From 6b843ebfba2ed19d2bf7a564a9d2fc92da880169 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 30 May 2008 17:08:26 +0000 Subject: [PATCH] ... --- .../matita/contribs/dama/dama/bishop_set.ma | 23 ++++++ .../contribs/dama/dama/bishop_set_rewrite.ma | 16 ++++ .../contribs/dama/dama/cprop_connectives.ma | 6 +- .../matita/contribs/dama/dama/ordered_set.ma | 2 - .../matita/contribs/dama/dama/supremum.ma | 79 ++++++++++++++++--- 5 files changed, 110 insertions(+), 16 deletions(-) diff --git a/helm/software/matita/contribs/dama/dama/bishop_set.ma b/helm/software/matita/contribs/dama/dama/bishop_set.ma index 1c68695d3..1e7436af9 100644 --- a/helm/software/matita/contribs/dama/dama/bishop_set.ma +++ b/helm/software/matita/contribs/dama/dama/bishop_set.ma @@ -75,3 +75,26 @@ qed. lemma le_le_eq: ∀E:ordered_set.∀a,b:E. a ≤ b → b ≤ a → a ≈ b. intros (E x y L1 L2); intro H; cases H; [apply L1|apply L2] assumption; qed. + +definition lt ≝ λE:ordered_set.λa,b:E. a ≤ b ∧ a # b. + +interpretation "ordered sets less than" 'lt a b = + (cic:/matita/dama/bishop_set/lt.con _ a b). + +lemma lt_coreflexive: ∀E.coreflexive ? (lt E). +intros 2 (E x); intro H; cases H (_ ABS); +apply (bs_coreflexive ? x ABS); +qed. + +lemma lt_transitive: ∀E.transitive ? (lt E). +intros (E); unfold; intros (x y z H1 H2); cases H1 (Lxy Axy); cases H2 (Lyz Ayz); +split; [apply (le_transitive ???? Lxy Lyz)] clear H1 H2; +cases Axy (H1 H1); cases Ayz (H2 H2); [1:cases (Lxy H1)|3:cases (Lyz H2)]clear Axy Ayz; +[1: cases (os_cotransitive ??? y H1) (X X); [cases (Lxy X)|cases (os_coreflexive ?? X)] +|2: cases (os_cotransitive ??? x H2) (X X); [right;assumption|cases (Lxy X)]] +qed. + +theorem lt_to_excess: ∀E:ordered_set.∀a,b:E. (a < b) → (b ≰ a). +intros (E a b Lab); cases Lab (LEab Aab); cases Aab (H H);[cases (LEab H)] +assumption; +qed. diff --git a/helm/software/matita/contribs/dama/dama/bishop_set_rewrite.ma b/helm/software/matita/contribs/dama/dama/bishop_set_rewrite.ma index bd5a83a88..19518a67b 100644 --- a/helm/software/matita/contribs/dama/dama/bishop_set_rewrite.ma +++ b/helm/software/matita/contribs/dama/dama/bishop_set_rewrite.ma @@ -70,3 +70,19 @@ interpretation "exc_rewl" 'ordered_setrewritel = (cic:/matita/dama/bishop_set_re notation > "'Ex'≫" non associative with precedence 50 for @{'ordered_setrewriter}. interpretation "exc_rewr" 'ordered_setrewriter = (cic:/matita/dama/bishop_set_rewrite/exc_rewr.con _ _ _). + +lemma lt_rewr: ∀A:ordered_set.∀x,z,y:A. x ≈ y → z < y → z < x. +intros (A x y z E H); split; cases H; +[apply (Le≫ ? (eq_sym ??? E));|apply (Ap≫ ? E)] assumption; +qed. + +lemma lt_rewl: ∀A:ordered_set.∀x,z,y:A. x ≈ y → y < z → x < z. +intros (A x y z E H); split; cases H; +[apply (Le≪ ? (eq_sym ??? E));| apply (Ap≪ ? E);] assumption; +qed. + +notation > "'Lt'≪" non associative with precedence 50 for @{'ltrewritel}. +interpretation "lt_rewl" 'ltrewritel = (cic:/matita/dama/bishop_set_rewrite/lt_rewl.con _ _ _). +notation > "'Lt'≫" non associative with precedence 50 for @{'ltrewriter}. +interpretation "lt_rewr" 'ltrewriter = (cic:/matita/dama/bishop_set_rewrite/lt_rewr.con _ _ _). + diff --git a/helm/software/matita/contribs/dama/dama/cprop_connectives.ma b/helm/software/matita/contribs/dama/dama/cprop_connectives.ma index 743803cd6..a53961733 100644 --- a/helm/software/matita/contribs/dama/dama/cprop_connectives.ma +++ b/helm/software/matita/contribs/dama/dama/cprop_connectives.ma @@ -33,9 +33,7 @@ inductive exT (A:Type) (P:A→CProp) : CProp ≝ interpretation "CProp exists" 'exists \eta.x = (cic:/matita/dama/cprop_connectives/exT.ind#xpointer(1/1) _ x). -inductive False : CProp ≝ . - -definition Not ≝ λx:CProp.x → False. +definition Not : CProp → Prop ≝ λx:CProp.x → False. interpretation "constructive not" 'not x = (cic:/matita/dama/cprop_connectives/Not.con x). @@ -47,7 +45,7 @@ definition coreflexive ≝ λC:Type.λlt:C→C→CProp. ∀x:C. ¬ (lt x x). definition symmetric ≝ λC:Type.λlt:C→C→CProp. ∀x,y:C.lt x y → lt y x. -definition antisymmetric ≝ λA:Type.λR:A→A→CProp.λeq:A→A→CProp.∀x:A.∀y:A.R x y→R y x→eq x y. +definition antisymmetric ≝ λA:Type.λR:A→A→CProp.λeq:A→A→Prop.∀x:A.∀y:A.R x y→R y x→eq x y. definition reflexive ≝ λA:Type.λR:A→A→CProp.∀x:A.R x x. diff --git a/helm/software/matita/contribs/dama/dama/ordered_set.ma b/helm/software/matita/contribs/dama/dama/ordered_set.ma index b5b4d8e78..4c72cfd98 100644 --- a/helm/software/matita/contribs/dama/dama/ordered_set.ma +++ b/helm/software/matita/contribs/dama/dama/ordered_set.ma @@ -51,5 +51,3 @@ cases (os_cotransitive ??? a1 Eab) (H H); [cases (Laa1 H)] cases (os_cotransitive ??? b1 H) (H1 H1); [assumption] cases (Lb1b H1); qed. - - \ No newline at end of file diff --git a/helm/software/matita/contribs/dama/dama/supremum.ma b/helm/software/matita/contribs/dama/dama/supremum.ma index 715fb5bdb..7fb1da4ba 100644 --- a/helm/software/matita/contribs/dama/dama/supremum.ma +++ b/helm/software/matita/contribs/dama/dama/supremum.ma @@ -18,7 +18,7 @@ include "ordered_set.ma". (* Definition 2.4 *) definition upper_bound ≝ λO:ordered_set.λa:sequence O.λu:O.∀n:nat.a n ≤ u. -definition strong_sup ≝ +definition supremum ≝ λO:ordered_set.λs:sequence O.λx.upper_bound ? s x ∧ (∀y:O.x ≰ y → ∃n.s n ≰ y). definition increasing ≝ λO:ordered_set.λa:sequence O.∀n:nat.a n ≤ a (S n). @@ -27,33 +27,92 @@ notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 50 for @{'upper_bound $s $x}. notation < "s \nbsp 'is_increasing'" non associative with precedence 50 for @{'increasing $s}. -notation < "x \nbsp 'is_strong_sup' \nbsp s" non associative with precedence 50 - for @{'strong_sup $s $x}. +notation < "x \nbsp 'is_supremum' \nbsp s" non associative with precedence 50 + for @{'supremum $s $x}. notation > "x 'is_upper_bound' s" non associative with precedence 50 for @{'upper_bound $s $x}. notation > "s 'is_increasing'" non associative with precedence 50 for @{'increasing $s}. -notation > "x 'is_strong_sup' s" non associative with precedence 50 - for @{'strong_sup $s $x}. +notation > "x 'is_supremum' s" non associative with precedence 50 + for @{'supremum $s $x}. interpretation "Ordered set upper bound" 'upper_bound s x = (cic:/matita/dama/supremum/upper_bound.con _ s x). interpretation "Ordered set increasing" 'increasing s = (cic:/matita/dama/supremum/increasing.con _ s). -interpretation "Ordered set strong sup" 'strong_sup s x = - (cic:/matita/dama/supremum/strong_sup.con _ s x). +interpretation "Ordered set strong sup" 'supremum s x = + (cic:/matita/dama/supremum/supremum.con _ s x). -include "bishop_set.ma". +include "nat/compare.ma". +include "nat/plus.ma". +include "bishop_set.ma". lemma uniq_supremum: ∀O:ordered_set.∀s:sequence O.∀t1,t2:O. - t1 is_strong_sup s → t2 is_strong_sup s → t1 ≈ t2. + t1 is_supremum s → t2 is_supremum s → t1 ≈ t2. intros (O s t1 t2 Ht1 Ht2); cases Ht1 (U1 H1); cases Ht2 (U2 H2); apply le_le_eq; intro X; [1: cases (H1 ? X); apply (U2 w); assumption |2: cases (H2 ? X); apply (U1 w); assumption] qed. +(* Fact 2.5 *) +lemma supremum_is_upper_bound: + ∀C:ordered_set.∀a:sequence C.∀u:C. + u is_supremum a → ∀v.v is_upper_bound a → u ≤ v. +intros 7 (C s u Hu v Hv H); cases Hu (_ H1); clear Hu; +cases (H1 ? H) (w Hw); apply Hv; assumption; +qed. + +(* Lemma 2.6 *) +definition strictly_increasing ≝ λC:ordered_set.λa:sequence C.∀n:nat.a (S n) ≰ a n. + +definition nat_excess : nat → nat → CProp ≝ λn,m. leb (m+S O) n = true. + +axiom nat_excess_cotransitive: cotransitive ? nat_excess. +(*intros 3 (x y z); elim x 0; elim y 0; elim z 0; + [1: intros; left; assumption + |2,5,6,7: intros; first [right; constructor 1|left; constructor 1] + |3: intros (n H abs); simplify in abs; destruct abs; + |4: intros (n H m W abs); simplify in abs; destruct abs; + |8: clear x y z; intros (x H1 y H2 z H3 H4); +*) + +lemma nat_ordered_set : ordered_set. +apply (mk_ordered_set ? nat_excess); +[1: intro x; elim x (w H); simplify; intro X; [destruct X] apply H; assumption; +|2: apply nat_excess_cotransitive] +qed. - +notation < "s \nbsp 'is_strictly_increasing'" non associative with precedence 50 + for @{'strictly_increasing $s}. +notation > "s 'is_strictly_increasing'" non associative with precedence 50 + for @{'strictly_increasing $s}. +interpretation "Ordered set increasing" 'strictly_increasing s = + (cic:/matita/dama/supremum/strictly_increasing.con _ s). + +notation "a \uparrow u" non associative with precedence 50 for @{'sup_inc $a $u}. +interpretation "Ordered set supremum of increasing" 'sup_inc s u = + (cic:/matita/dama/cprop_connectives/And.ind#xpointer(1/1) + (cic:/matita/dama/supremum/increasing.con _ s) + (cic:/matita/dama/supremum/supremum.con _ s u)). + +lemma trans_increasing: + ∀C:ordered_set.∀s:sequence C.s is_increasing → ∀n,m. m ≰ n → s n ≤ s m. +intros 5 (C s Hs n m); elim m; [1: cases (?:False); autobatch] +cases (le_to_or_lt_eq ?? H1); + [2: destruct H2; apply Hs; + |1: apply (le_transitive ???? (H (lt_S_S_to_lt ?? H2))); apply Hs;] +qed. + +lemma selection: + ∀C:ordered_set.∀m:sequence nat_ordered_set.m is_strictly_increasing → + ∀a:sequence C.∀u.a ↑ u → (λx.a (m x)) ↑ u. +intros (C m Hm a u Ha); cases Ha (Ia Su); cases Su (Uu Hu); repeat split; +[1: intro n; simplify; apply trans_increasing; [assumption] + lapply (Hm n) as W; unfold nat_ordered_set in W; simplify in W; + cases W; +|2: intro n; +|3: + \ No newline at end of file -- 2.39.2