From 6449c9266eff9a5a7af7e7c13755abb5a20d61c3 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Thu, 29 Jun 2006 11:19:20 +0000 Subject: [PATCH] WORK IN PROGRESS: First commit of setoids.ml* (a porting from the Coq code by Claudio Sacerdoti Coen). The file setoids.ml is now compiled (and linked), but it does not provide any functionality yet. "(*Coq" comments are used in several places for parts of the code not ported to Matita yet. --- components/tactics/Makefile | 18 +- components/tactics/setoids.ml | 1896 ++++++++++++++++++++++++++++++++ components/tactics/setoids.mli | 70 ++ 3 files changed, 1975 insertions(+), 9 deletions(-) create mode 100644 components/tactics/setoids.ml create mode 100644 components/tactics/setoids.mli diff --git a/components/tactics/Makefile b/components/tactics/Makefile index f3e3a37a0..e75a8f3ab 100644 --- a/components/tactics/Makefile +++ b/components/tactics/Makefile @@ -6,17 +6,17 @@ INTERFACE_FILES = \ continuationals.mli \ tacticals.mli reductionTactics.mli proofEngineStructuralRules.mli \ primitiveTactics.mli hashtbl_equiv.mli metadataQuery.mli \ - paramodulation/utils.mli \ - paramodulation/subst.mli\ - paramodulation/equality.mli\ - paramodulation/inference.mli\ - paramodulation/equality_indexing.mli\ - paramodulation/indexing.mli \ - paramodulation/saturation.mli \ + paramodulation/utils.mli \ + paramodulation/subst.mli\ + paramodulation/equality.mli\ + paramodulation/inference.mli\ + paramodulation/equality_indexing.mli\ + paramodulation/indexing.mli \ + paramodulation/saturation.mli \ variousTactics.mli \ introductionTactics.mli eliminationTactics.mli negationTactics.mli \ - equalityTactics.mli autoTactic.mli discriminationTactics.mli inversion.mli \ - inversion_principle.mli ring.mli \ + equalityTactics.mli autoTactic.mli discriminationTactics.mli \ + inversion.mli inversion_principle.mli ring.mli setoids.mli \ fourier.mli fourierR.mli fwdSimplTactic.mli history.mli \ statefulProofEngine.mli tactics.mli diff --git a/components/tactics/setoids.ml b/components/tactics/setoids.ml new file mode 100644 index 000000000..5729b3ace --- /dev/null +++ b/components/tactics/setoids.ml @@ -0,0 +1,1896 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* uri + | None -> + raise (ProofEngineTypes.Fail (lazy "You need to register the default equality first. Please use the \"default\" command")) + +let replace = ref (fun _ _ -> assert false) +let register_replace f = replace := f + +let general_rewrite = ref (fun _ _ -> assert false) +let register_general_rewrite f = general_rewrite := f + +let prlist_with_sepi sep elem = + let rec aux n = + function + | [] -> "" + | [h] -> elem n h + | h::t -> + let e = elem n h and r = aux (n+1) t in + e ^ sep ^ r + in + aux 1 + +type relation = + { rel_a: Cic.term ; + rel_aeq: Cic.term; + rel_refl: Cic.term option; + rel_sym: Cic.term option; + rel_trans : Cic.term option; + rel_quantifiers_no: int (* it helps unification *); + rel_X_relation_class: Cic.term; + rel_Xreflexive_relation_class: Cic.term + } + +type 'a relation_class = + Relation of 'a (* the rel_aeq of the relation or the relation *) + | Leibniz of Cic.term option (* the carrier (if eq is partially instantiated)*) + +type 'a morphism = + { args : (bool option * 'a relation_class) list; + output : 'a relation_class; + lem : Cic.term; + morphism_theory : Cic.term + } + +type funct = + { f_args : Cic.term list; + f_output : Cic.term + } + +type morphism_class = + ACMorphism of relation morphism + | ACFunction of funct + +let constr_relation_class_of_relation_relation_class = + function + Relation relation -> Relation relation.rel_aeq + | Leibniz t -> Leibniz t + + +(*COQ +let constr_of c = Constrintern.interp_constr Evd.empty (Global.env()) c +*) + +(*COQ +let constant dir s = Coqlib.gen_constant "Setoid_replace" ("Setoids"::dir) s +*) let constant dir s = assert false +(*COQ +let gen_constant dir s = Coqlib.gen_constant "Setoid_replace" dir s +*) let gen_constant dir s = assert false +(*COQ +let reference dir s = Coqlib.gen_reference "Setoid_replace" ("Setoids"::dir) s +let eval_reference dir s = EvalConstRef (destConst (constant dir s)) +*) let eval_reference dir s = assert false +(*COQ +let eval_init_reference dir s = EvalConstRef (destConst (gen_constant ("Init"::dir) s)) +*) + +(*COQ +let current_constant id = + try + global_reference id + with Not_found -> + anomaly ("Setoid: cannot find " ^ (string_of_id id)) +*) let current_constant id = assert false + +(* From Setoid.v *) + +let coq_reflexive = + (gen_constant ["Relations"; "Relation_Definitions"] "reflexive") +let coq_symmetric = + (gen_constant ["Relations"; "Relation_Definitions"] "symmetric") +let coq_transitive = + (gen_constant ["Relations"; "Relation_Definitions"] "transitive") +let coq_relation = + (gen_constant ["Relations"; "Relation_Definitions"] "relation") + +let coq_Relation_Class = (constant ["Setoid"] "Relation_Class") +let coq_Argument_Class = (constant ["Setoid"] "Argument_Class") +let coq_Setoid_Theory = (constant ["Setoid"] "Setoid_Theory") +let coq_Morphism_Theory = (constant ["Setoid"] "Morphism_Theory") +let coq_Build_Morphism_Theory= (constant ["Setoid"] "Build_Morphism_Theory") +let coq_Compat = (constant ["Setoid"] "Compat") + +let coq_AsymmetricReflexive = (constant ["Setoid"] "AsymmetricReflexive") +let coq_SymmetricReflexive = (constant ["Setoid"] "SymmetricReflexive") +let coq_SymmetricAreflexive = (constant ["Setoid"] "SymmetricAreflexive") +let coq_AsymmetricAreflexive = (constant ["Setoid"] "AsymmetricAreflexive") +let coq_Leibniz = (constant ["Setoid"] "Leibniz") + +let coq_RAsymmetric = (constant ["Setoid"] "RAsymmetric") +let coq_RSymmetric = (constant ["Setoid"] "RSymmetric") +let coq_RLeibniz = (constant ["Setoid"] "RLeibniz") + +let coq_ASymmetric = (constant ["Setoid"] "ASymmetric") +let coq_AAsymmetric = (constant ["Setoid"] "AAsymmetric") + +let coq_seq_refl = (constant ["Setoid"] "Seq_refl") +let coq_seq_sym = (constant ["Setoid"] "Seq_sym") +let coq_seq_trans = (constant ["Setoid"] "Seq_trans") + +let coq_variance = (constant ["Setoid"] "variance") +let coq_Covariant = (constant ["Setoid"] "Covariant") +let coq_Contravariant = (constant ["Setoid"] "Contravariant") +let coq_Left2Right = (constant ["Setoid"] "Left2Right") +let coq_Right2Left = (constant ["Setoid"] "Right2Left") +let coq_MSNone = (constant ["Setoid"] "MSNone") +let coq_MSCovariant = (constant ["Setoid"] "MSCovariant") +let coq_MSContravariant = (constant ["Setoid"] "MSContravariant") + +let coq_singl = (constant ["Setoid"] "singl") +let coq_cons = (constant ["Setoid"] "cons") + +let coq_equality_morphism_of_asymmetric_areflexive_transitive_relation = + (constant ["Setoid"] + "equality_morphism_of_asymmetric_areflexive_transitive_relation") +let coq_equality_morphism_of_symmetric_areflexive_transitive_relation = + (constant ["Setoid"] + "equality_morphism_of_symmetric_areflexive_transitive_relation") +let coq_equality_morphism_of_asymmetric_reflexive_transitive_relation = + (constant ["Setoid"] + "equality_morphism_of_asymmetric_reflexive_transitive_relation") +let coq_equality_morphism_of_symmetric_reflexive_transitive_relation = + (constant ["Setoid"] + "equality_morphism_of_symmetric_reflexive_transitive_relation") +let coq_make_compatibility_goal = + (constant ["Setoid"] "make_compatibility_goal") +let coq_make_compatibility_goal_eval_ref = + (eval_reference ["Setoid"] "make_compatibility_goal") +let coq_make_compatibility_goal_aux_eval_ref = + (eval_reference ["Setoid"] "make_compatibility_goal_aux") + +let coq_App = (constant ["Setoid"] "App") +let coq_ToReplace = (constant ["Setoid"] "ToReplace") +let coq_ToKeep = (constant ["Setoid"] "ToKeep") +let coq_ProperElementToKeep = (constant ["Setoid"] "ProperElementToKeep") +let coq_fcl_singl = (constant ["Setoid"] "fcl_singl") +let coq_fcl_cons = (constant ["Setoid"] "fcl_cons") + +let coq_setoid_rewrite = (constant ["Setoid"] "setoid_rewrite") +let coq_proj1 = (gen_constant ["Init"; "Logic"] "proj1") +let coq_proj2 = (gen_constant ["Init"; "Logic"] "proj2") +let coq_unit = (gen_constant ["Init"; "Datatypes"] "unit") +let coq_tt = (gen_constant ["Init"; "Datatypes"] "tt") +let coq_eq = (gen_constant ["Init"; "Logic"] "eq") + +let coq_morphism_theory_of_function = + (constant ["Setoid"] "morphism_theory_of_function") +let coq_morphism_theory_of_predicate = + (constant ["Setoid"] "morphism_theory_of_predicate") +let coq_relation_of_relation_class = + (eval_reference ["Setoid"] "relation_of_relation_class") +let coq_directed_relation_of_relation_class = + (eval_reference ["Setoid"] "directed_relation_of_relation_class") +let coq_interp = (eval_reference ["Setoid"] "interp") +let coq_Morphism_Context_rect2 = + (eval_reference ["Setoid"] "Morphism_Context_rect2") +let coq_iff = (gen_constant ["Init";"Logic"] "iff") +let coq_impl = (constant ["Setoid"] "impl") + + +(************************* Table of declared relations **********************) + + +(* Relations are stored in a table which is synchronised with the Reset mechanism. *) + +module Gmap = + Map.Make(struct type t = Cic.term let compare = Pervasives.compare end);; + +let relation_table = ref Gmap.empty + +let relation_table_add (s,th) = relation_table := Gmap.add s th !relation_table +let relation_table_find s = Gmap.find s !relation_table +let relation_table_mem s = Gmap.mem s !relation_table + +let prrelation s = + "(" ^ CicPp.ppterm s.rel_a ^ "," ^ CicPp.ppterm s.rel_aeq ^ ")" + +let prrelation_class = + function + Relation eq -> + (try prrelation (relation_table_find eq) + with Not_found -> + "[[ Error: " ^ CicPp.ppterm eq ^ + " is not registered as a relation ]]") + | Leibniz (Some ty) -> CicPp.ppterm ty + | Leibniz None -> "_" + +let prmorphism_argument_gen prrelation (variance,rel) = + prrelation rel ^ + match variance with + None -> " ==> " + | Some true -> " ++> " + | Some false -> " --> " + +let prargument_class = prmorphism_argument_gen prrelation_class + +let pr_morphism_signature (l,c) = + String.concat "" (List.map (prmorphism_argument_gen CicPp.ppterm) l) ^ + CicPp.ppterm c + +let prmorphism k m = + CicPp.ppterm k ^ ": " ^ + String.concat "" (List.map prargument_class m.args) ^ + prrelation_class m.output + +(* A function that gives back the only relation_class on a given carrier *) +(*CSC: this implementation is really inefficient. I should define a new + map to make it efficient. However, is this really worth of? *) +let default_relation_for_carrier ?(filter=fun _ -> true) a = + let rng = Gmap.fold (fun _ y acc -> y::acc) !relation_table [] in + match List.filter (fun ({rel_a=rel_a} as r) -> rel_a = a && filter r) rng with + [] -> Leibniz (Some a) + | relation::tl -> +(*COQ + if tl <> [] then + prerr_endline + ("Warning: There are several relations on the carrier \"" ^ + CicPp.ppterm a ^ "\". The relation " ^ prrelation relation ^ + " is chosen.") ; +*) + Relation relation + +let find_relation_class rel = + try Relation (relation_table_find rel) + with + Not_found -> + let default_eq = default_eq () in + match CicReduction.whd [] rel with + Cic.Appl [Cic.MutInd(uri,0,[]);ty] + when UriManager.eq uri default_eq -> Leibniz (Some ty) + | Cic.MutInd(uri,0,[]) when UriManager.eq uri default_eq -> Leibniz None + | _ -> raise Not_found + +(*COQ +let coq_iff_relation = lazy (find_relation_class (Lazy.force coq_iff)) +let coq_impl_relation = lazy (find_relation_class (Lazy.force coq_impl)) +*) let coq_iff_relation = assert false let coq_impl_relation = assert false + +let relation_morphism_of_constr_morphism = + let relation_relation_class_of_constr_relation_class = + function + Leibniz t -> Leibniz t + | Relation aeq -> + Relation (try relation_table_find aeq with Not_found -> assert false) + in + function mor -> + let args' = + List.map + (fun (variance,rel) -> + variance, relation_relation_class_of_constr_relation_class rel + ) mor.args in + let output' = relation_relation_class_of_constr_relation_class mor.output in + {mor with args=args' ; output=output'} + +let equiv_list () = + Gmap.fold (fun _ y acc -> y.rel_aeq::acc) !relation_table [] + +(* Declare a new type of object in the environment : "relation-theory". *) + +(*COQ +let (relation_to_obj, obj_to_relation)= + let cache_set (_,(s, th)) = + let th' = + if relation_table_mem s then + begin + let old_relation = relation_table_find s in + let th' = + {th with rel_sym = + match th.rel_sym with + None -> old_relation.rel_sym + | Some t -> Some t} in +(*COQ + prerr_endline + ("Warning: The relation " ^ prrelation th' ^ + " is redeclared. The new declaration" ^ + (match th'.rel_refl with + None -> "" + | Some t -> " (reflevity proved by " ^ CicPp.ppterm t) ^ + (match th'.rel_sym with + None -> "" + | Some t -> + (if th'.rel_refl = None then " (" else " and ") ^ + "symmetry proved by " ^ CicPp.ppterm t) ^ + (if th'.rel_refl <> None && th'.rel_sym <> None then + ")" else "") ^ + " replaces the old declaration" ^ + (match old_relation.rel_refl with + None -> "" + | Some t -> " (reflevity proved by " ^ CicPp.ppterm t) ^ + (match old_relation.rel_sym with + None -> "" + | Some t -> + (if old_relation.rel_refl = None then + " (" else " and ") ^ + "symmetry proved by " ^ CicPp.ppterm t) ^ + (if old_relation.rel_refl <> None && old_relation.rel_sym <> None + then ")" else "") ^ + "."); +*) + th' + end + else + th + in + relation_table_add (s,th') + and export_set x = Some x + in + declare_object {(default_object "relation-theory") with + cache_function = cache_set; + load_function = (fun i o -> cache_set o); + subst_function = subst_set; + classify_function = (fun (_,x) -> Substitute x); + export_function = export_set} +*) + +(******************************* Table of declared morphisms ********************) + +(* Setoids are stored in a table which is synchronised with the Reset mechanism. *) + +let morphism_table = ref Gmap.empty + +let morphism_table_find m = Gmap.find m !morphism_table +let morphism_table_add (m,c) = + let old = + try + morphism_table_find m + with + Not_found -> [] + in + try +(*COQ + let old_morph = + List.find + (function mor -> mor.args = c.args && mor.output = c.output) old + in + prerr_endline + ("Warning: The morphism " ^ prmorphism m old_morph ^ + " is redeclared. " ^ + "The new declaration whose compatibility is proved by " ^ + CicPp.ppterm c.lem ^ " replaces the old declaration whose" ^ + " compatibility was proved by " ^ + CicPp.ppterm old_morph.lem ^ ".") +*) () + with + Not_found -> morphism_table := Gmap.add m (c::old) !morphism_table + +let default_morphism ?(filter=fun _ -> true) m = + match List.filter filter (morphism_table_find m) with + [] -> raise Not_found + | m1::ml -> +(*COQ + if ml <> [] then + prerr_endline + ("Warning: There are several morphisms associated to \"" ^ + CicPp.ppterm m ^ "\". Morphism " ^ prmorphism m m1 ^ + " is randomly chosen."); +*) + relation_morphism_of_constr_morphism m1 + +(************************** Printing relations and morphisms **********************) + +let print_setoids () = + Gmap.iter + (fun k relation -> + assert (k=relation.rel_aeq) ; + prerr_endline ("Relation " ^ prrelation relation ^ ";" ^ + (match relation.rel_refl with + None -> "" + | Some t -> " reflexivity proved by " ^ CicPp.ppterm t) ^ + (match relation.rel_sym with + None -> "" + | Some t -> " symmetry proved by " ^ CicPp.ppterm t) ^ + (match relation.rel_trans with + None -> "" + | Some t -> " transitivity proved by " ^ CicPp.ppterm t))) + !relation_table ; + Gmap.iter + (fun k l -> + List.iter + (fun ({lem=lem} as mor) -> + prerr_endline ("Morphism " ^ prmorphism k mor ^ + ". Compatibility proved by " ^ + CicPp.ppterm lem ^ ".")) + l) !morphism_table +;; + +(***************** Adding a morphism to the database ****************************) + +(* We maintain a table of the currently edited proofs of morphism lemma + in order to add them in the morphism_table when the user does Save *) + +let edited = ref Gmap.empty + +let new_edited id m = + edited := Gmap.add id m !edited + +let is_edited id = + Gmap.mem id !edited + +let no_more_edited id = + edited := Gmap.remove id !edited + +let what_edited id = + Gmap.find id !edited + +let list_chop n l = + let rec chop_aux acc = function + | (0, l2) -> (List.rev acc, l2) + | (n, (h::t)) -> chop_aux (h::acc) (pred n, t) + | (_, []) -> assert false + in + chop_aux [] (n,l) + +let compose_thing f l b = + let rec aux = + function + (0, env, b) -> b + | (n, ((v,t)::l), b) -> aux (n-1, l, f v t b) + | _ -> assert false + in + aux (List.length l,l,b) + +let compose_prod = compose_thing (fun v t b -> Cic.Prod (v,t,b)) +let compose_lambda = compose_thing (fun v t b -> Cic.Lambda (v,t,b)) + +(* also returns the triple (args_ty_quantifiers_rev,real_args_ty,real_output) + where the args_ty and the output are delifted *) +let check_is_dependent n args_ty output = + let m = List.length args_ty - n in + let args_ty_quantifiers, args_ty = list_chop n args_ty in + let rec aux m t = + match t with + Cic.Prod (n,s,t) when m > 0 -> + let t' = CicSubstitution.subst (Cic.Implicit None) (* dummy *) t in + if t' <> t then + let args,out = aux (m - 1) t' in s::args,out + else + raise (ProofEngineTypes.Fail (lazy + "The morphism is not a quantified non dependent product.")) + | _ -> [],t + in + let ty = compose_prod (List.rev args_ty) output in + let args_ty, output = aux m ty in + List.rev args_ty_quantifiers, args_ty, output + +let cic_relation_class_of_X_relation typ value = + function + {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=Some refl; rel_sym=None} -> + Cic.Appl [coq_AsymmetricReflexive ; typ ; value ; rel_a ; rel_aeq; refl] + | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=Some refl; rel_sym=Some sym} -> + Cic.Appl [coq_SymmetricReflexive ; typ ; rel_a ; rel_aeq; sym ; refl] + | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=None; rel_sym=None} -> + Cic.Appl [coq_AsymmetricAreflexive ; typ ; value ; rel_a ; rel_aeq] + | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=None; rel_sym=Some sym} -> + Cic.Appl [coq_SymmetricAreflexive ; typ ; rel_a ; rel_aeq; sym] + +let cic_relation_class_of_X_relation_class typ value = + function + Relation {rel_X_relation_class=x_relation_class} -> + Cic.Appl [x_relation_class ; typ ; value] + | Leibniz (Some t) -> + Cic.Appl [coq_Leibniz ; typ ; t] + | Leibniz None -> assert false + + +let cic_precise_relation_class_of_relation = + function + {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=Some refl; rel_sym=None} -> + Cic.Appl [coq_RAsymmetric ; rel_a ; rel_aeq; refl] + | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=Some refl; rel_sym=Some sym} -> + Cic.Appl [coq_RSymmetric ; rel_a ; rel_aeq; sym ; refl] + | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=None; rel_sym=None} -> + Cic.Appl [coq_AAsymmetric ; rel_a ; rel_aeq] + | {rel_a=rel_a; rel_aeq=rel_aeq; rel_refl=None; rel_sym=Some sym} -> + Cic.Appl [coq_ASymmetric ; rel_a ; rel_aeq; sym] + +let cic_precise_relation_class_of_relation_class = + function + Relation + {rel_aeq=rel_aeq; rel_Xreflexive_relation_class=lem; rel_refl=rel_refl } + -> + rel_aeq,lem,not(rel_refl=None) + | Leibniz (Some t) -> + Cic.Appl [coq_eq ; t], Cic.Appl [coq_RLeibniz ; t], true + | Leibniz None -> assert false + +let cic_relation_class_of_relation_class rel = + cic_relation_class_of_X_relation_class + coq_unit coq_tt rel + +let cic_argument_class_of_argument_class (variance,arg) = + let coq_variant_value = + match variance with + None -> coq_Covariant (* dummy value, it won't be used *) + | Some true -> coq_Covariant + | Some false -> coq_Contravariant + in + cic_relation_class_of_X_relation_class coq_variance + coq_variant_value arg + +let cic_arguments_of_argument_class_list args = + let rec aux = + function + [] -> assert false + | [last] -> + Cic.Appl [coq_singl ; coq_Argument_Class ; last] + | he::tl -> + Cic.Appl [coq_cons ; coq_Argument_Class ; he ; aux tl] + in + aux (List.map cic_argument_class_of_argument_class args) + +let gen_compat_lemma_statement quantifiers_rev output args m = + let output = cic_relation_class_of_relation_class output in + let args = cic_arguments_of_argument_class_list args in + args, output, + compose_prod quantifiers_rev + (Cic.Appl [coq_make_compatibility_goal ; args ; output ; m]) + +let morphism_theory_id_of_morphism_proof_id id = + id ^ "_morphism_theory" + +let list_map_i f = + let rec map_i_rec i = function + | [] -> [] + | x::l -> let v = f i x in v :: map_i_rec (i+1) l + in + map_i_rec + +(* apply_to_rels c [l1 ; ... ; ln] returns (c Rel1 ... reln) *) +let apply_to_rels c l = + if l = [] then c + else + let len = List.length l in + Cic.Appl (c::(list_map_i (fun i _ -> Cic.Rel (len - i)) 0 l)) + +let apply_to_relation subst rel = + if subst = [] then rel + else + let new_quantifiers_no = rel.rel_quantifiers_no - List.length subst in + assert (new_quantifiers_no >= 0) ; + { rel_a = Cic.Appl (rel.rel_a :: subst) ; + rel_aeq = Cic.Appl (rel.rel_aeq :: subst) ; + rel_refl = HExtlib.map_option (fun c -> Cic.Appl (c::subst)) rel.rel_refl ; + rel_sym = HExtlib.map_option (fun c -> Cic.Appl (c::subst)) rel.rel_sym; + rel_trans = HExtlib.map_option (fun c -> Cic.Appl (c::subst)) rel.rel_trans; + rel_quantifiers_no = new_quantifiers_no; + rel_X_relation_class = Cic.Appl (rel.rel_X_relation_class::subst); + rel_Xreflexive_relation_class = + Cic.Appl (rel.rel_Xreflexive_relation_class::subst) } + +let add_morphism lemma_infos mor_name (m,quantifiers_rev,args,output) = + let lem = + match lemma_infos with + None -> + (* the Morphism_Theory object has already been created *) + let applied_args = + let len = List.length quantifiers_rev in + let subst = + list_map_i (fun i _ -> Cic.Rel (len - i)) 0 quantifiers_rev + in + List.map + (fun (v,rel) -> + match rel with + Leibniz (Some t) -> + assert (subst=[]); + v, Leibniz (Some t) + | Leibniz None -> + (match subst with + [e] -> v, Leibniz (Some e) + | _ -> assert false) + | Relation rel -> v, Relation (apply_to_relation subst rel)) args + in + compose_lambda quantifiers_rev + (Cic.Appl + [coq_Compat ; + cic_arguments_of_argument_class_list applied_args; + cic_relation_class_of_relation_class output; + apply_to_rels (current_constant mor_name) quantifiers_rev]) + | Some (lem_name,argsconstr,outputconstr) -> + (* only the compatibility has been proved; we need to declare the + Morphism_Theory object *) + let mext = current_constant lem_name in +(*COQ + ignore ( + Declare.declare_internal_constant mor_name + (DefinitionEntry + {const_entry_body = + compose_lambda quantifiers_rev + (Cic.Appl + [coq_Build_Morphism_Theory; + argsconstr; outputconstr; apply_to_rels m quantifiers_rev ; + apply_to_rels mext quantifiers_rev]); + const_entry_boxed = Options.boxed_definitions()}, + IsDefinition Definition)) ; +*)ignore (assert false); + mext + in + let mmor = current_constant mor_name in + let args_constr = + List.map + (fun (variance,arg) -> + variance, constr_relation_class_of_relation_relation_class arg) args in + let output_constr = constr_relation_class_of_relation_relation_class output in +(*COQ + Lib.add_anonymous_leaf + (morphism_to_obj (m, + { args = args_constr; + output = output_constr; + lem = lem; + morphism_theory = mmor })); +*)let _ = mmor,args_constr,output_constr,lem in ignore (assert false); + (*COQ Options.if_verbose prerr_endline (CicPp.ppterm m ^ " is registered as a morphism") *) () + +let list_sub _ _ _ = assert false + +(* first order matching with a bit of conversion *) +let unify_relation_carrier_with_type env rel t = + let raise_error quantifiers_no = + raise (ProofEngineTypes.Fail (lazy + ("One morphism argument or its output has type " ^ CicPp.ppterm t ^ + " but the signature requires an argument of type \"" ^ + CicPp.ppterm rel.rel_a ^ " " ^ String.concat " " (List.map (fun _ -> "?") + (Array.to_list (Array.make quantifiers_no 0))) ^ "\""))) in + let args = + match t with + Cic.Appl (he'::args') -> + let argsno = List.length args' - rel.rel_quantifiers_no in + let args1 = list_sub args' 0 argsno in + let args2 = list_sub args' argsno rel.rel_quantifiers_no in + if fst (CicReduction.are_convertible [] rel.rel_a (Cic.Appl (he'::args1)) CicUniv.empty_ugraph) then + args2 + else + raise_error rel.rel_quantifiers_no + | _ -> + if rel.rel_quantifiers_no = 0 && fst (CicReduction.are_convertible [] rel.rel_a t CicUniv.empty_ugraph) then + [] + else + begin +(*COQ + let evars,args,instantiated_rel_a = + let ty = CicTypeChecker.type_of_aux' [] [] rel.rel_a CicUniv.empty_ugraph in + let evd = Evd.create_evar_defs Evd.empty in + let evars,args,concl = + Clenv.clenv_environments_evars env evd + (Some rel.rel_quantifiers_no) ty + in + evars, args, + nf_betaiota + (match args with [] -> rel.rel_a | _ -> applist (rel.rel_a,args)) + in + let evars' = + w_unify true (*??? or false? *) env Reduction.CONV (*??? or cumul? *) + ~mod_delta:true (*??? or true? *) t instantiated_rel_a evars in + let args' = + List.map (Reductionops.nf_evar (Evd.evars_of evars')) args + in + args' +*) assert false + end + in + apply_to_relation args rel + +let unify_relation_class_carrier_with_type env rel t = + match rel with + Leibniz (Some t') -> + if fst (CicReduction.are_convertible [] t t' CicUniv.empty_ugraph) then + rel + else + raise (ProofEngineTypes.Fail (lazy + ("One morphism argument or its output has type " ^ CicPp.ppterm t ^ + " but the signature requires an argument of type " ^ + CicPp.ppterm t'))) + | Leibniz None -> Leibniz (Some t) + | Relation rel -> Relation (unify_relation_carrier_with_type env rel t) + +exception Impossible + +(*COQ +(* first order matching with a bit of conversion *) +(* Note: the type checking operations performed by the function could *) +(* be done once and for all abstracting the morphism structure using *) +(* the quantifiers. Would the new structure be more suited than the *) +(* existent one for other tasks to? (e.g. pretty printing would expose *) +(* much more information: is it ok or is it too much information?) *) +let unify_morphism_with_arguments gl (c,al) + {args=args; output=output; lem=lem; morphism_theory=morphism_theory} t += + let allen = List.length al in + let argsno = List.length args in + if allen < argsno then raise Impossible; (* partial application *) + let quantifiers,al' = Util.list_chop (allen - argsno) al in + let c' = Cic.Appl (c::quantifiers) in + if dependent t c' then raise Impossible; + (* these are pf_type_of we could avoid *) + let al'_type = List.map (Tacmach.pf_type_of gl) al' in + let args' = + List.map2 + (fun (var,rel) ty -> + var,unify_relation_class_carrier_with_type (pf_env gl) rel ty) + args al'_type in + (* this is another pf_type_of we could avoid *) + let ty = Tacmach.pf_type_of gl (Cic.Appl (c::al)) in + let output' = unify_relation_class_carrier_with_type (pf_env gl) output ty in + let lem' = Cic.Appl (lem::quantifiers) in + let morphism_theory' = Cic.Appl (morphism_theory::quantifiers) in + ({args=args'; output=output'; lem=lem'; morphism_theory=morphism_theory'}, + c',al') +*) let unify_morphism_with_arguments _ _ _ _ = assert false + +let new_morphism m signature id hook = +(*COQ + if Nametab.exists_cci (Lib.make_path id) or is_section_variable id then + raise (ProofEngineTypes.Fail (lazy (pr_id id ^ " already exists"))) + else + let env = Global.env() in + let typeofm = Typing.type_of env Evd.empty m in + let typ = clos_norm_flags Closure.betaiotazeta empty_env Evd.empty typeofm in + let argsrev, output = + match signature with + None -> decompose_prod typ + | Some (_,output') -> + (* the carrier of the relation output' can be a Prod ==> + we must uncurry on the fly output. + E.g: A -> B -> C vs A -> (B -> C) + args output args output + *) + let rel = find_relation_class output' in + let rel_a,rel_quantifiers_no = + match rel with + Relation rel -> rel.rel_a, rel.rel_quantifiers_no + | Leibniz (Some t) -> t, 0 + | Leibniz None -> assert false in + let rel_a_n = + clos_norm_flags Closure.betaiotazeta empty_env Evd.empty rel_a in + try + let _,output_rel_a_n = decompose_lam_n rel_quantifiers_no rel_a_n in + let argsrev,_ = decompose_prod output_rel_a_n in + let n = List.length argsrev in + let argsrev',_ = decompose_prod typ in + let m = List.length argsrev' in + decompose_prod_n (m - n) typ + with UserError(_,_) -> + (* decompose_lam_n failed. This may happen when rel_a is an axiom, + a constructor, an inductive type, etc. *) + decompose_prod typ + in + let args_ty = List.rev argsrev in + let args_ty_len = List.length (args_ty) in + let args_ty_quantifiers_rev,args,args_instance,output,output_instance = + match signature with + None -> + if args_ty = [] then + raise (ProofEngineTypes.Fail (lazy + ("The term " ^ CicPp.ppterm m ^ " has type " ^ + CicPp.ppterm typeofm ^ " that is not a product."))) ; + ignore (check_is_dependent 0 args_ty output) ; + let args = + List.map + (fun (_,ty) -> None,default_relation_for_carrier ty) args_ty in + let output = default_relation_for_carrier output in + [],args,args,output,output + | Some (args,output') -> + assert (args <> []); + let number_of_arguments = List.length args in + let number_of_quantifiers = args_ty_len - number_of_arguments in + if number_of_quantifiers < 0 then + raise (ProofEngineTypes.Fail (lazy + ("The morphism " ^ CicPp.ppterm m ^ " has type " ^ + CicPp.ppterm typeofm ^ " that attends at most " ^ int args_ty_len ^ + " arguments. The signature that you specified requires " ^ + int number_of_arguments ^ " arguments."))) + else + begin + (* the real_args_ty returned are already delifted *) + let args_ty_quantifiers_rev, real_args_ty, real_output = + check_is_dependent number_of_quantifiers args_ty output in + let quantifiers_rel_context = + List.map (fun (n,t) -> n,None,t) args_ty_quantifiers_rev in + let env = push_rel_context quantifiers_rel_context env in + let find_relation_class t real_t = + try + let rel = find_relation_class t in + rel, unify_relation_class_carrier_with_type env rel real_t + with Not_found -> + raise (ProofEngineTypes.Fail (lazy + ("Not a valid signature: " ^ CicPp.ppterm t ^ + " is neither a registered relation nor the Leibniz " ^ + " equality."))) + in + let find_relation_class_v (variance,t) real_t = + let relation,relation_instance = find_relation_class t real_t in + match relation, variance with + Leibniz _, None + | Relation {rel_sym = Some _}, None + | Relation {rel_sym = None}, Some _ -> + (variance, relation), (variance, relation_instance) + | Relation {rel_sym = None},None -> + raise (ProofEngineTypes.Fail (lazy + ("You must specify the variance in each argument " ^ + "whose relation is asymmetric."))) + | Leibniz _, Some _ + | Relation {rel_sym = Some _}, Some _ -> + raise (ProofEngineTypes.Fail (lazy + ("You cannot specify the variance of an argument " ^ + "whose relation is symmetric."))) + in + let args, args_instance = + List.split + (List.map2 find_relation_class_v args real_args_ty) in + let output,output_instance= find_relation_class output' real_output in + args_ty_quantifiers_rev, args, args_instance, output, output_instance + end + in + let argsconstr,outputconstr,lem = + gen_compat_lemma_statement args_ty_quantifiers_rev output_instance + args_instance (apply_to_rels m args_ty_quantifiers_rev) in + (* "unfold make_compatibility_goal" *) + let lem = + Reductionops.clos_norm_flags + (Closure.unfold_red (coq_make_compatibility_goal_eval_ref)) + env Evd.empty lem in + (* "unfold make_compatibility_goal_aux" *) + let lem = + Reductionops.clos_norm_flags + (Closure.unfold_red(coq_make_compatibility_goal_aux_eval_ref)) + env Evd.empty lem in + (* "simpl" *) + let lem = Tacred.nf env Evd.empty lem in + if Lib.is_modtype () then + begin + ignore + (Declare.declare_internal_constant id + (ParameterEntry lem, IsAssumption Logical)) ; + let mor_name = morphism_theory_id_of_morphism_proof_id id in + let lemma_infos = Some (id,argsconstr,outputconstr) in + add_morphism lemma_infos mor_name + (m,args_ty_quantifiers_rev,args,output) + end + else + begin + new_edited id + (m,args_ty_quantifiers_rev,args,argsconstr,output,outputconstr); + Pfedit.start_proof id (Global, Proof Lemma) + (Declare.clear_proofs (Global.named_context ())) + lem hook; + Options.if_verbose msg (Printer.pr_open_subgoals ()); + end +*) assert false + +let morphism_hook _ ref = +(*COQ + let pf_id = id_of_global ref in + let mor_id = morphism_theory_id_of_morphism_proof_id pf_id in + let (m,quantifiers_rev,args,argsconstr,output,outputconstr) = + what_edited pf_id in + if (is_edited pf_id) + then + begin + add_morphism (Some (pf_id,argsconstr,outputconstr)) mor_id + (m,quantifiers_rev,args,output) ; + no_more_edited pf_id + end +*) assert false + +type morphism_signature = + (bool option * Cic.term) list * Cic.term + +let new_named_morphism id m sign = + new_morphism m sign id morphism_hook + +(************************** Adding a relation to the database *********************) + +(*COQ +let check_a env a = + let typ = Typing.type_of env Evd.empty a in + let a_quantifiers_rev,_ = Reduction.dest_arity env typ in + a_quantifiers_rev + +let check_eq env a_quantifiers_rev a aeq = + let typ = + Sign.it_mkProd_or_LetIn + (Cic.Appl [coq_relation ; apply_to_rels a a_quantifiers_rev]) + a_quantifiers_rev in + if + not + (is_conv env Evd.empty (Typing.type_of env Evd.empty aeq) typ) + then + raise (ProofEngineTypes.Fail (lazy + (CicPp.ppterm aeq ^ " should have type (" ^ CicPp.ppterm typ ^ ")"))) + +let check_property env a_quantifiers_rev a aeq strprop coq_prop t = + if + not + (is_conv env Evd.empty (Typing.type_of env Evd.empty t) + (Sign.it_mkProd_or_LetIn + (Cic.Appl + [coq_prop ; + apply_to_rels a a_quantifiers_rev ; + apply_to_rels aeq a_quantifiers_rev]) a_quantifiers_rev)) + then + raise (ProofEngineTypes.Fail (lazy + ("Not a valid proof of " ^ strprop ^ "."))) + +let check_refl env a_quantifiers_rev a aeq refl = + check_property env a_quantifiers_rev a aeq "reflexivity" coq_reflexive refl + +let check_sym env a_quantifiers_rev a aeq sym = + check_property env a_quantifiers_rev a aeq "symmetry" coq_symmetric sym + +let check_trans env a_quantifiers_rev a aeq trans = + check_property env a_quantifiers_rev a aeq "transitivity" coq_transitive trans + +let int_add_relation id a aeq refl sym trans = + let env = Global.env () in + let a_quantifiers_rev = check_a env a in + check_eq env a_quantifiers_rev a aeq ; + option_iter (check_refl env a_quantifiers_rev a aeq) refl ; + option_iter (check_sym env a_quantifiers_rev a aeq) sym ; + option_iter (check_trans env a_quantifiers_rev a aeq) trans ; + let quantifiers_no = List.length a_quantifiers_rev in + let aeq_rel = + { rel_a = a; + rel_aeq = aeq; + rel_refl = refl; + rel_sym = sym; + rel_trans = trans; + rel_quantifiers_no = quantifiers_no; + rel_X_relation_class = Cic.Sort Cic.Prop; (* dummy value, overwritten below *) + rel_Xreflexive_relation_class = Cic.Sort Cic.Prop (* dummy value, overwritten below *) + } in + let x_relation_class = + let subst = + let len = List.length a_quantifiers_rev in + list_map_i (fun i _ -> Cic.Rel (len - i + 2)) 0 a_quantifiers_rev in + cic_relation_class_of_X_relation + (Cic.Rel 2) (Cic.Rel 1) (apply_to_relation subst aeq_rel) in + let _ = + Declare.declare_internal_constant id + (DefinitionEntry + {const_entry_body = + Sign.it_mkLambda_or_LetIn x_relation_class + ([ Name (id_of_string "v"),None,Cic.Rel 1; + Name (id_of_string "X"),None,Cic.Sort (Cic.Type (CicUniv.fresh ()))] @ + a_quantifiers_rev); + const_entry_type = None; + const_entry_opaque = false; + const_entry_boxed = Options.boxed_definitions()}, + IsDefinition Definition) in + let id_precise = id_of_string (string_of_id id ^ "_precise_relation_class") in + let xreflexive_relation_class = + let subst = + let len = List.length a_quantifiers_rev in + list_map_i (fun i _ -> Cic.Rel (len - i)) 0 a_quantifiers_rev + in + cic_precise_relation_class_of_relation (apply_to_relation subst aeq_rel) in + let _ = + Declare.declare_internal_constant id_precise + (DefinitionEntry + {const_entry_body = + Sign.it_mkLambda_or_LetIn xreflexive_relation_class a_quantifiers_rev; + const_entry_type = None; + const_entry_opaque = false; + const_entry_boxed = Options.boxed_definitions() }, + IsDefinition Definition) in + let aeq_rel = + { aeq_rel with + rel_X_relation_class = current_constant id; + rel_Xreflexive_relation_class = current_constant id_precise } in + Lib.add_anonymous_leaf (relation_to_obj (aeq, aeq_rel)) ; + Options.if_verbose prerr_endline (CicPp.ppterm aeq ^ " is registered as a relation"); + match trans with + None -> () + | Some trans -> + let mor_name = id_of_string (string_of_id id ^ "_morphism") in + let a_instance = apply_to_rels a a_quantifiers_rev in + let aeq_instance = apply_to_rels aeq a_quantifiers_rev in + let sym_instance = + HExtlib.map_option (fun x -> apply_to_rels x a_quantifiers_rev) sym in + let refl_instance = + HExtlib.map_option (fun x -> apply_to_rels x a_quantifiers_rev) refl in + let trans_instance = apply_to_rels trans a_quantifiers_rev in + let aeq_rel_class_and_var1, aeq_rel_class_and_var2, lemma, output = + match sym_instance, refl_instance with + None, None -> + (Some false, Relation aeq_rel), + (Some true, Relation aeq_rel), + Cic.Appl + [coq_equality_morphism_of_asymmetric_areflexive_transitive_relation; + a_instance ; aeq_instance ; trans_instance], + coq_impl_relation + | None, Some refl_instance -> + (Some false, Relation aeq_rel), + (Some true, Relation aeq_rel), + Cic.Appl + [coq_equality_morphism_of_asymmetric_reflexive_transitive_relation; + a_instance ; aeq_instance ; refl_instance ; trans_instance], + coq_impl_relation + | Some sym_instance, None -> + (None, Relation aeq_rel), + (None, Relation aeq_rel), + Cic.Appl + [coq_equality_morphism_of_symmetric_areflexive_transitive_relation; + a_instance ; aeq_instance ; sym_instance ; trans_instance], + coq_iff_relation + | Some sym_instance, Some refl_instance -> + (None, Relation aeq_rel), + (None, Relation aeq_rel), + Cic.Appl + [coq_equality_morphism_of_symmetric_reflexive_transitive_relation; + a_instance ; aeq_instance ; refl_instance ; sym_instance ; + trans_instance], + coq_iff_relation in + let _ = + Declare.declare_internal_constant mor_name + (DefinitionEntry + {const_entry_body = Sign.it_mkLambda_or_LetIn lemma a_quantifiers_rev; + const_entry_type = None; + const_entry_opaque = false; + const_entry_boxed = Options.boxed_definitions()}, + IsDefinition Definition) + in + let a_quantifiers_rev = + List.map (fun (n,b,t) -> assert (b = None); n,t) a_quantifiers_rev in + add_morphism None mor_name + (aeq,a_quantifiers_rev,[aeq_rel_class_and_var1; aeq_rel_class_and_var2], + output) +*) + +(* The vernac command "Add Relation ..." *) +let add_relation id a aeq refl sym trans = +(*COQ + int_add_relation id (constr_of a) (constr_of aeq) (HExtlib.map_option constr_of refl) + (HExtlib.map_option constr_of sym) (HExtlib.map_option constr_of trans) +*) assert false + +(****************************** The tactic itself *******************************) + +type direction = + Left2Right + | Right2Left + +let prdirection = + function + Left2Right -> "->" + | Right2Left -> "<-" + +type constr_with_marks = + | MApp of Cic.term * morphism_class * constr_with_marks list * direction + | ToReplace + | ToKeep of Cic.term * relation relation_class * direction + +let is_to_replace = function + | ToKeep _ -> false + | ToReplace -> true + | MApp _ -> true + +let get_mark a = + List.fold_left (||) false (List.map is_to_replace a) + +let cic_direction_of_direction = + function + Left2Right -> coq_Left2Right + | Right2Left -> coq_Right2Left + +let opposite_direction = + function + Left2Right -> Right2Left + | Right2Left -> Left2Right + +let direction_of_constr_with_marks hole_direction = + function + MApp (_,_,_,dir) -> cic_direction_of_direction dir + | ToReplace -> hole_direction + | ToKeep (_,_,dir) -> cic_direction_of_direction dir + +type argument = + Toapply of Cic.term (* apply the function to the argument *) + | Toexpand of Cic.name * Cic.term (* beta-expand the function w.r.t. an argument + of this type *) +let beta_expand c args_rev = + let rec to_expand = + function + [] -> [] + | (Toapply _)::tl -> to_expand tl + | (Toexpand (name,s))::tl -> (name,s)::(to_expand tl) in + let rec aux n = + function + [] -> [] + | (Toapply arg)::tl -> arg::(aux n tl) + | (Toexpand _)::tl -> (Cic.Rel n)::(aux (n + 1) tl) + in + compose_lambda (to_expand args_rev) + (Cic.Appl (c :: List.rev (aux 1 args_rev))) + +exception Optimize (* used to fall-back on the tactic for Leibniz equality *) + +let rec list_sep_last = function + | [] -> assert false + | hd::[] -> (hd,[]) + | hd::tl -> let (l,tl) = list_sep_last tl in (l,hd::tl) + +let relation_class_that_matches_a_constr caller_name new_goals hypt = + let heq, hargs = + match hypt with + Cic.Appl (heq::hargs) -> heq,hargs + | _ -> hypt,[] + in + let rec get_all_but_last_two = + function + [] + | [_] -> + raise (ProofEngineTypes.Fail (lazy (CicPp.ppterm hypt ^ + " is not a registered relation."))) + | [_;_] -> [] + | he::tl -> he::(get_all_but_last_two tl) in + let all_aeq_args = get_all_but_last_two hargs in + let rec find_relation l subst = + let aeq = Cic.Appl (heq::l) in + try + let rel = find_relation_class aeq in + match rel,new_goals with + Leibniz _,[] -> + assert (subst = []); + raise Optimize (* let's optimize the proof term size *) + | Leibniz (Some _), _ -> + assert (subst = []); + rel + | Leibniz None, _ -> + (* for well-typedness reasons it should have been catched by the + previous guard in the previous iteration. *) + assert false + | Relation rel,_ -> Relation (apply_to_relation subst rel) + with Not_found -> + if l = [] then + raise (ProofEngineTypes.Fail (lazy + (CicPp.ppterm (Cic.Appl (aeq::all_aeq_args)) ^ + " is not a registered relation."))) + else + let last,others = list_sep_last l in + find_relation others (last::subst) + in + find_relation all_aeq_args [] + +(* rel1 is a subrelation of rel2 whenever + forall x1 x2, rel1 x1 x2 -> rel2 x1 x2 + The Coq part of the tactic, however, needs rel1 == rel2. + Hence the third case commented out. + Note: accepting user-defined subtrelations seems to be the last + useful generalization that does not go against the original spirit of + the tactic. +*) +let subrelation gl rel1 rel2 = + match rel1,rel2 with + Relation {rel_aeq=rel_aeq1}, Relation {rel_aeq=rel_aeq2} -> + (*COQ Tacmach.pf_conv_x gl rel_aeq1 rel_aeq2*) assert false + | Leibniz (Some t1), Leibniz (Some t2) -> + (*COQ Tacmach.pf_conv_x gl t1 t2*) assert false + | Leibniz None, _ + | _, Leibniz None -> assert false +(* This is the commented out case (see comment above) + | Leibniz (Some t1), Relation {rel_a=t2; rel_refl = Some _} -> + Tacmach.pf_conv_x gl t1 t2 +*) + | _,_ -> false + +(* this function returns the list of new goals opened by a constr_with_marks *) +let rec collect_new_goals = + function + MApp (_,_,a,_) -> List.concat (List.map collect_new_goals a) + | ToReplace + | ToKeep (_,Leibniz _,_) + | ToKeep (_,Relation {rel_refl=Some _},_) -> [] + | ToKeep (c,Relation {rel_aeq=aeq; rel_refl=None},_) -> [Cic.Appl[aeq;c;c]] + +(* two marked_constr are equivalent if they produce the same set of new goals *) +let marked_constr_equiv_or_more_complex to_marked_constr gl c1 c2 = + let glc1 = collect_new_goals (to_marked_constr c1) in + let glc2 = collect_new_goals (to_marked_constr c2) in + List.for_all (fun c -> List.exists (fun c' -> (*COQ pf_conv_x gl c c'*) assert false) glc1) glc2 + +let pr_new_goals i c = + let glc = collect_new_goals c in + " " ^ string_of_int i ^ ") side conditions:" ^ + (if glc = [] then " no side conditions" + else + ("\n " ^ + String.concat "\n " + (List.map (fun c -> " ... |- " ^ CicPp.ppterm c) glc))) + +(* given a list of constr_with_marks, it returns the list where + constr_with_marks than open more goals than simpler ones in the list + are got rid of *) +let elim_duplicates gl to_marked_constr = + let rec aux = + function + [] -> [] + | he:: tl -> + if List.exists + (marked_constr_equiv_or_more_complex to_marked_constr gl he) tl + then aux tl + else he::aux tl + in + aux + +let filter_superset_of_new_goals gl new_goals l = + List.filter + (fun (_,_,c) -> + List.for_all + (fun g -> List.exists ((*COQ pf_conv_x gl g*)assert false) (collect_new_goals c)) new_goals) l + +(* given the list of lists [ l1 ; ... ; ln ] it returns the list of lists + [ c1 ; ... ; cn ] that is the cartesian product of the sets l1, ..., ln *) +let cartesian_product gl a = + let rec aux = + function + [] -> assert false + | [he] -> List.map (fun e -> [e]) he + | he::tl -> + let tl' = aux tl in + List.flatten + (List.map (function e -> List.map (function l -> e :: l) tl') he) + in + aux (List.map (elim_duplicates gl (fun x -> x)) a) + +let does_not_occur n t = assert false + +let mark_occur gl ~new_goals t in_c input_relation input_direction = + let rec aux output_relation output_direction in_c = + if t = in_c then + if input_direction = output_direction + && subrelation gl input_relation output_relation then + [ToReplace] + else [] + else + match in_c with + | Cic.Appl (c::al) -> + let mors_and_cs_and_als = + let mors_and_cs_and_als = + let morphism_table_find c = + try morphism_table_find c with Not_found -> [] in + let rec aux acc = + function + [] -> + let c' = Cic.Appl (c::acc) in + let al' = [] in + List.map (fun m -> m,c',al') (morphism_table_find c') + | (he::tl) as l -> + let c' = Cic.Appl (c::acc) in + let acc' = acc @ [he] in + (List.map (fun m -> m,c',l) (morphism_table_find c')) @ + (aux acc' tl) + in + aux [] al in + let mors_and_cs_and_als = + List.map + (function (m,c,al) -> + relation_morphism_of_constr_morphism m, c, al) + mors_and_cs_and_als in + let mors_and_cs_and_als = + List.fold_left + (fun l (m,c,al) -> + try (unify_morphism_with_arguments gl (c,al) m t) :: l + with Impossible -> l + ) [] mors_and_cs_and_als + in + List.filter + (fun (mor,_,_) -> subrelation gl mor.output output_relation) + mors_and_cs_and_als + in + (* First we look for well typed morphisms *) + let res_mors = + List.fold_left + (fun res (mor,c,al) -> + let a = + let arguments = mor.args in + let apply_variance_to_direction default_dir = + function + None -> default_dir + | Some true -> output_direction + | Some false -> opposite_direction output_direction + in + List.map2 + (fun a (variance,relation) -> + (aux relation + (apply_variance_to_direction Left2Right variance) a) @ + (aux relation + (apply_variance_to_direction Right2Left variance) a) + ) al arguments + in + let a' = cartesian_product gl a in + (List.map + (function a -> + if not (get_mark a) then + ToKeep (in_c,output_relation,output_direction) + else + MApp (c,ACMorphism mor,a,output_direction)) a') @ res + ) [] mors_and_cs_and_als in + (* Then we look for well typed functions *) + let res_functions = + (* the tactic works only if the function type is + made of non-dependent products only. However, here we + can cheat a bit by partially istantiating c to match + the requirement when the arguments to be replaced are + bound by non-dependent products only. *) + let typeofc = (*COQ Tacmach.pf_type_of gl c*) assert false in + let typ = (*COQ nf_betaiota typeofc*) let _ = typeofc in assert false in + let rec find_non_dependent_function context c c_args_rev typ + f_args_rev a_rev + = + function + [] -> + if a_rev = [] then + [ToKeep (in_c,output_relation,output_direction)] + else + let a' = + cartesian_product gl (List.rev a_rev) + in + List.fold_left + (fun res a -> + if not (get_mark a) then + (ToKeep (in_c,output_relation,output_direction))::res + else + let err = + match output_relation with + Leibniz (Some typ') when (*COQ pf_conv_x gl typ typ'*) assert false -> + false + | Leibniz None -> assert false + | _ when output_relation = coq_iff_relation + -> false + | _ -> true + in + if err then res + else + let mor = + ACFunction{f_args=List.rev f_args_rev;f_output=typ} in + let func = beta_expand c c_args_rev in + (MApp (func,mor,a,output_direction))::res + ) [] a' + | (he::tl) as a-> + let typnf = (*COQ Reduction.whd_betadeltaiota env typ*) assert false in + match typnf with + Cic.Cast (typ,_) -> + find_non_dependent_function context c c_args_rev typ + f_args_rev a_rev a + | Cic.Prod (name,s,t) -> + let context' = Some (name, Cic.Decl s)::context in + let he = + (aux (Leibniz (Some s)) Left2Right he) @ + (aux (Leibniz (Some s)) Right2Left he) in + if he = [] then [] + else + let he0 = List.hd he in + begin + match does_not_occur 1 t, he0 with + _, ToKeep (arg,_,_) -> + (* invariant: if he0 = ToKeep (t,_,_) then every + element in he is = ToKeep (t,_,_) *) + assert + (List.for_all + (function + ToKeep(arg',_,_) when (*COQpf_conv_x gl arg arg'*) assert false -> + true + | _ -> false) he) ; + (* generic product, to keep *) + find_non_dependent_function + context' c ((Toapply arg)::c_args_rev) + (CicSubstitution.subst arg t) f_args_rev a_rev tl + | true, _ -> + (* non-dependent product, to replace *) + find_non_dependent_function + context' c ((Toexpand (name,s))::c_args_rev) + (CicSubstitution.lift 1 t) (s::f_args_rev) (he::a_rev) tl + | false, _ -> + (* dependent product, to replace *) + (* This limitation is due to the reflexive + implementation and it is hard to lift *) + raise (ProofEngineTypes.Fail (lazy + ("Cannot rewrite in the argument of a " ^ + "dependent product. If you need this " ^ + "feature, please report to the author."))) + end + | _ -> assert false + in + find_non_dependent_function (*COQ (Tacmach.pf_env gl) ci vuole il contesto*)(assert false) c [] typ [] [] + al + in + elim_duplicates gl (fun x -> x) (res_functions @ res_mors) + | Cic.Prod (_, c1, c2) -> + if (*COQ (dependent (Cic.Rel 1) c2)*) assert false + then + raise (ProofEngineTypes.Fail (lazy + ("Cannot rewrite in the type of a variable bound " ^ + "in a dependent product."))) + else + let typeofc1 = (*COQ Tacmach.pf_type_of gl c1*) assert false in + if not (*COQ (Tacmach.pf_conv_x gl typeofc1 (Cic.Sort Cic.Prop))*) (assert false) then + (* to avoid this error we should introduce an impl relation + whose first argument is Type instead of Prop. However, + the type of the new impl would be Type -> Prop -> Prop + that is no longer a Relation_Definitions.relation. Thus + the Coq part of the tactic should be heavily modified. *) + raise (ProofEngineTypes.Fail (lazy + ("Rewriting in a product A -> B is possible only when A " ^ + "is a proposition (i.e. A is of type Prop). The type " ^ + CicPp.ppterm c1 ^ " has type " ^ CicPp.ppterm typeofc1 ^ + " that is not convertible to Prop."))) + else + aux output_relation output_direction + (Cic.Appl [coq_impl; c1 ; CicSubstitution.subst (Cic.Rel 1 (*dummy*)) c2]) + | _ -> + if (*COQ occur_term t in_c*) assert false then + raise (ProofEngineTypes.Fail (lazy + ("Trying to replace " ^ CicPp.ppterm t ^ " in " ^ CicPp.ppterm in_c ^ + " that is not an applicative context."))) + else + [ToKeep (in_c,output_relation,output_direction)] + in + let aux2 output_relation output_direction = + List.map + (fun res -> output_relation,output_direction,res) + (aux output_relation output_direction in_c) in + let res = + (aux2 coq_iff_relation Right2Left) @ + (* This is the case of a proposition of signature A ++> iff or B --> iff *) + (aux2 coq_iff_relation Left2Right) @ + (aux2 coq_impl_relation Right2Left) in + let res = elim_duplicates gl (function (_,_,t) -> t) res in + let res' = filter_superset_of_new_goals gl new_goals res in + match res' with + [] when res = [] -> + raise (ProofEngineTypes.Fail (lazy + ("Either the term " ^ CicPp.ppterm t ^ " that must be " ^ + "rewritten occurs in a covariant position or the goal is not " ^ + "made of morphism applications only. You can replace only " ^ + "occurrences that are in a contravariant position and such that " ^ + "the context obtained by abstracting them is made of morphism " ^ + "applications only."))) + | [] -> + raise (ProofEngineTypes.Fail (lazy + ("No generated set of side conditions is a superset of those " ^ + "requested by the user. The generated sets of side conditions " ^ + "are:\n" ^ + prlist_with_sepi "\n" + (fun i (_,_,mc) -> pr_new_goals i mc) res))) + | [he] -> he + | he::_ -> + prerr_endline + ("Warning: The application of the tactic is subject to one of " ^ + "the \nfollowing set of side conditions that the user needs " ^ + "to prove:\n" ^ + prlist_with_sepi "\n" + (fun i (_,_,mc) -> pr_new_goals i mc) res' ^ + "\nThe first set is randomly chosen. Use the syntax " ^ + "\"setoid_rewrite ... generate side conditions ...\" to choose " ^ + "a different set.") ; + he + +let cic_morphism_context_list_of_list hole_relation hole_direction out_direction += + let check = + function + (None,dir,dir') -> + Cic.Appl [coq_MSNone ; dir ; dir'] + | (Some true,dir,dir') -> + assert (dir = dir'); + Cic.Appl [coq_MSCovariant ; dir] + | (Some false,dir,dir') -> + assert (dir <> dir'); + Cic.Appl [coq_MSContravariant ; dir] in + let rec aux = + function + [] -> assert false + | [(variance,out),(value,direction)] -> + Cic.Appl [coq_singl ; coq_Argument_Class ; out], + Cic.Appl + [coq_fcl_singl; + hole_relation; hole_direction ; out ; + direction ; out_direction ; + check (variance,direction,out_direction) ; value] + | ((variance,out),(value,direction))::tl -> + let outtl, valuetl = aux tl in + Cic.Appl + [coq_cons; coq_Argument_Class ; out ; outtl], + Cic.Appl + [coq_fcl_cons; + hole_relation ; hole_direction ; out ; outtl ; + direction ; out_direction ; + check (variance,direction,out_direction) ; + value ; valuetl] + in aux + +let rec cic_type_nelist_of_list = + function + [] -> assert false + | [value] -> + Cic.Appl [coq_singl; Cic.Sort (Cic.Type (CicUniv.fresh ())) ; value] + | value::tl -> + Cic.Appl + [coq_cons; Cic.Sort (Cic.Type (CicUniv.fresh ())); value; + cic_type_nelist_of_list tl] + +let syntactic_but_representation_of_marked_but hole_relation hole_direction = + let rec aux out (rel_out,precise_out,is_reflexive) = + function + MApp (f, m, args, direction) -> + let direction = cic_direction_of_direction direction in + let morphism_theory, relations = + match m with + ACMorphism { args = args ; morphism_theory = morphism_theory } -> + morphism_theory,args + | ACFunction { f_args = f_args ; f_output = f_output } -> + let mt = + if (*COQ eq_constr out (cic_relation_class_of_relation_class + coq_iff_relation)*) assert false + then + Cic.Appl + [coq_morphism_theory_of_predicate; + cic_type_nelist_of_list f_args; f] + else + Cic.Appl + [coq_morphism_theory_of_function; + cic_type_nelist_of_list f_args; f_output; f] + in + mt,List.map (fun x -> None,Leibniz (Some x)) f_args in + let cic_relations = + List.map + (fun (variance,r) -> + variance, + r, + cic_relation_class_of_relation_class r, + cic_precise_relation_class_of_relation_class r + ) relations in + let cic_args_relations,argst = + cic_morphism_context_list_of_list hole_relation hole_direction direction + (List.map2 + (fun (variance,trel,t,precise_t) v -> + (variance,cic_argument_class_of_argument_class (variance,trel)), + (aux t precise_t v, + direction_of_constr_with_marks hole_direction v) + ) cic_relations args) + in + Cic.Appl + [coq_App; + hole_relation ; hole_direction ; + cic_args_relations ; out ; direction ; + morphism_theory ; argst] + | ToReplace -> + Cic.Appl [coq_ToReplace ; hole_relation ; hole_direction] + | ToKeep (c,_,direction) -> + let direction = cic_direction_of_direction direction in + if is_reflexive then + Cic.Appl + [coq_ToKeep ; hole_relation ; hole_direction ; precise_out ; + direction ; c] + else + let c_is_proper = + let typ = Cic.Appl [rel_out ; c ; c] in + Cic.Cast ((*COQ Evarutil.mk_new_meta ()*)assert false, typ) + in + Cic.Appl + [coq_ProperElementToKeep ; + hole_relation ; hole_direction; precise_out ; + direction; c ; c_is_proper] + in aux + +let apply_coq_setoid_rewrite hole_relation prop_relation c1 c2 (direction,h) + prop_direction m += + let hole_relation = cic_relation_class_of_relation_class hole_relation in + let hyp,hole_direction = h,cic_direction_of_direction direction in + let cic_prop_relation = cic_relation_class_of_relation_class prop_relation in + let precise_prop_relation = + cic_precise_relation_class_of_relation_class prop_relation + in + Cic.Appl + [coq_setoid_rewrite; + hole_relation ; hole_direction ; cic_prop_relation ; + prop_direction ; c1 ; c2 ; + syntactic_but_representation_of_marked_but hole_relation hole_direction + cic_prop_relation precise_prop_relation m ; hyp] + +(*COQ +let check_evar_map_of_evars_defs evd = + let metas = Evd.meta_list evd in + let check_freemetas_is_empty rebus = + Evd.Metaset.iter + (fun m -> + if Evd.meta_defined evd m then () else + raise (Logic.RefinerError (Logic.OccurMetaGoal rebus))) + in + List.iter + (fun (_,binding) -> + match binding with + Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) -> + check_freemetas_is_empty rebus freemetas + | Evd.Clval (_,{Evd.rebus=rebus1; Evd.freemetas=freemetas1}, + {Evd.rebus=rebus2; Evd.freemetas=freemetas2}) -> + check_freemetas_is_empty rebus1 freemetas1 ; + check_freemetas_is_empty rebus2 freemetas2 + ) metas +*) + +(* For a correct meta-aware "rewrite in", we split unification + apart from the actual rewriting (Pierre L, 05/04/06) *) + +(* [unification_rewrite] searchs a match for [c1] in [but] and then + returns the modified objects (in particular [c1] and [c2]) *) + +let unification_rewrite c1 c2 cl but gl = +(*COQ + let (env',c1) = + try + (* ~mod_delta:false to allow to mark occurences that must not be + rewritten simply by replacing them with let-defined definitions + in the context *) + w_unify_to_subterm ~mod_delta:false (pf_env gl) (c1,but) cl.env + with + Pretype_errors.PretypeError _ -> + (* ~mod_delta:true to make Ring work (since it really + exploits conversion) *) + w_unify_to_subterm ~mod_delta:true (pf_env gl) (c1,but) cl.env + in + let cl' = {cl with env = env' } in + let c2 = Clenv.clenv_nf_meta cl' c2 in + check_evar_map_of_evars_defs env' ; + env',Clenv.clenv_value cl', c1, c2 +*) assert false + +(* no unification is performed in this function. [sigma] is the + substitution obtained from an earlier unification. *) + +let relation_rewrite_no_unif c1 c2 hyp ~new_goals sigma gl = + let but = (*COQ pf_concl gl*) assert false in + try + let input_relation = + relation_class_that_matches_a_constr "Setoid_rewrite" + new_goals ((*COQTyping.mtype_of (pf_env gl) sigma (snd hyp)*) assert false) in + let output_relation,output_direction,marked_but = + mark_occur gl ~new_goals c1 but input_relation (fst hyp) in + let cic_output_direction = cic_direction_of_direction output_direction in + let if_output_relation_is_iff gl = + let th = + apply_coq_setoid_rewrite input_relation output_relation c1 c2 hyp + cic_output_direction marked_but + in + let new_but = (*COQ Termops.replace_term c1 c2 but*) assert false in + let hyp1,hyp2,proj = + match output_direction with + Right2Left -> new_but, but, coq_proj1 + | Left2Right -> but, new_but, coq_proj2 + in + let impl1 = Cic.Prod (Cic.Anonymous, hyp2, CicSubstitution.lift 1 hyp1) in + let impl2 = Cic.Prod (Cic.Anonymous, hyp1, CicSubstitution.lift 1 hyp2) in + let th' = Cic.Appl [proj; impl2; impl1; th] in + (*COQ Tactics.refine + (Cic.Appl [th'; mkCast (Evarutil.mk_new_meta(), DEFAULTcast, new_but)]) + gl*) let _ = th' in assert false in + let if_output_relation_is_if gl = + let th = + apply_coq_setoid_rewrite input_relation output_relation c1 c2 hyp + cic_output_direction marked_but + in + let new_but = (*COQ Termops.replace_term c1 c2 but*) assert false in + (*COQ Tactics.refine + (Cic.Appl [th ; mkCast (Evarutil.mk_new_meta(), DEFAULTcast, new_but)]) + gl*) let _ = new_but,th in assert false in + if output_relation = coq_iff_relation then + if_output_relation_is_iff gl + else + if_output_relation_is_if gl + with + Optimize -> + (*COQ !general_rewrite (fst hyp = Left2Right) (snd hyp) gl*) assert false + +let relation_rewrite c1 c2 (input_direction,cl) ~new_goals gl = + let (sigma,cl,c1,c2) = unification_rewrite c1 c2 cl ((*COQ pf_concl gl*) assert false) gl in + relation_rewrite_no_unif c1 c2 (input_direction,cl) ~new_goals sigma gl + +let analyse_hypothesis gl c = + let ctype = (*COQ pf_type_of gl c*) assert false in + let eqclause = (*COQ Clenv.make_clenv_binding gl (c,ctype) Rawterm.NoBindings*) let _ = ctype in assert false in + let (equiv, args) = (*COQ decompose_app (Clenv.clenv_type eqclause)*) assert false in + let rec split_last_two = function + | [c1;c2] -> [],(c1, c2) + | x::y::z -> + let l,res = split_last_two (y::z) in x::l, res + | _ -> raise (ProofEngineTypes.Fail (lazy "The term provided is not an equivalence")) in + let others,(c1,c2) = split_last_two args in + eqclause,Cic.Appl (equiv::others),c1,c2 + +let general_s_rewrite lft2rgt c ~new_goals (*COQgl*) = +(*COQ + let eqclause,_,c1,c2 = analyse_hypothesis gl c in + if lft2rgt then + relation_rewrite c1 c2 (Left2Right,eqclause) ~new_goals gl + else + relation_rewrite c2 c1 (Right2Left,eqclause) ~new_goals gl +*) assert false + +let relation_rewrite_in id c1 c2 (direction,eqclause) ~new_goals gl = + let hyp = (*COQ pf_type_of gl (mkVar id)*) assert false in + (* first, we find a match for c1 in the hyp *) + let (sigma,cl,c1,c2) = unification_rewrite c1 c2 eqclause hyp gl in + (* since we will actually rewrite in the opposite direction, we also need + to replace every occurrence of c2 (resp. c1) in hyp with something that + is convertible but not syntactically equal. To this aim we introduce a + let-in and then we will use the intro tactic to get rid of it. + Quite tricky to do properly since c1 can occur in c2 or vice-versa ! *) + let mangled_new_hyp = + let hyp = CicSubstitution.lift 2 hyp in + (* first, we backup every occurences of c1 in newly allocated (Rel 1) *) + let hyp = (*COQ Termops.replace_term (CicSubstitution.lift 2 c1) (Cic.Rel 1) hyp*) let _ = hyp in assert false in + (* then, we factorize every occurences of c2 into (Rel 2) *) + let hyp = (*COQ Termops.replace_term (CicSubstitution.lift 2 c2) (Cic.Rel 2) hyp*) let _ = hyp in assert false in + (* Now we substitute (Rel 1) (i.e. c1) for c2 *) + let hyp = CicSubstitution.subst (CicSubstitution.lift 1 c2) hyp in + (* Since CicSubstitution.subst has killed Rel 1 and decreased the other Rels, + Rel 1 is now coding for c2, we can build the let-in factorizing c2 *) + Cic.LetIn (Cic.Anonymous,c2,hyp) + in + let new_hyp = (*COQ Termops.replace_term c1 c2 hyp*) assert false in + let oppdir = opposite_direction direction in +(*COQ + cut_replacing id new_hyp + (tclTHENLAST + (tclTHEN (change_in_concl None mangled_new_hyp) + (tclTHEN intro + (relation_rewrite_no_unif c2 c1 (oppdir,cl) ~new_goals sigma)))) + gl +*) let _ = oppdir,new_hyp,mangled_new_hyp in assert false + +let general_s_rewrite_in id lft2rgt c ~new_goals (*COQgl*) = +(*COQ + let eqclause,_,c1,c2 = analyse_hypothesis gl c in + if lft2rgt then + relation_rewrite_in id c1 c2 (Left2Right,eqclause) ~new_goals gl + else + relation_rewrite_in id c2 c1 (Right2Left,eqclause) ~new_goals gl +*) assert false + +let setoid_replace relation c1 c2 ~new_goals (*COQgl*) = + try + let relation = + match relation with + Some rel -> + (try + match find_relation_class rel with + Relation sa -> sa + | Leibniz _ -> raise Optimize + with + Not_found -> + raise (ProofEngineTypes.Fail (lazy + (CicPp.ppterm rel ^ " is not a registered relation.")))) + | None -> + match default_relation_for_carrier ((*COQ pf_type_of gl c1*) assert false) with + Relation sa -> sa + | Leibniz _ -> raise Optimize + in + let eq_left_to_right = Cic.Appl [relation.rel_aeq; c1 ; c2] in + let eq_right_to_left = Cic.Appl [relation.rel_aeq; c2 ; c1] in +(*COQ + let replace dir eq = + tclTHENS (assert_tac false Cic.Anonymous eq) + [onLastHyp (fun id -> + tclTHEN + (general_s_rewrite dir (mkVar id) ~new_goals) + (clear [id])); + Tacticals.tclIDTAC] + in + tclORELSE + (replace true eq_left_to_right) (replace false eq_right_to_left) gl +*) let _ = eq_left_to_right,eq_right_to_left in assert false + with + Optimize -> (*COQ (!replace c1 c2) gl*) assert false + +let setoid_replace_in id relation c1 c2 ~new_goals (*COQgl*) = +(*COQ + let hyp = pf_type_of gl (mkVar id) in + let new_hyp = Termops.replace_term c1 c2 hyp in + cut_replacing id new_hyp + (fun exact -> tclTHENLASTn + (setoid_replace relation c2 c1 ~new_goals) + [| exact; tclIDTAC |]) gl +*) assert false + +(* [setoid_]{reflexivity,symmetry,transitivity} tactics *) + +let setoid_reflexivity (*COQgl*) = + try + let relation_class = + relation_class_that_matches_a_constr "Setoid_reflexivity" + [] ((*COQ pf_concl gl*) assert false) in + match relation_class with + Leibniz _ -> assert false (* since [] is empty *) + | Relation rel -> + match rel.rel_refl with + None -> + raise (ProofEngineTypes.Fail (lazy + ("The relation " ^ prrelation rel ^ " is not reflexive."))) + | Some refl -> (*COQ apply refl gl*) assert false + with + Optimize -> (*COQ reflexivity gl*) assert false + +let setoid_symmetry (*COQgl*) = + try + let relation_class = + relation_class_that_matches_a_constr "Setoid_symmetry" + [] ((*COQ pf_concl gl*) assert false) in + match relation_class with + Leibniz _ -> assert false (* since [] is empty *) + | Relation rel -> + match rel.rel_sym with + None -> + raise (ProofEngineTypes.Fail (lazy + ("The relation " ^ prrelation rel ^ " is not symmetric."))) + | Some sym -> (*COQ apply sym gl*) assert false + with + Optimize -> (*COQ symmetry gl*) assert false + +let setoid_symmetry_in id (*COQgl*) = +(*COQ + let new_hyp = + let _,he,c1,c2 = analyse_hypothesis gl (mkVar id) in + Cic.Appl [he ; c2 ; c1] + in + cut_replacing id new_hyp (tclTHEN setoid_symmetry) gl +*) assert false + +let setoid_transitivity c (*COQgl*) = + try + let relation_class = + relation_class_that_matches_a_constr "Setoid_transitivity" + [] ((*COQ pf_concl gl*) assert false) in + match relation_class with + Leibniz _ -> assert false (* since [] is empty *) + | Relation rel -> +(*COQ + let ctyp = pf_type_of gl c in + let rel' = unify_relation_carrier_with_type (pf_env gl) rel ctyp in + match rel'.rel_trans with + None -> + raise (ProofEngineTypes.Fail (lazy + ("The relation " ^ prrelation rel ^ " is not transitive."))) + | Some trans -> + let transty = nf_betaiota (pf_type_of gl trans) in + let argsrev, _ = + Reductionops.decomp_n_prod (pf_env gl) Evd.empty 2 transty in + let binder = + match List.rev argsrev with + _::(Name n2,None,_)::_ -> Rawterm.NamedHyp n2 + | _ -> assert false + in + apply_with_bindings + (trans, Rawterm.ExplicitBindings [ dummy_loc, binder, c ]) gl +*) assert false + with + Optimize -> (*COQ transitivity c gl*) assert false +;; + +(*COQ +Tactics.register_setoid_reflexivity setoid_reflexivity;; +Tactics.register_setoid_symmetry setoid_symmetry;; +Tactics.register_setoid_symmetry_in setoid_symmetry_in;; +Tactics.register_setoid_transitivity setoid_transitivity;; +*) diff --git a/components/tactics/setoids.mli b/components/tactics/setoids.mli new file mode 100644 index 000000000..4c5d655cb --- /dev/null +++ b/components/tactics/setoids.mli @@ -0,0 +1,70 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* Cic.term -> ProofEngineTypes.tactic) -> unit +val register_general_rewrite : (bool -> Cic.term -> ProofEngineTypes.tactic) -> unit + +val print_setoids : unit -> unit + +val equiv_list : unit -> Cic.term list +val default_relation_for_carrier : + ?filter:(relation -> bool) -> Cic.term -> relation relation_class +(* [default_morphism] raises [Not_found] *) +val default_morphism : + ?filter:(Cic.term morphism -> bool) -> Cic.term -> relation morphism + +val setoid_replace : + Cic.term option -> Cic.term -> Cic.term -> new_goals:Cic.term list -> ProofEngineTypes.tactic +val setoid_replace_in : + string -> Cic.term option -> Cic.term -> Cic.term -> new_goals:Cic.term list -> + ProofEngineTypes.tactic + +val general_s_rewrite : bool -> Cic.term -> new_goals:Cic.term list -> ProofEngineTypes.tactic +val general_s_rewrite_in : + string -> bool -> Cic.term -> new_goals:Cic.term list -> ProofEngineTypes.tactic + +val setoid_reflexivity : ProofEngineTypes.tactic +val setoid_symmetry : ProofEngineTypes.tactic +val setoid_symmetry_in : string -> ProofEngineTypes.tactic +val setoid_transitivity : Cic.term -> ProofEngineTypes.tactic + +val add_relation : + string -> Cic.term -> Cic.term -> Cic.term option -> + Cic.term option -> Cic.term option -> unit + +val new_named_morphism : + string -> Cic.term -> morphism_signature option -> unit + +val relation_table_find : Cic.term -> relation +val relation_table_mem : Cic.term -> bool -- 2.39.2