From 51decb89951a32719241043e9fd0c9dba1ad9f4f Mon Sep 17 00:00:00 2001 From: Enrico Zoli Date: Fri, 15 Dec 2006 18:59:00 +0000 Subject: [PATCH] Up to definition of limsup as liminf computed on the reverse ordering. However, I am no longer sure that this is the best way to proceed since the lemmas to be proved are a lot and the typing is difficult. However, this work should be done anyway to state limsup f x = - liminf f (-x) that we need anyway. --- matita/dama/ordered_sets.ma | 203 ++++++++++++++++++++++++++++++++++++ 1 file changed, 203 insertions(+) diff --git a/matita/dama/ordered_sets.ma b/matita/dama/ordered_sets.ma index 612d92aa2..bf76fa1de 100644 --- a/matita/dama/ordered_sets.ma +++ b/matita/dama/ordered_sets.ma @@ -385,6 +385,209 @@ definition liminf: ]. qed. +definition reverse_ordered_set: ∀C.ordered_set C → ordered_set C. + intros; + apply mk_ordered_set; + [ apply mk_pre_ordered_set; + apply (λx,y:o.y ≤ x) + | apply mk_is_order_relation; + [ simplify; + intros; + apply (or_reflexive ? ? o) + | simplify; + intros; + apply (or_transitive ? ? o); + [2: apply H1 + | skip + | assumption + ] + | simplify; + intros; + apply (or_antisimmetric ? ? o); + assumption + ] + ]. +qed. + +interpretation "Ordered set ge" 'geq a b = + (cic:/matita/ordered_sets/os_le.con _ + (cic:/matita/ordered_sets/os_pre_ordered_set.con _ + (cic:/matita/ordered_sets/reverse_ordered_set.con _ _)) a b). + +lemma is_lower_bound_reverse_is_upper_bound: + ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O. + is_lower_bound ? O a l → is_upper_bound ? (reverse_ordered_set ? O) a l. + intros; + unfold; + intro; + unfold; + unfold reverse_ordered_set; + simplify; + apply H. +qed. + +lemma is_upper_bound_reverse_is_lower_bound: + ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O. + is_upper_bound ? O a l → is_lower_bound ? (reverse_ordered_set ? O) a l. + intros; + unfold; + intro; + unfold; + unfold reverse_ordered_set; + simplify; + apply H. +qed. + +lemma reverse_is_lower_bound_is_upper_bound: + ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O. + is_lower_bound ? (reverse_ordered_set ? O) a l → is_upper_bound ? O a l. + intros; + unfold in H; + unfold reverse_ordered_set in H; + apply H. +qed. + +lemma reverse_is_upper_bound_is_lower_bound: + ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O. + is_upper_bound ? (reverse_ordered_set ? O) a l → is_lower_bound ? O a l. + intros; + unfold in H; + unfold reverse_ordered_set in H; + apply H. +qed. + + +lemma is_inf_to_reverse_is_sup: + ∀C.∀O:ordered_set C.∀a:bounded_below_sequence ? O.∀l:O. + is_inf ? O a l → is_sup ? (reverse_ordered_set ? O) a l. + intros; + apply (mk_is_sup C (reverse_ordered_set ? ?)); + [ apply is_lower_bound_reverse_is_upper_bound; + apply inf_lower_bound; + assumption + | intros; + change in v with (Type_OF_ordered_set ? O); + change with (v ≤ l); + apply (inf_greatest_lower_bound ? ? ? ? H); + apply reverse_is_upper_bound_is_lower_bound; + assumption + ]. +qed. + +lemma is_sup_to_reverse_is_inf: + ∀C.∀O:ordered_set C.∀a:bounded_above_sequence ? O.∀l:O. + is_sup ? O a l → is_inf ? (reverse_ordered_set ? O) a l. + intros; + apply (mk_is_inf C (reverse_ordered_set ? ?)); + [ apply is_upper_bound_reverse_is_lower_bound; + apply sup_upper_bound; + assumption + | intros; + change in v with (Type_OF_ordered_set ? O); + change with (l ≤ v); + apply (sup_least_upper_bound ? ? ? ? H); + apply reverse_is_lower_bound_is_upper_bound; + assumption + ]. +qed. + +lemma reverse_is_sup_to_is_inf: + ∀C.∀O:ordered_set C.∀a:bounded_above_sequence ? O.∀l:O. + is_sup ? (reverse_ordered_set ? O) a l → is_inf ? O a l. + intros; + apply mk_is_inf; + [ apply reverse_is_upper_bound_is_lower_bound; + change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); + apply sup_upper_bound; + assumption + | intros; + change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); + change in v with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); + change with (os_le ? (reverse_ordered_set ? O) l v); + apply (sup_least_upper_bound ? ? ? ? H); + change in v with (Type_OF_ordered_set ? O); + apply is_lower_bound_reverse_is_upper_bound; + assumption + ]. +qed. + +lemma reverse_is_inf_to_is_sup: + ∀C.∀O:ordered_set C.∀a:bounded_above_sequence ? O.∀l:O. + is_inf ? (reverse_ordered_set ? O) a l → is_sup ? O a l. + intros; + apply mk_is_sup; + [ apply reverse_is_lower_bound_is_upper_bound; + change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); + apply (inf_lower_bound ? ? ? ? H) + | intros; + change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); + change in v with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); + change with (os_le ? (reverse_ordered_set ? O) v l); + apply (inf_greatest_lower_bound ? ? ? ? H); + change in v with (Type_OF_ordered_set ? O); + apply is_upper_bound_reverse_is_lower_bound; + assumption + ]. +qed. + + +definition reverse_dedekind_sigma_complete_ordered_set: + ∀C. + dedekind_sigma_complete_ordered_set C → dedekind_sigma_complete_ordered_set C. + intros; + apply mk_dedekind_sigma_complete_ordered_set; + [ apply (reverse_ordered_set ? d) + | elim daemon + (*apply mk_is_dedekind_sigma_complete; + [ intros; + elim (dsc_sup ? ? d a m) 0; + [ generalize in match H; clear H; + generalize in match m; clear m; + elim d; + simplify in a1; + simplify; + change in a1 with (Type_OF_ordered_set ? (reverse_ordered_set ? o)); + apply (ex_intro ? ? a1); + simplify in H1; + change in m with (Type_OF_ordered_set ? o); + apply (is_sup_to_reverse_is_inf ? ? ? ? H1) + | generalize in match H; clear H; + generalize in match m; clear m; + elim d; + simplify; + change in t with (Type_OF_ordered_set ? o); + simplify in t; + apply reverse_is_lower_bound_is_upper_bound; + assumption + ] + | apply is_sup_reverse_is_inf; + | apply m + | + ]*) + ]. +qed. + +definition reverse_bounded_sequence: + ∀C.∀O:dedekind_sigma_complete_ordered_set C. + bounded_sequence ? O → + bounded_sequence ? (reverse_dedekind_sigma_complete_ordered_set ? O). + intros; + apply mk_bounded_sequence; + [ apply bs_seq; + unfold reverse_dedekind_sigma_complete_ordered_set; + simplify; + elim daemon + | elim daemon + | elim daemon + ]. +qed. + +definition limsup ≝ + λC:Type.λO:dedekind_sigma_complete_ordered_set C. + λa:bounded_sequence ? O. + liminf ? (reverse_dedekind_sigma_complete_ordered_set ? O) + (reverse_bounded_sequence ? O a). + notation "hvbox(〈a〉)" non associative with precedence 45 for @{ 'hide_everything_but $a }. -- 2.39.2