a # b; + ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ δ b c }. lemma eq_to_ndlt0: ∀R.∀ml:mlattice R.∀a,b:ml. a ≈ b → ¬ 0 < δ a b. -intros (R ml a b E); intro H; apply E; apply (ml_prop1 ?? ml); +intros (R ml a b E); intro H; apply E; apply ml_prop1; assumption; qed. lemma eq_to_dzero: ∀R.∀ml:mlattice R.∀x,y:ml.x ≈ y → δ x y ≈ 0. intros (R ml x y H); intro H1; apply H; clear H; -apply (ml_prop1 ?? ml); split [apply mpositive] apply ap_symmetric; +apply ml_prop1; split [apply mpositive] apply ap_symmetric; assumption; qed. @@ -76,7 +72,7 @@ intros; split [apply mpositive] apply ap_symmetric; assumption; qed. lemma dap_to_ap: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → x # y. -intros (R ml x y H); apply (ml_prop1 ?? ml); split; [apply mpositive;] +intros (R ml x y H); apply ml_prop1; split; [apply mpositive;] apply ap_symmetric; assumption; qed. @@ -84,7 +80,7 @@ qed. lemma le_mtri: ∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z. intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq] -apply (le_transitive ????? (ml_prop2 ?? ml (y) ??)); +apply (le_transitive ????? (ml_prop2 ?? (y) ??)); cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] lapply (le_to_eqm ??? Lxy) as Dxm; lapply (le_to_eqm ??? Lyz) as Dym; -- 2.39.2