From 624a7c13a2ed22ed2535690074c7a08e18de7f13 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Wed, 14 Nov 2007 13:17:07 +0000 Subject: [PATCH] ogroups almost finished --- helm/software/matita/dama/excedence.ma | 18 +++++ helm/software/matita/dama/ordered_groups.ma | 83 ++++++++++++--------- 2 files changed, 65 insertions(+), 36 deletions(-) diff --git a/helm/software/matita/dama/excedence.ma b/helm/software/matita/dama/excedence.ma index 6d1fc4dd7..59b8baa4e 100644 --- a/helm/software/matita/dama/excedence.ma +++ b/helm/software/matita/dama/excedence.ma @@ -119,3 +119,21 @@ theorem lt_to_excede: ∀E:excedence.∀a,b:E. (a < b) → (b ≰ a). intros (E a b Lab); cases Lab (LEab Aab); cases Aab (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *) qed. + +theorem le_le_to_eq: ∀E:excedence.∀x,y:E. x ≤ y → y ≤ x → x ≈ y. +intros 6 (E x y L1 L2 H); cases H; [apply (L1 H1)|apply (L2 H1)] +qed. + +lemma unfold_apart: ∀E:excedence. ∀x,y:E. x ≰ y ∨ y ≰ x → x # y. +unfold apart_of_excedence; unfold apart; simplify; intros; assumption; +qed. + +lemma le_rewl: ∀E:excedence.∀z,y,x:E. x ≈ y → x ≤ z → y ≤ z. +intros (E z y x Exy Lxz); apply (le_transitive ???? ? Lxz); +intro Xyz; apply Exy; apply unfold_apart; right; assumption; +qed. + +lemma le_rewr: ∀E:excedence.∀z,y,x:E. x ≈ y → z ≤ x → z ≤ y. +intros (E z y x Exy Lxz); apply (le_transitive ???? Lxz); +intro Xyz; apply Exy; apply unfold_apart; left; assumption; +qed. diff --git a/helm/software/matita/dama/ordered_groups.ma b/helm/software/matita/dama/ordered_groups.ma index 11ac6a216..fb4b29f0d 100644 --- a/helm/software/matita/dama/ordered_groups.ma +++ b/helm/software/matita/dama/ordered_groups.ma @@ -17,50 +17,29 @@ set "baseuri" "cic:/matita/ordered_groups/". include "ordered_sets.ma". include "groups.ma". -record pre_ordered_abelian_group : Type ≝ - { og_abelian_group_: abelian_group; - og_tordered_set:> tordered_set; - og_with: carr og_abelian_group_ = og_tordered_set - }. +record pre_ogroup : Type ≝ { + og_abelian_group_: abelian_group; + og_tordered_set:> tordered_set; + og_with: carr og_abelian_group_ = og_tordered_set +}. -lemma og_abelian_group: pre_ordered_abelian_group → abelian_group. +lemma og_abelian_group: pre_ogroup → abelian_group. intro G; apply (mk_abelian_group G); [1,2,3: rewrite < (og_with G)] [apply (plus (og_abelian_group_ G));|apply zero;|apply opp] -unfold apartness_OF_pre_ordered_abelian_group; cases (og_with G); simplify; +unfold apartness_OF_pre_ogroup; cases (og_with G); simplify; [apply plus_assoc|apply plus_comm|apply zero_neutral|apply opp_inverse|apply plus_strong_ext] qed. coercion cic:/matita/ordered_groups/og_abelian_group.con. -definition is_ordered_abelian_group ≝ - λG:pre_ordered_abelian_group. ∀f,g,h:G. f≤g → f+h≤g+h. -record ordered_abelian_group : Type ≝ - { og_pre_ordered_abelian_group:> pre_ordered_abelian_group; - og_ordered_abelian_group_properties: - is_ordered_abelian_group og_pre_ordered_abelian_group - }. - -lemma le_le_eq: ∀E:excedence.∀x,y:E. x ≤ y → y ≤ x → x ≈ y. -intros 6 (E x y L1 L2 H); cases H; [apply (L1 H1)|apply (L2 H1)] -qed. - -lemma unfold_apart: ∀E:excedence. ∀x,y:E. x ≰ y ∨ y ≰ x → x # y. -unfold apart_of_excedence; unfold apart; simplify; intros; assumption; -qed. - -lemma le_rewl: ∀E:excedence.∀z,y,x:E. x ≈ y → x ≤ z → y ≤ z. -intros (E z y x Exy Lxz); apply (le_transitive ???? ? Lxz); -intro Xyz; apply Exy; apply unfold_apart; right; assumption; -qed. - -lemma le_rewr: ∀E:excedence.∀z,y,x:E. x ≈ y → z ≤ x → z ≤ y. -intros (E z y x Exy Lxz); apply (le_transitive ???? Lxz); -intro Xyz; apply Exy; apply unfold_apart; left; assumption; -qed. +record ogroup : Type ≝ { + og_carr:> pre_ogroup; + fle_plusr: ∀f,g,h:og_carr. f≤g → f+h≤g+h +}. lemma plus_cancr_le: - ∀G:ordered_abelian_group.∀x,y,z:G.x+z ≤ y + z → x ≤ y. + ∀G:ogroup.∀x,y,z:G.x+z ≤ y + z → x ≤ y. intros 5 (G x y z L); apply (le_rewl ??? (0+x) (zero_neutral ??)); apply (le_rewl ??? (x+0) (plus_comm ???)); @@ -72,12 +51,44 @@ apply (le_rewr ??? (y+0) (plus_comm ???)); apply (le_rewr ??? (y+(-z+z))); [apply feq_plusl;apply opp_inverse;] apply (le_rewr ??? (y+(z+ -z))); [apply feq_plusl;apply plus_comm;] apply (le_rewr ??? (y+z+ -z)); [apply eq_symmetric; apply plus_assoc;] -apply (og_ordered_abelian_group_properties ??? (-z)); +apply (fle_plusr ??? (-z)); +assumption; +qed. + +lemma fle_plusl: ∀G:ogroup. ∀f,g,h:G. f≤g → h+f≤h+g. +intros (G f g h); +apply (plus_cancr_le ??? (-h)); +apply (le_rewl ??? (f+h+ -h)); [apply feq_plusr;apply plus_comm;] +apply (le_rewl ??? (f+(h+ -h)) (plus_assoc ????)); +apply (le_rewl ??? (f+(-h+h))); [apply feq_plusl;apply plus_comm;] +apply (le_rewl ??? (f+0)); [apply feq_plusl; apply eq_symmetric; apply opp_inverse] +apply (le_rewl ??? (0+f) (plus_comm ???)); +apply (le_rewl ??? (f) (eq_symmetric ??? (zero_neutral ??))); +apply (le_rewr ??? (g+h+ -h)); [apply feq_plusr;apply plus_comm;] +apply (le_rewr ??? (g+(h+ -h)) (plus_assoc ????)); +apply (le_rewr ??? (g+(-h+h))); [apply feq_plusl;apply plus_comm;] +apply (le_rewr ??? (g+0)); [apply feq_plusl; apply eq_symmetric; apply opp_inverse] +apply (le_rewr ??? (0+g) (plus_comm ???)); +apply (le_rewr ??? (g) (eq_symmetric ??? (zero_neutral ??))); assumption; qed. +lemma plus_cancl_le: + ∀G:ogroup.∀x,y,z:G.z+x ≤ z+y → x ≤ y. +intros 5 (G x y z L); +apply (le_rewl ??? (0+x) (zero_neutral ??)); +apply (le_rewl ??? ((-z+z)+x)); [apply feq_plusr;apply opp_inverse;] +apply (le_rewl ??? (-z+(z+x)) (plus_assoc ????)); +apply (le_rewr ??? (0+y) (zero_neutral ??)); +apply (le_rewr ??? ((-z+z)+y)); [apply feq_plusr;apply opp_inverse;] +apply (le_rewr ??? (-z+(z+y)) (plus_assoc ????)); +apply (fle_plusl ??? (-z)); +assumption; +qed. + + lemma le_zero_x_to_le_opp_x_zero: - ∀G:ordered_abelian_group.∀x:G.0 ≤ x → -x ≤ 0. + ∀G:ogroup.∀x:G.0 ≤ x → -x ≤ 0. intros (G x Px); apply (plus_cancr_le ??? x); apply (le_rewl ??? 0 (eq_symmetric ??? (opp_inverse ??))); apply (le_rewr ??? x (eq_symmetric ??? (zero_neutral ??))); @@ -85,7 +96,7 @@ assumption; qed. lemma le_x_zero_to_le_zero_opp_x: - ∀G:ordered_abelian_group.∀x:G. x ≤ 0 → 0 ≤ -x. + ∀G:ogroup.∀x:G. x ≤ 0 → 0 ≤ -x. intros (G x Lx0); apply (plus_cancr_le ??? x); apply (le_rewr ??? 0 (eq_symmetric ??? (opp_inverse ??))); apply (le_rewl ??? x (eq_symmetric ??? (zero_neutral ??))); -- 2.39.2