From 5dcae34c6e44a40e236db641f59ddb096d1a16ec Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Mon, 7 Jun 2010 22:56:03 +0000 Subject: [PATCH] some stuff on re --- helm/software/matita/nlibrary/re/re.ma | 525 ++++++++++++++----------- 1 file changed, 293 insertions(+), 232 deletions(-) diff --git a/helm/software/matita/nlibrary/re/re.ma b/helm/software/matita/nlibrary/re/re.ma index 300812ce8..e939cc04f 100644 --- a/helm/software/matita/nlibrary/re/re.ma +++ b/helm/software/matita/nlibrary/re/re.ma @@ -16,269 +16,350 @@ (*include "logic/equality.ma".*) include "datatypes/list.ma". include "datatypes/pairs.ma". +include "arithmetics/nat.ma". (*include "Plogic/equality.ma".*) -ndefinition word ≝ λS:Type[0].list S. +nrecord Alpha : Type[1] ≝ + { carr :> Type[0]; + eqb: carr → carr → bool; + eqb_true: ∀x,y. (eqb x y = true) = (x=y); + eqb_false: ∀x,y. (eqb x y = false) = (x≠y) + }. + +notation "a == b" non associative with precedence 45 for @{ 'eqb $a $b }. +interpretation "eqb" 'eqb a b = (eqb ? a b). + +ndefinition word ≝ λS:Alpha.list S. -ninductive re (S: Type[0]) : Type[0] ≝ +ninductive re (S: Alpha) : Type[0] ≝ z: re S | e: re S | s: S → re S | c: re S → re S → re S | o: re S → re S → re S | k: re S → re S. + +notation < "a \sup ⋇" non associative with precedence 90 for @{ 'pk $a}. +notation > "a ^ *" non associative with precedence 90 for @{ 'pk $a}. +interpretation "star" 'pk a = (k ? a). +interpretation "or" 'plus a b = (o ? a b). + +notation "a · b" non associative with precedence 60 for @{ 'pc $a $b}. +interpretation "cat" 'pc a b = (c ? a b). + +(* to get rid of \middot *) +ncoercion c : ∀S:Alpha.∀p:re S. re S → re S ≝ c on _p : re ? to ∀_:?.?. + +notation < "a" non associative with precedence 90 for @{ 'ps $a}. +notation > "` term 90 a" non associative with precedence 90 for @{ 'ps $a}. +interpretation "atom" 'ps a = (s ? a). + +notation "ϵ" non associative with precedence 90 for @{ 'epsilon }. +interpretation "epsilon" 'epsilon = (e ?). + +notation "∅" non associative with precedence 90 for @{ 'empty }. +interpretation "empty" 'empty = (z ?). + +notation > "w ∈ E" non associative with precedence 45 for @{in_l ? $w $E}. +ninductive in_l (S : Alpha) : word S → re S → Prop ≝ + | in_e: [ ] ∈ ϵ + | in_s: ∀x:S. [x] ∈ `x + | in_c: ∀w1,w2,e1,e2. w1 ∈ e1 → w2 ∈ e2 → w1@w2 ∈ e1 · e2 + | in_o1: ∀w,e1,e2. w ∈ e1 → w ∈ e1 + e2 + | in_o2: ∀w,e1,e2. w ∈ e2 → w ∈ e1 + e2 + | in_ke: ∀e. [ ] ∈ e^* + | in_ki: ∀w1,w2,e. w1 ∈ e → w2 ∈ e^* → w1@w2 ∈ e^*. +interpretation "in_l" 'mem w l = (in_l ? w l). (* -alias symbol "not" (instance 1) = "Clogical not". -nlemma foo1: ∀S. ¬ (z S = e S). #S; @; #H; ndestruct. nqed. -nlemma foo2: ∀S,x. ¬ (z S = s S x). #S; #x; @; #H; ndestruct. nqed. -nlemma foo3: ∀S,x1,x2. ¬ (z S = c S x1 x2). #S; #x1; #x2; @; #H; ndestruct. nqed. -nlemma foo4: ∀S,x1,x2. ¬ (z S = o S x1 x2). #S; #x1; #x2; @; #H; ndestruct. nqed. -nlemma foo5: ∀S,x. ¬ (z S = k S x). #S; #x; @; #H; ndestruct. nqed. -nlemma foo6: ∀S,x. ¬ (e S = s S x). #S; #x; @; #H; ndestruct. nqed. -nlemma foo7: ∀S,x1,x2. ¬ (e S = c S x1 x2). #S; #x1; #x2; @; #H; ndestruct. nqed. -nlemma foo8: ∀S,x1,x2. ¬ (e S = o S x1 x2). #S; #x1; #x2; @; #H; ndestruct. nqed. -nlemma foo9: ∀S,x. ¬ (e S = k S x). #S; #x; @; #H; ndestruct. nqed. -*) +notation "a || b" left associative with precedence 30 for @{'orb $a $b}. +interpretation "orb" 'orb a b = (orb a b). -ninductive in_l (S: Type[0]): word S → re S → Prop ≝ - in_e: in_l S [] (e ?) - | in_s: ∀x. in_l S [x] (s ? x) - | in_c: ∀w1,w2,e1,e2. in_l ? w1 e1 → in_l ? w2 e2 → in_l S (w1@w2) (c ? e1 e2) - | in_o1: ∀w,e1,e2. in_l ? w e1 → in_l S w (o ? e1 e2) - | in_o2: ∀w,e1,e2. in_l ? w e2 → in_l S w (o ? e1 e2) - | in_ke: ∀e. in_l S [] (k ? e) - | in_ki: ∀w1,w2,e. in_l ? w1 e → in_l ? w2 (k ? e) → in_l S (w1@w2) (k ? e). - -naxiom in_l_inv_z: - ∀S,w. ¬ (in_l S w (z ?)). -(* #S; #w; #H; ninversion H - [ #_; #b; ndestruct - | #a; #b; #c; ndestruct - | #a; #b; #c; #d; #e; #f; #g; #h; #i; #l; ndestruct - | #a; #b; #c; #d; #e; #f; #g; ndestruct - | #a; #b; #c; #d; #e; #f; #g; ndestruct - | #a; #b; #c; ndestruct - | #a; #b; #c; #d; #e; #f; #g; #h; #i; ndestruct ] -nqed. *) +notation "a && b" left associative with precedence 40 for @{'andb $a $b}. +interpretation "andb" 'andb a b = (andb a b). + +nlet rec weq (S : Alpha) (l1, l2 : word S) on l1 : bool ≝ +match l1 with +[ nil ⇒ match l2 with [ nil ⇒ true | cons _ _ ⇒ false ] +| cons x xs ⇒ match l2 with [ nil ⇒ false | cons y ys ⇒ (x == y) && weq S xs ys]]. + +ndefinition if_then_else ≝ λT:Type[0].λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. +notation > "'if' term 19 e 'then' term 19 t 'else' term 19 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. +notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. +interpretation "Formula if_then_else" 'if_then_else e t f = (if_then_else ? e t f). + +*) nlemma in_l_inv_e: - ∀S,w. in_l S w (e ?) → w = []. - #S; #w; #H; ninversion H; #; ndestruct; //. + ∀S.∀w:word S. w ∈ ∅ → w = []. + #S; #w; #H; ninversion H; #; ndestruct; nqed. -naxiom in_l_inv_s: - ∀S,w,x. in_l S w (s ? x) → w = [x]. +nlemma in_l_inv_s: ∀S.∀w:word S.∀x. w ∈ `x → w = [x]. +#S w x H; ninversion H; #; ndestruct; //. +nqed. -naxiom in_l_inv_c: - ∀S,w,E1,E2. in_l S w (c S E1 E2) → ∃w1.∃w2. w = w1@w2 ∧ in_l S w1 E1 ∧ in_l S w2 E2. +nlemma in_l_inv_c: + ∀S.∀w:word S.∀E1,E2. w ∈ E1 · E2 → ∃w1.∃w2. w = w1@w2 ∧ w1 ∈ E1 ∧ w2 ∈ E2. +#S w e1 e2 H; ninversion H; ##[##1,2,4,5,6,7: #; ndestruct; ##] +#w1 w2 r1 r2 w1r1 w2r2; #_; #_; #defw defe; @w1; @w2; ndestruct; /3/. +nqed. -ninductive pre (S: Type[0]) : Type[0] ≝ - pz: pre S - | pe: pre S - | ps: S → pre S - | pp: S → pre S - | pc: pre S → pre S → pre S - | po: pre S → pre S → pre S - | pk: pre S → pre S. +ninductive pitem (S: Alpha) : Type[0] ≝ + pz: pitem S + | pe: pitem S + | ps: S → pitem S + | pp: S → pitem S + | pc: pitem S → pitem S → pitem S + | po: pitem S → pitem S → pitem S + | pk: pitem S → pitem S. + +ndefinition pre ≝ λS.pitem S × bool. + +interpretation "pstar" 'pk a = (pk ? a). +interpretation "por" 'plus a b = (po ? a b). +interpretation "pcat" 'pc a b = (pc ? a b). +notation < ".a" non associative with precedence 90 for @{ 'pp $a}. +notation > "`. term 90 a" non associative with precedence 90 for @{ 'pp $a}. +interpretation "ppatom" 'pp a = (pp ? a). +(* to get rid of \middot *) +ncoercion pc : ∀S.∀p:pitem S. pitem S → pitem S ≝ pc on _p : pitem ? to ∀_:?.?. +interpretation "patom" 'ps a = (ps ? a). +interpretation "pepsilon" 'epsilon = (pe ?). +interpretation "pempty" 'empty = (pz ?). -nlet rec forget (S: Type[0]) (l : pre S) on l: re S ≝ +notation > ".|term 19 e|" non associative with precedence 90 for @{forget ? $e}. +nlet rec forget (S: Alpha) (l : pitem S) on l: re S ≝ match l with - [ pz ⇒ z S - | pe ⇒ e S - | ps x ⇒ s S x - | pp x ⇒ s S x - | pc E1 E2 ⇒ c S (forget ? E1) (forget ? E2) - | po E1 E2 ⇒ o S (forget ? E1) (forget ? E2) - | pk E ⇒ k S (forget ? E) ]. - -ninductive in_pl (S: Type[0]): word S → pre S → Prop ≝ - in_pp: ∀x. in_pl S [x] (pp S x) - | in_pc1: ∀w1,w2,e1,e2. in_pl ? w1 e1 → in_l ? w2 (forget ? e2) → - in_pl S (w1@w2) (pc ? e1 e2) - | in_pc2: ∀w,e1,e2. in_pl ? w e2 → in_pl S w (pc ? e1 e2) - | in_po1: ∀w,e1,e2. in_pl ? w e1 → in_pl S w (po ? e1 e2) - | in_po2: ∀w,e1,e2. in_pl ? w e2 → in_pl S w (po ? e1 e2) - | in_pki: ∀w1,w2,e. in_pl ? w1 e → in_l ? w2 (k ? (forget ? e)) → - in_pl S (w1@w2) (pk ? e). - -nlet rec eclose (S: Type[0]) (E: pre S) on E ≝ - match E with - [ pz ⇒ 〈 false, pz ? 〉 - | pe ⇒ 〈 true, pe ? 〉 - | ps x ⇒ 〈 false, pp ? x 〉 - | pp x ⇒ 〈 false, pp ? x 〉 - | pc E1 E2 ⇒ - let E1' ≝ eclose ? E1 in - let E1'' ≝ snd … E1' in - match fst … E1' with - [ true ⇒ - let E2' ≝ eclose ? E2 in - 〈 fst … E2', pc ? E1'' (snd … E2') 〉 - | false ⇒ 〈 false, pc ? E1'' E2 〉 ] - | po E1 E2 ⇒ - let E1' ≝ eclose ? E1 in - let E2' ≝ eclose ? E2 in - 〈 fst … E1' ∨ fst … E2', po ? (snd … E1') (snd … E2') 〉 - | pk E ⇒ 〈 true, pk ? (snd … (eclose S E)) 〉 ]. - -ntheorem forget_eclose: - ∀S,E. forget S (snd … (eclose … E)) = forget ? E. - #S; #E; nelim E; nnormalize; //; - #p; ncases (fst … (eclose S p)); nnormalize; //. + [ pz ⇒ ∅ + | pe ⇒ ϵ + | ps x ⇒ `x + | pp x ⇒ `x + | pc E1 E2 ⇒ .|E1| .|E2| + | po E1 E2 ⇒ .|E1| + .|E2| + | pk E ⇒ .|E|^* ]. +notation < ".|term 19 e|" non associative with precedence 90 for @{'forget $e}. +interpretation "forget" 'forget a = (forget ? a). + +notation "\fst term 90 x" non associative with precedence 90 for @{'fst $x}. +interpretation "fst" 'fst x = (fst ? ? x). +notation > "\snd term 90 x" non associative with precedence 90 for @{'snd $x}. +interpretation "snd" 'snd x = (snd ? ? x). + +notation > "w .∈ E" non associative with precedence 40 for @{in_pl ? $w $E}. +ninductive in_pl (S: Alpha): word S → pitem S → Prop ≝ + | in_pp: ∀x:S.[x] .∈ `.x + | in_pc1: ∀w1,w2:word S.∀e1,e2:pitem S. + w1 .∈ e1 → w2 ∈ .|e2| → (w1@w2) .∈ e1 · e2 + | in_pc2: ∀w,e1,e2. w .∈ e2 → w .∈ e1 · e2 + | in_po1: ∀w,e1,e2. w .∈ e1 → w .∈ e1 + e2 + | in_po2: ∀w,e1,e2. w .∈ e2 → w .∈ e1 + e2 + | in_pki: ∀w1,w2,e. w1 .∈ e → w2 ∈ .|e|^* → (w1@w2) .∈ e^*. + +interpretation "in_pl" 'in_pl w l = (in_pl ? w l). + +ndefinition in_prl ≝ λS : Alpha.λw:word S.λp:pre S. + (w = [ ] ∧ \snd p = true) ∨ w .∈ (\fst p). + +notation > "w .∈ E" non associative with precedence 40 for @{'in_pl $w $E}. +notation < "w\shy .∈\shy E" non associative with precedence 40 for @{'in_pl $w $E}. +interpretation "in_prl" 'in_pl w l = (in_prl ? w l). + +interpretation "iff" 'iff a b = (iff a b). + +nlemma append_eq_nil : + ∀S.∀w1,w2:word S. [ ] = w1 @ w2 → w1 = [ ]. +#S w1; nelim w1; //. #x tl IH w2; nnormalize; #abs; ndestruct; nqed. -ntheorem eclose_true: - ∀S,E. (* bug refiner se si scambia true con il termine *) - true = fst bool (pre S) (eclose S E) → in_l S [] (forget S E). - #S; #E; nelim E; nnormalize; // - [ #H; ncases (?: False); /2/ - | #x H; #H; ncases (?: False); /2/ - | #x; #H; ncases (?: False); /2/ - | #w1; #w2; ncases (fst … (eclose S w1)); nnormalize; /3/; - #_; #_; #H; ncases (?:False); /2/ - | #w1; #w2; ncases (fst … (eclose S w1)); nnormalize; /3/] +nlemma append_eq_nil_r : + ∀S.∀w1,w2:word S. [ ] = w1 @ w2 → w2 = [ ]. +#S w1; nelim w1; ##[ #w2 H; nrewrite > H; // ] +#x tl IH w2; nnormalize; #abs; ndestruct; nqed. -(* to be moved *) -nlemma eq_append_nil_to_eq_nil1: - ∀A.∀l1,l2:list A. l1 @ l2 = [] → l1 = []. - #A; #l1; nelim l1; nnormalize; /2/; - #x; #tl; #_; #l3; #K; ndestruct. +nlemma lemma16 : + ∀S.∀e:pre S. [ ] .∈ e ↔ \snd e = true. +#S p; ncases p; #e b; @; ##[##2: #H; nrewrite > H; @; @; //. ##] +ncases b; //; *; ##[*; //] nelim e; +##[##1,2: #abs; ninversion abs; #; ndestruct; +##|##3,4: #x abs; ninversion abs; #; ndestruct; +##|#p1 p2 H1 H2 H; ninversion H; ##[##1,3,4,5,6: #; ndestruct; /2/. ##] + #w1 w2 r1 r2 w1r1 w2fr2 H3 H4 Ep1p2; ndestruct; + nrewrite > (append_eq_nil … H4) in w1r1; /2/ by {}; +##|#r1 r2 H1 H2 H; ninversion H; #; ndestruct; /2/ by {}; +##|#r H1 H2; ninversion H2; ##[##1,2,3,4,5: #; ndestruct; ##] + #w1 w2 r1 w1r1 w1er1 H11 H21 H31; + nrewrite > (append_eq_nil … H21) in w1r1 H1; + nrewrite > (?: r = r1); /2/ by {}; + ndestruct; //. ##] nqed. -(* to be moved *) -nlemma eq_append_nil_to_eq_nil2: - ∀A.∀l1,l2:list A. l1 @ l2 = [] → l2 = []. - #A; #l1; nelim l1; nnormalize; /2/; - #x; #tl; #_; #l3; #K; ndestruct. +ndefinition lo ≝ λS:Alpha.λa,b:pre S.〈\fst a + \fst b,\snd a || \snd b〉. +notation "a ⊕ b" left associative with precedence 60 for @{'oplus $a $b}. +interpretation "oplus" 'oplus a b = (lo ? a b). + +ndefinition lc ≝ λS:Alpha.λbcast:∀S:Alpha.∀E:pitem S.pre S.λa,b:pre S. + match a with [ mk_pair e1 b1 ⇒ + match b with [ mk_pair e2 b2 ⇒ + match b1 with + [ false ⇒ 〈e1 · e2, b2〉 + | true ⇒ match bcast ? e2 with [ mk_pair e2' b2' ⇒ 〈e1 · e2', b2 || b2'〉 ]]]]. + +notation < "a ⊙ b" left associative with precedence 60 for @{'lc $op $a $b}. +interpretation "lc" 'lc op a b = (lc ? op a b). +notation > "a ⊙ b" left associative with precedence 60 for @{'lc eclose $a $b}. + +ndefinition lk ≝ λS:Alpha.λbcast:∀S:Alpha.∀E:pitem S.pre S.λa:pre S. + match a with [ mk_pair e1 b1 ⇒ + match b1 with + [ false ⇒ 〈e1^*, false〉 + | true ⇒ match bcast ? e1 with [ mk_pair e1' b1' ⇒ 〈e1'^*, true〉 ]]]. + +notation < "a \sup ⊛" non associative with precedence 90 for @{'lk ? $a}. +interpretation "lk" 'lk op a = (lk ? op a). +notation > "a^⊛" non associative with precedence 90 for @{'lk eclose $a}. + +notation > "•" non associative with precedence 60 for @{eclose ?}. +nlet rec eclose (S: Alpha) (E: pitem S) on E : pre S ≝ + match E with + [ pz ⇒ 〈 ∅, false 〉 + | pe ⇒ 〈 ϵ, true 〉 + | ps x ⇒ 〈 `.x, false 〉 + | pp x ⇒ 〈 `.x, false 〉 + | po E1 E2 ⇒ •E1 ⊕ •E2 + | pc E1 E2 ⇒ •E1 ⊙ 〈 E2, false 〉 + | pk E ⇒ 〈E,true〉^⊛]. +notation < "• x" non associative with precedence 60 for @{'eclose $x}. +interpretation "eclose" 'eclose x = (eclose ? x). +notation > "• x" non associative with precedence 60 for @{'eclose $x}. + +ndefinition reclose ≝ λS:Alpha.λp:pre S.let p' ≝ •\fst p in 〈\fst p',\snd p || \snd p'〉. +interpretation "reclose" 'eclose x = (reclose ? x). + +nlemma lemma19_2 : + ∀S:Alpha.∀e1,e2:pre S.∀w. w .∈ e1 ⊕ e2 → w .∈ e1 ∨ w .∈ e2. +#S e1 e2 w H; nnormalize in H; ncases H; +##[ *; #defw; ncases e1; #p b; ncases b; nnormalize; + ##[ #_; @1; @1; /2/ by conj; + ##| #H1; @2; @1; /2/ by conj; ##] +##| #H1; ninversion H1; #; ndestruct; /4/ by or_introl, or_intror; ##] nqed. -ntheorem in_l_empty_c: - ∀S,E1,E2. in_l S [] (c … E1 E2) → in_l S [] E2. - #S; #E1; #E2; #H; ninversion H - [##1,2,4,5,6,7: #; ndestruct - | #w1; #w2; #E1'; #E2'; #H1; #H2; #H3; #H4; #H5; #H6; - nrewrite < H5; nlapply (eq_append_nil_to_eq_nil2 … w1 w2 ?); //; - ndestruct; // ] +notation > "\move term 90 x term 90 E" +non associative with precedence 60 for @{move ? $x $E}. +nlet rec move (S: Alpha) (x:S) (E: pitem S) on E : pre S ≝ + match E with + [ pz ⇒ 〈 ∅, false 〉 + | pe ⇒ 〈 ϵ, false 〉 + | ps y ⇒ 〈 `y, false 〉 + | pp y ⇒ 〈 `y, x == y 〉 + | po e1 e2 ⇒ \move x e1 ⊕ \move x e2 + | pc e1 e2 ⇒ \move x e1 ⊙ \move x e2 + | pk e ⇒ (\move x e)^⊛ ]. +notation < "\move\shy x\shy E" non associative with precedence 60 for @{'move $x $E}. +notation > "\move term 90 x term 90 E" non associative with precedence 60 for @{'move $x $E}. +interpretation "move" 'move x E = (move ? x E). + +ndefinition rmove ≝ λS:Alpha.λx:S.λe:pre S. \move x (\fst e). +interpretation "rmove" 'move x E = (rmove ? x E). + +nlemma XXz : ∀S:Alpha.∀w:word S. w .∈ ∅ → False. +#S w abs; ninversion abs; #; ndestruct; nqed. -ntheorem eclose_true': - ∀S,E. (* bug refiner se si scambia true con il termine *) - in_l S [] (forget S E) → true = fst bool (pre S) (eclose S E). - #S; #E; nelim E; nnormalize; // - [ #H; ncases (?:False); /2/ - |##2,3: #x; #H; ncases (?:False); nlapply (in_l_inv_s ??? H); #K; ndestruct - | #E1; #E2; ncases (fst … (eclose S E1)); nnormalize - [ #H1; #H2; #H3; ninversion H3; /3/; - ##| #H1; #H2; #H3; ninversion H3 - [ ##1,2,4,5,6,7: #; ndestruct - | #w1; #w2; #E1'; #E2'; #H4; #H5; #K1; #K2; #K3; #K4; ndestruct; - napply H1; nrewrite < (eq_append_nil_to_eq_nil1 … w1 w2 ?); //]##] -##| #E1; ncases (fst … (eclose S E1)); nnormalize; //; - #E2; #H1; #H2; #H3; ninversion H3 - [ ##1,2,3,5,6,7: #; ndestruct; /2/ - | #w; #E1'; #E2'; #H1'; #H2'; #H3'; #H4; ndestruct; - ncases (?: False); napply (absurd ?? (not_eq_true_false …)); - /2/ ]##] -nqed. -(* -ntheorem eclose_superset: - ∀S,E. - ∀w. in_l S w (forget … E) ∨ in_pl ? w E → - let E' ≝ eclose … E in - in_pl ? w (snd … E') ∨ fst … E' = true ∧ w = []. - #S; #E; #w; * - [ ngeneralize in match w; nelim E; nnormalize - [ #w'; #H; ncases (? : False); /2/ - ##| #w'; #H; @2; @; //; napply in_l_inv_e; //; (* auto non va *) - ##|##3,4: #x; #w'; #H; @1; nrewrite > (in_l_inv_s … H); //; - ##| #E1; #E2; #H1; #H2; #w'; #H3; - ncases (in_l_inv_c … H3); #w1; *; #w2; *; *; #H4; #H5; #H6; - ncases (fst … (eclose S E1)) in H1 H2 ⊢ %; nnormalize - [ #H1; #H2; ncases (H1 … H5); ncases (H2 … H6) - [ #K1; #K2; nrewrite > H4; /3/; - ##| *; #_; #K1; #K2; nrewrite > H4; /3/; - ##| #K1; *; #_; #K2; nrewrite > H4; @1; nrewrite > K2; - /3/ ] - - @2; @; //; ninversion H; //; -##| #H; nwhd; @1; (* manca intro per letin*) - (* LEMMA A PARTE? *) (* manca clear E' *) - nelim H; nnormalize; /2/ - [ #w1; #w2; #p; ncases (fst … (eclose S p)); - nnormalize; /2/ - | #w; #p; ncases (fst … (eclose S p)); - nnormalize; /2/ ] +nlemma XXe : ∀S:Alpha.∀w:word S. w .∈ ϵ → False. +#S w abs; ninversion abs; #; ndestruct; nqed. -*) -nrecord decidable : Type[1] ≝ - { carr :> Type[0]; - eqb: carr → carr → bool; - eqb_true: ∀x,y. eqb x y = true → x=y; - eqb_false: ∀x,y. eqb x y = false → x≠y - }. +nlemma XXze : ∀S:Alpha.∀w:word S. w .∈ (∅ · ϵ) → False. +#S w abs; ninversion abs; #; ndestruct; /2/ by XXz,XXe; +nqed. -nlet rec move (S: decidable) (x:S) (E: pre S) on E ≝ - match E with - [ pz ⇒ 〈 false, pz ? 〉 - | pe ⇒ 〈 false, pe ? 〉 - | ps y ⇒ 〈false, ps ? y 〉 - | pp y ⇒ 〈 eqb … x y, ps ? y 〉 - | pc E1 E2 ⇒ - let E1' ≝ move ? x E1 in - let E2' ≝ move ? x E2 in - let E1'' ≝ snd … E1' in - let E2'' ≝ snd ?? E2' in - match fst … E1' with - [ true => - let E2''' ≝ eclose S E2'' in - 〈 fst … E2' ∨ fst … E2''', pc ? E1'' (snd … E2''') 〉 - | false ⇒ 〈 fst … E2', pc ? E1'' E2'' 〉 ] - | po E1 E2 ⇒ - let E1' ≝ move ? x E1 in - let E2' ≝ move ? x E2 in - 〈 fst … E1' ∨ fst … E2', po ? (snd … E1') (snd … E2') 〉 - | pk E ⇒ - let E' ≝ move S x E in - let E'' ≝ snd bool (pre S) E' in - match fst … E' with - [ true ⇒ 〈 true, pk ? (snd … (eclose … E'')) 〉 - | false ⇒ 〈 false, pk ? E'' 〉 ]]. +nlemma eqb_t : ∀S:Alpha.∀a,b:S.∀p:a == b = true. a = b. +#S a b H; nrewrite < (eqb_true ? a b); //. +nqed. + +naxiom in_move_cat: + ∀S.∀w:word S.∀x.∀E1,E2:pitem S. w .∈ \move x (E1 · E2) → + (∃w1.∃w2. w = w1@w2 ∧ w1 .∈ \move x E1 ∧ w2 ∈ .|E2|) ∨ w .∈ \move x E2. +#S w x e1 e2 H; nchange in H with (w .∈ \move x e1 ⊙ \move x e2); +ncases e1 in H; ncases e2; +##[##1: *; ##[*; nnormalize; #; ndestruct] + #H; ninversion H; ##[##1,4,5,6: nnormalize; #; ndestruct] + nnormalize; #; ndestruct; ncases (?:False); /2/ by XXz,XXze; +##|##2: *; ##[*; nnormalize; #; ndestruct] + #H; ninversion H; ##[##1,4,5,6: nnormalize; #; ndestruct] + nnormalize; #; ndestruct; ncases (?:False); /2/ by XXz,XXze; +##| #r; *; ##[ *; nnormalize; #; ndestruct] + #H; ninversion H; ##[##1,4,5,6: nnormalize; #; ndestruct] + ##[##2: nnormalize; #; ndestruct; @2; @2; //.##] + nnormalize; #; ndestruct; ncases (?:False); /2/ by XXz; +##| #y; *; ##[ *; nnormalize; #defw defx; ndestruct; @2; @1; /2/ by conj;##] + #H; ninversion H; nnormalize; #; ndestruct; + ##[ncases (?:False); /2/ by XXz] /3/ by or_intror; +##| #r1 r2; *; ##[ *; #defw] + ... +nqed. -(* ntheorem move_ok: - ∀S:decidable.∀E,a,w. - in_pl S w (snd … (move S a E)) → in_pl S (a::w) E. - #S; #E; #a; #w; + ∀S:Alpha.∀E:pre S.∀a,w.w .∈ \move a E ↔ (a :: w) .∈ E. +#S E; ncases E; #r b; nelim r; +##[##1,2: #a w; @; + ##[##1,3: nnormalize; *; ##[##1,3: *; #; ndestruct; ##| #abs; ncases (XXz … abs); ##] + #H; ninversion H; #; ndestruct; + ##|##*:nnormalize; *; ##[##1,3: *; #; ndestruct; ##| #H1; ncases (XXz … H1); ##] + #H; ninversion H; #; ndestruct;##] +##|#a c w; @; nnormalize; ##[*; ##[*; #; ndestruct; ##] #abs; ninversion abs; #; ndestruct;##] + *; ##[##2: #abs; ninversion abs; #; ndestruct; ##] *; #; ndestruct; +##|#a c w; @; nnormalize; + ##[ *; ##[ *; #defw; nrewrite > defw; #ca; @2; nrewrite > (eqb_t … ca); @; ##] + #H; ninversion H; #; ndestruct; + ##| *; ##[ *; #; ndestruct; ##] #H; ninversion H; ##[##2,3,4,5,6: #; ndestruct] + #d defw defa; ndestruct; @1; @; //; nrewrite > (eqb_true S d d); //. ##] +##|#r1 r2 H1 H2 a w; @; + ##[ #H; ncases (in_move_cat … H); + ##[ *; #w1; *; #w2; *; *; #defw w1m w2m; + ncases (H1 a w1); #H1w1; #_; nlapply (H1w1 w1m); #good; + nrewrite > defw; @2; @2 (a::w1); //; ncases good; ##[ *; #; ndestruct] //. + ##| + ... +##| +##| +##] nqed. -*) -nlet rec move_star S w E on w ≝ + +notation > "x ↦* E" non associative with precedence 60 for @{move_star ? $x $E}. +nlet rec move_star (S : decidable) w E on w : bool × (pre S) ≝ match w with [ nil ⇒ E - | cons x w' ⇒ move_star S w' (move S x (snd … E))]. + | cons x w' ⇒ w' ↦* (x ↦ \snd E)]. -ndefinition in_moves ≝ λS,w,E. fst … (move_star S w E). +ndefinition in_moves ≝ λS:decidable.λw.λE:bool × (pre S). \fst(w ↦* E). ncoinductive equiv (S:decidable) : bool × (pre S) → bool × (pre S) → Prop ≝ mk_equiv: ∀E1,E2: bool × (pre S). - fst ?? E1 = fst ?? E2 → - (∀x. equiv S (move S x (snd … E1)) (move S x (snd … E2))) → + \fst E1 = \fst E2 → + (∀x. equiv S (x ↦ \snd E1) (x ↦ \snd E2)) → equiv S E1 E2. ndefinition NAT: decidable. @ nat eqb; /2/. nqed. +include "hints_declaration.ma". + +alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". +unification hint 0 ≔ ; X ≟ NAT ⊢ carr X ≡ nat. + ninductive unit: Type[0] ≝ I: unit. nlet corec foo_nop (b: bool): - equiv NAT + equiv ? 〈 b, pc ? (ps ? 0) (pk ? (pc ? (ps ? 1) (ps ? 0))) 〉 〈 b, pc ? (pk ? (pc ? (ps ? 0) (ps ? 1))) (ps ? 0) 〉 ≝ ?. @; //; #x; ncases x @@ -310,32 +391,12 @@ nlet corec foo (a: unit): nqed. *) -notation < "a \sup ⋇" non associative with precedence 90 for @{ 'pk $a}. -notation > "a ^ *" non associative with precedence 90 for @{ 'pk $a}. -interpretation "star" 'pk a = (pk ? a). - -notation "❨a|b❩" non associative with precedence 90 for @{ 'po $a $b}. -interpretation "or" 'po a b = (po ? a b). - -notation < "a b" non associative with precedence 60 for @{ 'pc $a $b}. -notation > "a · b" non associative with precedence 60 for @{ 'pc $a $b}. -interpretation "cat" 'pc a b = (pc ? a b). - -notation < "a" non associative with precedence 90 for @{ 'pp $a}. -notation > "` term 90 a" non associative with precedence 90 for @{ 'pp $a}. -interpretation "atom" 'pp a = (pp ? a). - -(* to get rid of \middot *) -ncoercion rex_concat : ∀S:Type[0].∀p:pre S. pre S → pre S ≝ pc -on _p : pre ? to ∀_:?.?. -(* we could also get rid of ` with a coercion from nat → pre nat *) +ndefinition test1 : pre ? ≝ ❨ `0 | `1 ❩^* `0. +ndefinition test2 : pre ? ≝ ❨ (`0`1)^* `0 | (`0`1)^* `1 ❩. +ndefinition test3 : pre ? ≝ (`0 (`0`1)^* `1)^*. -ndefinition test1 ≝ ❨ `0 | `1 ❩^* `0. -ndefinition test2 ≝ ❨ (`0`1)^* `0 | (`0`1)^* `1 ❩. -ndefinition test3 ≝ (`0 (`0`1)^* `1)^*. -nlemma foo: in_moves NAT - [0;0;1;0;1;1] (eclose ? test3) = true. +nlemma foo: in_moves ? [0;0;1;0;1;1] (ɛ test3) = true. nnormalize in match test3; nnormalize; //; -- 2.39.2