From 5796d0d7fdb89f06fecadbdc58541a886dca44cd Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Thu, 4 Sep 2008 16:55:33 +0000 Subject: [PATCH] ... --- .../formal_topology/concrete_spaces.ma | 64 ++++++++++--------- 1 file changed, 34 insertions(+), 30 deletions(-) diff --git a/helm/software/matita/library/formal_topology/concrete_spaces.ma b/helm/software/matita/library/formal_topology/concrete_spaces.ma index 9885a6673..0248b72a1 100644 --- a/helm/software/matita/library/formal_topology/concrete_spaces.ma +++ b/helm/software/matita/library/formal_topology/concrete_spaces.ma @@ -30,6 +30,8 @@ definition ext: ∀X,S:REL. ∀r: arrows1 ? X S. S ⇒ Ω \sup X. | apply (. #‡(#‡H\sup -1)); assumption]] qed. +definition BPext: ∀o: basic_pair. form o ⇒ Ω \sup (concr o) ≝ λo.ext ? ? (rel o). + definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. (* ∃ is not yet a morphism apply (λX,S,r,F.{x ∈ X | ∃a. a ∈ F ∧ x ♮r a});*) intros (X S r); constructor 1; @@ -48,43 +50,45 @@ definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. | apply (. (#‡H\sup -1)‡#); assumption]]] qed. -definition fintersects: ∀o: basic_pair. form o → form o → Ω \sup (form o). - apply - (λo: basic_pair.λa,b: form o. - {c | ext ?? (rel o) c ⊆ ext ?? (rel o) a ∩ ext ?? (rel o) b }); - intros; simplify; apply (.= (†H)‡#); apply refl1. +definition BPextS: ∀o: basic_pair. Ω \sup (form o) ⇒ Ω \sup (concr o) ≝ + λo.extS ?? (rel o). + +definition fintersects: ∀o: basic_pair. binary_morphism1 (form o) (form o) (Ω \sup (form o)). + intros (o); constructor 1; + [ apply (λa,b: form o.{c | BPext o c ⊆ BPext o a ∩ BPext o b }); + intros; simplify; apply (.= (†H)‡#); apply refl1 + | intros; split; simplify; intros; + [ apply (. #‡((†H)‡(†H1))); assumption + | apply (. #‡((†H\sup -1)‡(†H1\sup -1))); assumption]] qed. -interpretation "fintersects" 'fintersects U V = (fintersects _ U V). +interpretation "fintersects" 'fintersects U V = (fun1 ___ (fintersects _) U V). definition fintersectsS: - ∀o:basic_pair. Ω \sup (form o) → Ω \sup (form o) → Ω \sup (form o). - apply (λo: basic_pair.λa,b: Ω \sup (form o). - {c | ext ?? (rel o) c ⊆ extS ?? (rel o) a ∩ extS ?? (rel o) b }); - intros; simplify; apply (.= (†H)‡#); apply refl1. + ∀o:basic_pair. binary_morphism1 (Ω \sup (form o)) (Ω \sup (form o)) (Ω \sup (form o)). + intros (o); constructor 1; + [ apply (λo: basic_pair.λa,b: Ω \sup (form o).{c | BPext o c ⊆ BPextS o a ∩ BPextS o b }); + intros; simplify; apply (.= (†H)‡#); apply refl1 + | intros; split; simplify; intros; + [ apply (. #‡((†H)‡(†H1))); assumption + | apply (. #‡((†H\sup -1)‡(†H1\sup -1))); assumption]] qed. -interpretation "fintersectsS" 'fintersects U V = (fintersectsS _ U V). +interpretation "fintersectsS" 'fintersects U V = (fun1 ___ (fintersectsS _) U V). -(* -definition relS: ∀o: basic_pair. concr o → Ω \sup (form o) → CProp. - - - apply (λo:basic_pair.λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ - (* OK: FunClass_2_OF_binary_relation (concr o) (form o) (rel o) x y *) - ?); - change in x with (carr1 (setoid1_of_setoid (concr o))); - apply (FunClass_2_OF_binary_relation ?? (rel ?) x y); -x ⊩ y); - - rel (concr o) o -> binary_relation ... - rel ? = seotid1_OF_setoid ? - carr rel ? = Type_OF_objs1 (concr o) -> - carr (setoid1_of_REL (concr o)) - -interpretation "basic pair relation for subsets" 'Vdash2 x y = (relS _ x y). -interpretation "basic pair relation for subsets (non applied)" 'Vdash = (relS _). +definition relS: ∀o: basic_pair. binary_morphism1 (concr o) (Ω \sup (form o)) CPROP. + intros (o); constructor 1; + [ apply (λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y); + (* BUG HERE: WORKAROUND *) apply (concr o); + | intros; split; intros; cases H2; exists [1,3: apply w] + [ apply (. (#‡H1)‡(H‡#)); assumption + | apply (. (#‡H1 \sup -1)‡(H \sup -1‡#)); assumption]] +qed. + +interpretation "basic pair relation for subsets" 'Vdash2 x y = (fun1 ___ (relS _) x y). +interpretation "basic pair relation for subsets (non applied)" 'Vdash = (fun1 ___ (relS _)). +(* record concrete_space : Type ≝ { bp:> basic_pair; converges: ∀a: concr bp.∀U,V: form bp. a ⊩ U → a ⊩ V → a ⊩ (U ↓ V); @@ -146,4 +150,4 @@ definition CSPA: category. | ] - |*) + |*) \ No newline at end of file -- 2.39.2