From 6c8f66d57aa3da3b91ff6c76442424dfe2eeceaf Mon Sep 17 00:00:00 2001 From: Cristian Armentano Date: Sat, 30 Jun 2007 17:15:15 +0000 Subject: [PATCH] New definition of Euler's totient function. New theorems about sigma_p (invoked with an always true predicate). Theorem about the sum of totient invocations on the divisors of a natural number. --- matita/library/nat/euler_theorem.ma | 185 ++++++- matita/library/nat/generic_sigma_p.ma | 2 +- matita/library/nat/iteration2.ma | 352 ++++++++++++ matita/library/nat/totient.ma | 98 ++-- matita/library/nat/totient1.ma | 754 ++++++++++++++++++++++++++ 5 files changed, 1321 insertions(+), 70 deletions(-) create mode 100644 matita/library/nat/totient1.ma diff --git a/matita/library/nat/euler_theorem.ma b/matita/library/nat/euler_theorem.ma index d45c15dc3..ab7d8242e 100644 --- a/matita/library/nat/euler_theorem.ma +++ b/matita/library/nat/euler_theorem.ma @@ -17,24 +17,7 @@ set "baseuri" "cic:/matita/nat/euler_theorem". include "nat/map_iter_p.ma". include "nat/totient.ma". -lemma gcd_n_n: \forall n.gcd n n = n. -intro.elim n - [reflexivity - |apply le_to_le_to_eq - [apply divides_to_le - [apply lt_O_S - |apply divides_gcd_n - ] - |apply divides_to_le - [apply lt_O_gcd.apply lt_O_S - |apply divides_d_gcd - [apply divides_n_n|apply divides_n_n] - ] - ] - ] -qed. - - +(* lemma count_card: \forall p.\forall n. p O = false \to count (S n) p = card n p. intros.elim n @@ -55,7 +38,7 @@ intros 3.apply (nat_case n) qed. -(* a reformulation of totient using card insted of count *) +( a reformulation of totient using card insted of count ) lemma totient_card: \forall n. totient n = card n (\lambda i.eqb (gcd i n) (S O)). @@ -70,15 +53,147 @@ intro.apply (nat_case n) ] ] qed. +*) + +(*this obvious property is useful because simplify, sometimes, + "simplifies too much", and doesn't allow to obtain this simple result. + *) +theorem card_Sn: \forall n:nat. \forall p:nat \to bool. +card (S n) p = (bool_to_nat (p (S n))) + (card n p). +intros. +simplify. +reflexivity. +qed. + +(* a reformulation of totient using card insted of sigma_p *) + +theorem totient_card_aux: \forall n,m: nat. +m = n \to +sigma_p (S (S n)) (\lambda m:nat.eqb (gcd m (S (S n))) (S O)) (\lambda x:nat. (S O)) += card (S n) (\lambda m:nat.eqb (gcd m (S (S n))) (S O)). +intros. +rewrite < H in \vdash (? ? (? % ? ?) ?). +rewrite < H in \vdash (? ? ? (? % ?)). +elim (m) +[ rewrite > card_Sn. + cut ((eqb (gcd (S O)(S (S n))) (S O) ) = true) + [ rewrite > Hcut. + simplify in \vdash (? ? ? %). + rewrite > true_to_sigma_p_Sn + [ rewrite > false_to_sigma_p_Sn in \vdash (? ? (? ? %) ?) + [ simplify in \vdash (? ? % ?). + reflexivity + | rewrite > gcd_O_n. + apply not_eq_to_eqb_false. + apply cic:/matita/nat/nat/not_eq_S.con. + unfold Not. + intro. + cut ( (S n) \le O) + [ apply (not_le_Sn_n n ?). + apply (transitive_le (S n) O n ? ?); + [ apply (Hcut1) + | apply (le_O_n n) + ] + | rewrite > H1. + apply le_n + ] + ] + | assumption + ] + | apply eq_to_eqb_true. + rewrite > gcd_SO_n. + reflexivity + ] +| cut ((eqb (gcd (S (S n1)) (S (S n))) (S O)) = true + \lor (eqb (gcd (S (S n1)) (S (S n))) (S O)) = false) + [ elim Hcut + [ rewrite > card_Sn. + rewrite > true_to_sigma_p_Sn + [ rewrite > H2. + simplify in \vdash (? ? ? (? % ?)). + apply eq_f. + assumption + | assumption + ] + | rewrite > card_Sn. + rewrite > false_to_sigma_p_Sn + [ rewrite > H2. + simplify in \vdash (? ? ? (? % ?)). + rewrite > sym_plus. + rewrite < plus_n_O. + assumption + | assumption + ] + ] + | elim (eqb (gcd (S (S n1)) (S (S n))) (S O)) + [ left. + reflexivity + | right. + reflexivity + ] + ] +] +qed. + + +lemma totient_card: \forall n. +totient n = card n (\lambda i.eqb (gcd i n) (S O)). +intros. +elim n +[ simplify. + reflexivity +| elim n1 + [ simplify. + reflexivity + | + (*unfold card. + intros.*) + (* here simplify creates problems: it seems it simplifies too much. I had to + * introduce the obvious theorem card_Sn. + *) + rewrite > card_Sn. + rewrite > (gcd_n_n (S (S n2))). + cut ((eqb (S (S n2)) (S O)) = false) + [ rewrite > Hcut. + simplify in \vdash (? ? ? (? % ?)). + rewrite > sym_plus. + rewrite < (plus_n_O). + unfold totient. + apply (totient_card_aux n2 n2). + reflexivity + | apply not_eq_to_eqb_false. + apply cic:/matita/nat/nat/not_eq_S.con. + unfold Not. + intro. + cut ( (S n2) \le O) + [ apply (not_le_Sn_n n2 ?). + apply (transitive_le (S n2) O n2 ? ?); + [ apply (Hcut) + | apply (le_O_n n2) + ] + | rewrite > H2. + apply le_n + ] + ] + ] +] +qed. + theorem gcd_pi_p: \forall n,k. O < k \to k \le n \to gcd n (pi_p (\lambda i.eqb (gcd i n) (S O)) k) = (S O). intros 3.elim H [rewrite > pi_p_S. cut (eqb (gcd (S O) n) (S O) = true) [rewrite > Hcut. - change with ((gcd n (S O)) = (S O)).autobatch - |apply eq_to_eqb_true.autobatch + change with ((gcd n (S O)) = (S O)). + apply (transitive_eq nat (gcd n (S O)) (gcd (S O) n) (S O) ? ?); + [ apply (sym_eq nat (gcd (S O) n) (gcd n (S O)) ?). + apply (symmetric_gcd (S O) n). + | apply (gcd_SO_n n). + ] + |apply eq_to_eqb_true. + apply (gcd_SO_n n) ] |rewrite > pi_p_S. apply eqb_elim @@ -189,11 +304,18 @@ split |apply mod_O_to_divides [assumption |rewrite > distr_times_minus. - autobatch + apply (divides_to_mod_O n (minus (times a j) (times a i)) ? ?); + [ apply (H3). + | apply (eq_mod_to_divides (times a j) (times a i) n ? ?); + [ apply (H3). + |apply (sym_eq nat (mod (times a i) n) (mod (times a j) n) ?). + apply (H13). + ] + ] ] ] ] - |autobatch + | apply (le_minus_m j i). ] ] |intro.assumption @@ -214,11 +336,17 @@ split |apply mod_O_to_divides [assumption |rewrite > distr_times_minus. - autobatch + apply (divides_to_mod_O n (minus (times a i) (times a j)) ? ?); + [apply (H3). + | apply (eq_mod_to_divides (times a i) (times a j) n ? ?); + [apply (H3). + |apply (H13). + ] + ] ] ] ] - |autobatch + | apply (le_minus_m i j). ] ] ] @@ -229,7 +357,7 @@ theorem congruent_exp_totient_SO: \forall n,a:nat. (S O) < n \to gcd a n = (S O) \to congruent (exp a (totient n)) (S O) n. intros. cut (O < a) - [apply divides_to_congruent + [ apply divides_to_congruent [apply (trans_lt ? (S O)).apply lt_O_S. assumption |change with (O < exp a (totient n)).apply lt_O_exp.assumption |apply (gcd_SO_to_divides_times_to_divides (pi_p (\lambda i.eqb (gcd i n) (S O)) n)) @@ -281,6 +409,5 @@ cut (O < a) [assumption|apply sym_eq.assumption] ] ] - ] -qed. - \ No newline at end of file + ] +qed. diff --git a/matita/library/nat/generic_sigma_p.ma b/matita/library/nat/generic_sigma_p.ma index ed9f59b0a..8ab37e999 100644 --- a/matita/library/nat/generic_sigma_p.ma +++ b/matita/library/nat/generic_sigma_p.ma @@ -982,7 +982,7 @@ theorem distributive_times_plus_sigma_p_generic: \forall A:Type. \to ((timesA k (sigma_p_gen n p A g basePlusA plusA)) = - (sigma_p_gen n p A (\lambda i:nat.(timesA (g i) k)) basePlusA plusA)). + (sigma_p_gen n p A (\lambda i:nat.(timesA k (g i))) basePlusA plusA)). intros. elim n [ simplify. diff --git a/matita/library/nat/iteration2.ma b/matita/library/nat/iteration2.ma index 53cc949a2..4f0238498 100644 --- a/matita/library/nat/iteration2.ma +++ b/matita/library/nat/iteration2.ma @@ -17,6 +17,7 @@ set "baseuri" "cic:/matita/nat/iteration2". include "nat/primes.ma". include "nat/ord.ma". include "nat/generic_sigma_p.ma". +include "nat/count.ma".(*necessary just to use bool_to_nat and bool_to_nat_andb*) (* sigma_p on nautral numbers is a specialization of sigma_p_gen *) @@ -229,3 +230,354 @@ apply (distributive_times_plus_sigma_p_generic nat plus O times n k p g) ] qed. +(*some properties of sigma_p invoked with an "always true" predicate (in this + way sigma_p just counts the elements, without doing any control) or with + the nat \to nat function which always returns (S O). + It 's not easily possible proving these theorems in a general form + in generic_sigma_p.ma + *) + +theorem sigma_p_true: \forall n:nat. +(sigma_p n (\lambda x.true) (\lambda x.S O)) = n. +intros. +elim n +[ simplify. + reflexivity +| rewrite > (true_to_sigma_p_Sn n1 (\lambda x:nat.true) (\lambda x:nat.S O)) + [ rewrite > H. + simplify. + reflexivity + | reflexivity + ] +] +qed. + +theorem sigma_P_SO_to_sigma_p_true: \forall n:nat. \forall g:nat \to bool. +sigma_p n g (\lambda n:nat. (S O)) = +sigma_p n (\lambda x:nat.true) (\lambda i:nat.bool_to_nat (g i)). +intros. +elim n +[ simplify. + reflexivity +| cut ((g n1) = true \lor (g n1) = false) + [ rewrite > true_to_sigma_p_Sn in \vdash (? ? ? %) + [ elim Hcut + [ rewrite > H1. + rewrite > true_to_sigma_p_Sn in \vdash (? ? % ?) + [ simplify. + apply eq_f. + assumption + | assumption + ] + | rewrite > H1. + rewrite > false_to_sigma_p_Sn in \vdash (? ? % ?) + [ simplify. + assumption + | assumption + ] + ] + | reflexivity + ] + | elim (g n1) + [ left. + reflexivity + | right. + reflexivity + ] + ] +] +qed. + +(* I introduce an equivalence in the form map_iter_i in order to use + * the existing result about permutation in that part of the library. + *) + +theorem eq_map_iter_i_sigma_p_alwaysTrue: \forall n:nat.\forall g:nat \to nat. +map_iter_i n g plus O = sigma_p (S n) (\lambda c:nat.true) g. +intros. +elim n +[ simplify. + rewrite < plus_n_O. + reflexivity +| rewrite > true_to_sigma_p_Sn + [ simplify in \vdash (? ? % ?). + rewrite < plus_n_O. + apply eq_f. + assumption + | reflexivity + ] +] +qed. + +theorem sigma_p_plus_1: \forall n:nat. \forall f,g:nat \to nat. +sigma_p n (\lambda b:nat. true) (\lambda a:nat.(f a) + (g a)) = +sigma_p n (\lambda b:nat. true) f + sigma_p n (\lambda b:nat. true) g. +intros. +elim n +[ simplify. + reflexivity +| rewrite > true_to_sigma_p_Sn + [ rewrite > (true_to_sigma_p_Sn n1 (\lambda c:nat.true) f) + [ rewrite > (true_to_sigma_p_Sn n1 (\lambda c:nat.true) g) + [ rewrite > assoc_plus in \vdash (? ? ? %). + rewrite < assoc_plus in \vdash (? ? ? (? ? %)). + rewrite < sym_plus in \vdash (? ? ? (? ? (? % ?))). + rewrite > assoc_plus in \vdash (? ? ? (? ? %)). + rewrite < assoc_plus in \vdash (? ? ? %). + apply eq_f. + assumption + | reflexivity + ] + | reflexivity + ] + | reflexivity + ] +] +qed. + + +theorem eq_sigma_p_sigma_p_times1 : \forall n,m:nat.\forall f:nat \to nat. +sigma_p (n*m) (\lambda x:nat.true) f = +sigma_p m (\lambda x:nat.true) + (\lambda a.(sigma_p n (\lambda x:nat.true) (\lambda b.f (b*m + a)))). +intro. +elim n +[ simplify. + elim m + [ simplify. + reflexivity + | rewrite > true_to_sigma_p_Sn + [ rewrite < H. + reflexivity + | reflexivity + ] + ] +| change in \vdash (? ? ? (? ? ? (\lambda a:?.%))) with ((f ((n1*m)+a)) + + (sigma_p n1 (\lambda x:nat.true) (\lambda b:nat.f (b*m +a)))). + rewrite > sigma_p_plus_1 in \vdash (? ? ? %). + rewrite > (sym_times (S n1) m). + rewrite < (times_n_Sm m n1). + rewrite > sigma_p_plus in \vdash (? ? % ?). + apply eq_f2 + [ rewrite < (sym_times m n1). + apply eq_sigma_p + [ intros. + reflexivity + | intros. + rewrite < (sym_plus ? (m * n1)). + reflexivity + ] + | rewrite > (sym_times m n1). + apply H + ] +] +qed. + +theorem eq_sigma_p_sigma_p_times2 : \forall n,m:nat.\forall f:nat \to nat. +sigma_p (n *m) (\lambda c:nat.true) f = +sigma_p n (\lambda c:nat.true) + (\lambda a.(sigma_p m (\lambda c:nat.true) (\lambda b:nat.f (b* n + a)))). +intros. +rewrite > sym_times. +apply eq_sigma_p_sigma_p_times1. +qed. + + +theorem sigma_p_times:\forall n,m:nat. +\forall f,f1,f2:nat \to bool. +\forall g:nat \to nat \to nat. +\forall g1,g2: nat \to nat. +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g b a) < (S n)*(S m)) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g1 (g b a)) = a) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g2 (g b a)) = b) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to f (g b a) = andb (f2 b) (f1 a)) \to +(sigma_p ((S n) * (S m)) f (\lambda c:nat.(S O))) = +sigma_p (S n) f1 (\lambda c:nat.(S O)) * sigma_p (S m) f2 (\lambda c:nat.(S O)). +intros. + +rewrite > (sigma_P_SO_to_sigma_p_true ). +rewrite > (S_pred ((S n)*(S m))) in \vdash (? ? (? % ? ?) ?) +[ rewrite < (eq_map_iter_i_sigma_p_alwaysTrue (pred ((S n)* (S m)))). + rewrite > (permut_to_eq_map_iter_i plus assoc_plus sym_plus ? ? ? + (\lambda i.g (div i (S n)) (mod i (S n)))) + [ rewrite > eq_map_iter_i_sigma_p_alwaysTrue. + rewrite < S_pred + [ rewrite > eq_sigma_p_sigma_p_times2. + apply (trans_eq ? ? (sigma_p (S n) (\lambda c:nat.true) + (\lambda a. sigma_p (S m) (\lambda c:nat.true) + (\lambda b.(bool_to_nat (f2 b))*(bool_to_nat (f1 a)))))) + [ apply eq_sigma_p;intros + [ reflexivity + | apply eq_sigma_p;intros + [ reflexivity + | + rewrite > (div_mod_spec_to_eq (x1*(S n) + x) (S n) ((x1*(S n) + x)/(S n)) + ((x1*(S n) + x) \mod (S n)) x1 x) + [ rewrite > (div_mod_spec_to_eq2 (x1*(S n) + x) (S n) ((x1*(S n) + x)/(S n)) + ((x1*(S n) + x) \mod (S n)) x1 x) + [ rewrite > H3 + [ apply bool_to_nat_andb + | assumption + | assumption + ] + | apply div_mod_spec_div_mod. + apply lt_O_S + | constructor 1 + [ assumption + | reflexivity + ] + ] + | apply div_mod_spec_div_mod. + apply lt_O_S + | constructor 1 + [ assumption + | reflexivity + ] + ] + ] + ] + | apply (trans_eq ? ? + (sigma_p (S n) (\lambda c:nat.true) (\lambda n.((bool_to_nat (f1 n)) * + (sigma_p (S m) (\lambda c:nat.true) (\lambda n.bool_to_nat (f2 n))))))) + [ apply eq_sigma_p;intros + [ reflexivity + | rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p;intros + [ reflexivity + | rewrite > sym_times. + reflexivity + ] + ] + | apply sym_eq. + rewrite > sigma_P_SO_to_sigma_p_true. + rewrite > sigma_P_SO_to_sigma_p_true in \vdash (? ? (? ? %) ?). + rewrite > sym_times. + rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p;intros + [ reflexivity + | rewrite > distributive_times_plus_sigma_p. + rewrite < sym_times. + rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p; + intros; reflexivity + ] + ] + ] + | apply lt_O_times_S_S + ] + + | unfold permut. + split + [ intros. + rewrite < plus_n_O. + apply le_S_S_to_le. + rewrite < S_pred in \vdash (? ? %) + [ change with ((g (i/(S n)) (i \mod (S n))) \lt (S n)*(S m)). + apply H + [ apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? i) + [ rewrite > (div_mod i (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + rewrite > plus_n_O in \vdash (? ? %). + rewrite > sym_times. + assumption + | apply lt_O_times_S_S + ] + ] + ] + | apply lt_O_times_S_S + ] + | rewrite < plus_n_O. + unfold injn. + intros. + cut (i < (S n)*(S m)) + [ cut (j < (S n)*(S m)) + [ cut ((i \mod (S n)) < (S n)) + [ cut ((i/(S n)) < (S m)) + [ cut ((j \mod (S n)) < (S n)) + [ cut ((j/(S n)) < (S m)) + [ rewrite > (div_mod i (S n)) + [ rewrite > (div_mod j (S n)) + [ rewrite < (H1 (i \mod (S n)) (i/(S n)) Hcut2 Hcut3). + rewrite < (H2 (i \mod (S n)) (i/(S n)) Hcut2 Hcut3) in \vdash (? ? (? % ?) ?). + rewrite < (H1 (j \mod (S n)) (j/(S n)) Hcut4 Hcut5). + rewrite < (H2 (j \mod (S n)) (j/(S n)) Hcut4 Hcut5) in \vdash (? ? ? (? % ?)). + rewrite > H6. + reflexivity + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? j) + [ rewrite > (div_mod j (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. apply le_S_S. + apply le_O_n + ] + | rewrite < sym_times. + assumption + ] + ] + | apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + ] + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? i) + [ rewrite > (div_mod i (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | rewrite < sym_times. + assumption + ] + ] + | apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + assumption + | apply lt_O_times_S_S + ] + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + assumption + | apply lt_O_times_S_S + ] + ] + ] + | intros. + apply False_ind. + apply (not_le_Sn_O m1 H4) + ] +| apply lt_O_times_S_S +] +qed. diff --git a/matita/library/nat/totient.ma b/matita/library/nat/totient.ma index b4f575a40..730ec8b56 100644 --- a/matita/library/nat/totient.ma +++ b/matita/library/nat/totient.ma @@ -14,62 +14,80 @@ set "baseuri" "cic:/matita/nat/totient". -include "nat/count.ma". include "nat/chinese_reminder.ma". +include "nat/iteration2.ma". +(*a new definition of totient, which uses sigma_p instead of sigma *) +(*there's a little difference between this definition and the classic one: + the classic definition of totient is: + + phi (n) is the number of naturals i (less or equal than n) so then gcd (i,n) = 1. + (so this definition considers the values i=1,2,...,n) + + sigma_p doesn't work ok the value n (but the first value it works on is (pred n)) + but works also on 0. That's not a problem, in fact + - if n <> 1, gcd (n,0) <>1 and gcd (n,n) = n <> 1. + - if n = 1, then Phi(n) = 1, and (totient n), as defined below, returns 1. + + *) definition totient : nat \to nat \def -\lambda n. count n (\lambda m. eqb (gcd m n) (S O)). - -theorem totient3: totient (S(S(S O))) = (S(S O)). -reflexivity. -qed. - -theorem totient6: totient (S(S(S(S(S(S O)))))) = (S(S O)). -reflexivity. -qed. +\lambda n.sigma_p n (\lambda m. eqb (gcd m n) (S O)) (\lambda m.S O). + theorem totient_times: \forall n,m:nat. (gcd m n) = (S O) \to totient (n*m) = (totient n)*(totient m). -intro. -apply (nat_case n) - [intros.simplify.reflexivity - |intros 2.apply (nat_case m1) - [rewrite < sym_times. - rewrite < (sym_times (totient O)). - simplify.intro.reflexivity. - |intros. - unfold totient. - apply (count_times m m2 ? ? ? - (\lambda b,a. cr_pair (S m) (S m2) a b) - (\lambda x. x \mod (S m)) (\lambda x. x \mod (S m2))) - [intros.unfold cr_pair. - apply (le_to_lt_to_lt ? (pred ((S m)*(S m2)))) +intros. +unfold totient. +apply (nat_case1 n) +[ apply (nat_case1 m) + [ intros. + simplify. + reflexivity + | intros. + simplify. + reflexivity + ] +| apply (nat_case1 m) + [ intros. + change in \vdash (? ? ? (? ? %)) with (O). + rewrite > (sym_times (S m1) O). + rewrite > sym_times in \vdash (? ? ? %). + simplify. + reflexivity + | intros. + rewrite > H2 in H. + rewrite > H1 in H. + apply (sigma_p_times m2 m1 ? ? ? + (\lambda b,a. cr_pair (S m2) (S m1) a b) + (\lambda x. x \mod (S m2)) (\lambda x. x \mod (S m1))) + [intros.unfold cr_pair. + apply (le_to_lt_to_lt ? (pred ((S m2)*(S m1)))) [unfold min. apply le_min_aux_r |unfold lt. - apply (nat_case ((S m)*(S m2))) + apply (nat_case ((S m2)*(S m1))) [apply le_n|intro.apply le_n] ] |intros. - generalize in match (mod_cr_pair (S m) (S m2) a b H1 H2 H). - intro.elim H3. - apply H4 + generalize in match (mod_cr_pair (S m2) (S m1) a b H3 H4 H). + intro.elim H5. + apply H6 |intros. - generalize in match (mod_cr_pair (S m) (S m2) a b H1 H2 H). - intro.elim H3. - apply H5 + generalize in match (mod_cr_pair (S m2) (S m1) a b H3 H4 H). + intro.elim H5. + apply H7 |intros. - generalize in match (mod_cr_pair (S m) (S m2) a b H1 H2 H). - intro.elim H3. + generalize in match (mod_cr_pair (S m2) (S m1) a b H3 H4 H). + intro.elim H5. apply eqb_elim [intro. rewrite > eq_to_eqb_true [rewrite > eq_to_eqb_true [reflexivity - |rewrite < H4. + |rewrite < H6. rewrite > sym_gcd. rewrite > gcd_mod - [apply (gcd_times_SO_to_gcd_SO ? ? (S m2)) + [apply (gcd_times_SO_to_gcd_SO ? ? (S m1)) [unfold lt.apply le_S_S.apply le_O_n |unfold lt.apply le_S_S.apply le_O_n |assumption @@ -77,10 +95,10 @@ apply (nat_case n) |unfold lt.apply le_S_S.apply le_O_n ] ] - |rewrite < H5. + |rewrite < H7. rewrite > sym_gcd. rewrite > gcd_mod - [apply (gcd_times_SO_to_gcd_SO ? ? (S m)) + [apply (gcd_times_SO_to_gcd_SO ? ? (S m2)) [unfold lt.apply le_S_S.apply le_O_n |unfold lt.apply le_S_S.apply le_O_n |rewrite > sym_times.assumption @@ -92,17 +110,17 @@ apply (nat_case n) apply eqb_elim [intro.apply eqb_elim [intro.apply False_ind. - apply H6. + apply H8. apply eq_gcd_times_SO [unfold lt.apply le_S_S.apply le_O_n. |unfold lt.apply le_S_S.apply le_O_n. |rewrite < gcd_mod - [rewrite > H4. + [rewrite > H6. rewrite > sym_gcd.assumption |unfold lt.apply le_S_S.apply le_O_n ] |rewrite < gcd_mod - [rewrite > H5. + [rewrite > H7. rewrite > sym_gcd.assumption |unfold lt.apply le_S_S.apply le_O_n ] diff --git a/matita/library/nat/totient1.ma b/matita/library/nat/totient1.ma new file mode 100644 index 000000000..feaf1314b --- /dev/null +++ b/matita/library/nat/totient1.ma @@ -0,0 +1,754 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/totient1". + +include "nat/totient.ma". +include "nat/iteration2.ma". +include "nat/propr_div_mod_lt_le_totient1_aux.ma". +include "nat/gcd_properties1.ma". + +(* This file contains the proof of the following theorem about Euler's totient + * function: + + The sum of the applications of Phi function over the divisor of a natural + number n is equal to n + *) + +(*two easy properties of gcd, directly obtainable from the more general theorem + eq_gcd_times_times_eqv_times_gcd*) + +theorem gcd_bTIMESd_aTIMESd_eq_d_to_gcd_a_b_eq_SO:\forall a,b,d:nat. +O \lt d \to O \lt b \to gcd (b*d) (a*d) = d \to (gcd a b) = (S O). +intros. +apply (inj_times_r1 d) +[ assumption +| rewrite < (times_n_SO d). + rewrite < (eq_gcd_times_times_eqv_times_gcd a b d). + rewrite > sym_gcd. + rewrite > (sym_times d a). + rewrite > (sym_times d b). + assumption +] +qed. + +theorem gcd_SO_to_gcd_times: \forall a,b,c:nat. +O \lt c \to (gcd a b) = (S O) \to (gcd (a*c) (b*c)) = c. +intros. +rewrite > (sym_times a c). +rewrite > (sym_times b c). +rewrite > (eq_gcd_times_times_eqv_times_gcd a b c). +rewrite > H1. +apply sym_eq. +apply times_n_SO. +qed. + + +(* The proofs of the 6 sub-goals activated after the application of the theorem + eq_sigma_p_gh in the proof of the main theorem + *) + + + +(* 2nd*) +theorem sum_divisor_totient1_aux2: \forall i,n:nat. +(S O) \lt n \to i (sym_times ((pred n)/(i/n)) (i/n)). + cut ((i \mod n)*(pred n)/(i/n) = (i \mod n) * ((pred n) / (i/n))) + [ rewrite > Hcut2. + apply (gcd_SO_to_gcd_times (i/n) (i \mod n) ((pred n)/(i/n))) + [ apply (lt_O_a_lt_O_b_a_divides_b_to_lt_O_aDIVb (i/n) (pred n)); + assumption + | rewrite > sym_gcd. + assumption + ] + | apply sym_eq. + apply (separazioneFattoriSuDivisione (i \mod n) (pred n) (i/n)); + assumption. + ] + | assumption + | assumption + ] + | apply (divides_to_lt_O (i/n) (pred n)); + assumption + ] +| apply n_gt_Uno_to_O_lt_pred_n. + assumption. +] +qed. + + +(*3rd*) +theorem aux_S_i_mod_n_le_i_div_n: \forall i,n:nat. +i < n*n \to (divides_b (i/n) (pred n) \land + (leb (S(i\mod n)) (i/n) \land + eqb (gcd (i\mod n) (i/n)) (S O))) =true + \to + (S (i\mod n)) \le (i/n). +intros. +cut (leb (S (i \mod n)) (i/n) = true) +[ change with ( + match (true) with + [ true \Rightarrow (S (i \mod n)) \leq (i/n) + | false \Rightarrow (S (i \mod n)) \nleq (i/n)] + ). + rewrite < Hcut. + apply (leb_to_Prop (S(i \mod n)) (i/n)) +| apply (andb_true_true (leb (S(i\mod n)) (i/n)) (divides_b (i/n) (pred n)) ). + apply (andb_true_true ((leb (S(i\mod n)) (i/n)) \land (divides_b (i/n) (pred n))) + (eqb (gcd (i\mod n) (i/n)) (S O)) + ). + rewrite > andb_sym in \vdash (? ? (? % ?) ?). + rewrite < (andb_assoc) in \vdash (? ? % ?). + assumption +] +qed. + + +(*the following theorem is just a particular case of the theorem + divides_times, prooved in primes.ma + *) +theorem a_divides_b_to_a_divides_b_times_c: \forall a,b,c:nat. +a \divides b \to a \divides (b*c). +intros. +rewrite > (times_n_SO a). +apply (divides_times). +assumption. +apply divides_SO_n. +qed. + +theorem sum_divisor_totient1_aux_3: \forall i,n:nat. +i < n*n \to + (divides_b (i/n) (pred n) +\land (leb (S(i\mod n)) (i/n) +\land eqb (gcd (i\mod n) (i/n)) (S O))) + =true + \to i\mod n*pred n/(i/n)<(pred n). +intros. +apply (lt_to_le_to_lt ((i \mod n)*(pred n) / (i/n)) + ((i/n)*(pred n) / (i/n)) + (pred n)) +[ apply (lt_times_n_to_lt (i/n) ((i\mod n)*(pred n)/(i/n)) ((i/n)*(pred n)/(i/n))) + [ apply (Sa_le_b_to_O_lt_b (i \mod n) (i/n)). + apply (aux_S_i_mod_n_le_i_div_n i n); + assumption. + | rewrite > (NdivM_times_M_to_N ) + [ rewrite > (NdivM_times_M_to_N ) in \vdash (? ? %) + [ apply (monotonic_lt_times_variant (pred n)) + [ apply (nat_case1 n) + [ intros. + rewrite > H2 in H:(? ? %). + change in H:(? ? %) with (O). + change in H:(%) with ((S i) \le O). + apply False_ind. + apply (not_le_Sn_O i H) + | intro. + elim m + [ rewrite > H2 in H1:(%). + rewrite > H2 in H:(%). + simplify in H. + cut (i = O) + [ rewrite > Hcut in H1:(%). + simplify in H1. + apply False_ind. + apply (not_eq_true_false H1) + | change in H:(%) with((S i) \le (S O)). + cut (i \le O ) + [ apply (nat_case1 i) + [ intros. + reflexivity + | intros. + rewrite > H3 in Hcut:(%). + apply False_ind. + apply (not_le_Sn_O m1 Hcut) + ] + | apply (le_S_S_to_le i O). + assumption + ] + ] + | change with ((S O) \le (S n1)). + apply (le_S_S O n1). + apply (le_O_n n1) + ] + ] + | change with ((S (i\mod n)) \le (i/n)). + apply (aux_S_i_mod_n_le_i_div_n i n); + assumption + ] + | apply (Sa_le_b_to_O_lt_b (i \mod n) (i/n)). + apply (aux_S_i_mod_n_le_i_div_n i n); + assumption + | rewrite > (times_n_SO (i/n)) in \vdash (? % ?). + apply (divides_times). + apply divides_n_n. + apply divides_SO_n + ] + | apply (Sa_le_b_to_O_lt_b (i \mod n) (i/n)). + apply (aux_S_i_mod_n_le_i_div_n i n); + assumption + | rewrite > (times_n_SO (i/n)). + rewrite > (sym_times (i \mod n) (pred n)). + apply (divides_times) + [ apply divides_b_true_to_divides. + apply (andb_true_true (divides_b (i/n) (pred n)) (leb (S (i\mod n)) (i/n))). + apply (andb_true_true + ((divides_b (i/n) (pred n)) \land (leb (S (i\mod n)) (i/n))) + (eqb (gcd (i\mod n) (i/n)) (S O))). + rewrite < (andb_assoc) in \vdash (? ? % ?). + assumption + | apply divides_SO_n + ] + ] + ] +| rewrite > (sym_times). + rewrite > (div_times_ltO ) + [ apply (le_n (pred n)). + + | apply (Sa_le_b_to_O_lt_b (i \mod n) (i/n)). + apply (aux_S_i_mod_n_le_i_div_n i n); + assumption. + ] +]qed. + + +(*4th*) +theorem sum_divisor_totient1_aux_4: \forall j,n:nat. +j \lt (pred n) \to (S O) \lt n \to +((divides_b ((pred n/gcd (pred n) j*n+j/gcd (pred n) j)/n) (pred n)) + \land ((leb (S ((pred n/gcd (pred n) j*n+j/gcd (pred n) j)\mod n)) + ((pred n/gcd (pred n) j*n+j/gcd (pred n) j)/n)) + \land (eqb + (gcd ((pred n/gcd (pred n) j*n+j/gcd (pred n) j)\mod n) + ((pred n/gcd (pred n) j*n+j/gcd (pred n) j)/n)) (S O)))) +=true. +intros. +cut (O \lt (pred n)) +[ cut ( O \lt (gcd (pred n) j)) + [ cut (j/(gcd (pred n) j) \lt n) + [ cut (((pred n/gcd (pred n) j*n+j/gcd (pred n) j)/n) = pred n/gcd (pred n) j) + [ cut (((pred n/gcd (pred n) j*n+j/gcd (pred n) j) \mod n) = j/gcd (pred n) j) + [ rewrite > Hcut3. + rewrite > Hcut4. + apply andb_t_t_t + [ apply divides_to_divides_b_true + [ apply (lt_times_n_to_lt (gcd (pred n) j) O (pred n/gcd (pred n) j)) + [ assumption + | rewrite > (sym_times O (gcd (pred n) j)). + rewrite < (times_n_O (gcd (pred n) j)). + rewrite > (NdivM_times_M_to_N (pred n) (gcd (pred n) j)) + [ assumption + | assumption + | apply (divides_gcd_n (pred n)) + ] + ] + | apply (witness (pred n/(gcd (pred n) j)) (pred n) (gcd (pred n) j)). + rewrite > (NdivM_times_M_to_N (pred n) (gcd (pred n) j)) + [ reflexivity + | assumption + | apply (divides_gcd_n (pred n)) + ] + ] + | apply (le_to_leb_true). + apply lt_S_to_le. + apply cic:/matita/algebra/finite_groups/lt_S_S.con. + apply (lt_times_n_to_lt (gcd (pred n) j) ? ?) + [ assumption + | rewrite > (NdivM_times_M_to_N j (gcd (pred n) j)) + [ rewrite > (NdivM_times_M_to_N (pred n) (gcd (pred n) j)) + [ assumption + | assumption + | apply divides_gcd_n + ] + | assumption + | rewrite > sym_gcd. + apply divides_gcd_n + ] + ] + | apply cic:/matita/nat/compare/eq_to_eqb_true.con. + apply (gcd_bTIMESd_aTIMESd_eq_d_to_gcd_a_b_eq_SO ? ? (gcd (pred n) j)) + [ assumption + | apply (lt_times_n_to_lt (gcd (pred n) j) ? ?) + [ assumption + | simplify. + rewrite > NdivM_times_M_to_N + [ assumption + | assumption + | apply divides_gcd_n + ] + ] + | rewrite > NdivM_times_M_to_N + [ rewrite > (NdivM_times_M_to_N j (gcd (pred n) j)) + [ reflexivity + | assumption + | rewrite > sym_gcd. + apply divides_gcd_n + ] + | assumption + | apply divides_gcd_n + ] + ] + ] + | apply (mod_plus_times). + assumption + ] + | apply (div_plus_times). + assumption + ] + | apply (lt_times_n_to_lt (gcd (pred n) j) ? ?) + [ assumption + | rewrite > NdivM_times_M_to_N + [ apply (lt_to_le_to_lt j (pred n) ?) + [ assumption + | apply (lt_to_le). + apply (lt_to_le_to_lt ? n ?) + [ change with ((S (pred n)) \le n). + rewrite < (S_pred n) + [ apply le_n + | apply (trans_lt ? (S O) ?) + [ change with ((S O) \le (S O)). + apply (le_n (S O)) + | assumption + ] + ] + | rewrite > (times_n_SO n) in \vdash (? % ?). + apply (le_times n) + [ apply (le_n n) + | change with (O \lt (gcd (pred n) j)). + assumption + ] + ] + ] + | assumption + | rewrite > sym_gcd. + apply (divides_gcd_n) + ] + ] + ] + | rewrite > sym_gcd. + apply (lt_O_gcd). + assumption + ] +| apply n_gt_Uno_to_O_lt_pred_n. + assumption +] +qed. + + + + +(*5th*) +theorem sum_divisor_totient1_aux5: \forall a,b,c:nat. +O \lt c \to O \lt b \to a \lt c \to b \divides a \to b \divides c \to +a / b * c / (c/b) = a. +intros. +elim H3. +elim H4. +cut (O \lt n) +[ rewrite > H6 in \vdash (? ? (? ? %) ?). + rewrite > sym_times in \vdash (? ? (? ? %) ?). + rewrite > (div_times_ltO n b) + [ cut (n \divides c) + [ cut (a/b * c /n = a/b * (c/n)) + [ rewrite > Hcut2. + cut (c/n = b) + [ rewrite > Hcut3. + apply (NdivM_times_M_to_N a b); + assumption + | rewrite > H6. + apply (div_times_ltO b n). + assumption + ] + | elim Hcut1. + rewrite > H7. + rewrite < assoc_times in \vdash (? ? (? % ?) ?). + rewrite > (sym_times ((a/b)*n) n1). + rewrite < (assoc_times n1 (a/b) n). + rewrite > (div_times_ltO (n1*(a/b)) n) + [ rewrite > (sym_times n n1). + rewrite > (div_times_ltO n1 n) + [ rewrite > (sym_times (a/b) n1). + reflexivity + | assumption + ] + | assumption + ] + ] + | apply (witness n c b). + rewrite > (sym_times n b). + assumption + ] + | assumption + ] +| apply (nat_case1 n) + [ intros. + rewrite > H7 in H6. + rewrite > sym_times in H6. + simplify in H6. + rewrite > H6 in H. + apply False_ind. + change in H with ((S O) \le O). + apply (not_le_Sn_O O H) + | intros. + apply (lt_O_S m) + ] +] +qed. + + + + +(*6th*) +theorem sum_divisor_totient1_aux_6: \forall j,n:nat. +j \lt (pred n) \to (S O) \lt n \to ((pred n)/(gcd (pred n) j))*n+j/(gcd (pred n) j) H2 in H. + apply False_ind. + apply (not_le_Sn_O j H) +| intros. + rewrite < (pred_Sn m). + rewrite < (times_n_Sm (S m) m). + rewrite > (sym_plus (S m) ((S m) * m)). + apply le_to_lt_to_plus_lt + [ rewrite > (sym_times (S m) m). + apply le_times_l. + apply (lt_to_divides_to_div_le) + [ apply (nat_case1 m) + [ intros. + rewrite > H3 in H2. + rewrite > H2 in H1. + apply False_ind. + apply (le_to_not_lt (S O) (S O)) + [ apply le_n + | assumption + ] + | intros. + rewrite > sym_gcd in \vdash (? ? %). + apply (lt_O_gcd j (S m1)). + apply (lt_O_S m1) + ] + | apply divides_gcd_n + ] + | apply (le_to_lt_to_lt (j / (gcd m j)) j (S m)) + [ + apply lt_to_divides_to_div_le + [ apply (nat_case1 m) + [ intros. + rewrite > H3 in H2. + rewrite > H2 in H1. + apply False_ind. + apply (le_to_not_lt (S O) (S O)) + [ apply le_n + | assumption + ] + | intros. + rewrite > sym_gcd in \vdash (? ? %). + apply (lt_O_gcd j (S m1)). + apply (lt_O_S m1) + ] + | rewrite > sym_gcd in \vdash (? % ?). + apply divides_gcd_n + ] + | rewrite > H2 in H. + rewrite < (pred_Sn m) in H. + apply (trans_lt j m (S m)) + [ assumption. + | change with ((S m) \le (S m)). + apply (le_n (S m)) + ] + ] + ] +] +qed. + + + + +(* The main theorem, adding the hypotesis n > 1 (the cases n= 0 + and n = 1 are dealed as particular cases in theorem + sum_divisor_totiet) + *) +theorem sum_divisor_totient1: \forall n. (S O) \lt n \to sigma_p n (\lambda d.divides_b d (pred n)) totient = (pred n). +intros. +unfold totient. +apply (trans_eq ? ? +(sigma_p n (\lambda d:nat.divides_b d (pred n)) +(\lambda d:nat.sigma_p n (\lambda m:nat.andb (leb (S m) d) (eqb (gcd m d) (S O))) (\lambda m:nat.S O)))) + [ apply eq_sigma_p1 + [ intros. + reflexivity + | intros. + apply sym_eq. + apply (trans_eq ? ? + (sigma_p x (\lambda m:nat.leb (S m) x\land eqb (gcd m x) (S O)) (\lambda m:nat.S O))) + [ apply false_to_eq_sigma_p + [ apply lt_to_le. + assumption + | intros. + rewrite > lt_to_leb_false + [ reflexivity + | apply le_S_S. + assumption + ] + ] + | apply eq_sigma_p + [ intros. + rewrite > le_to_leb_true + [ reflexivity + | assumption + ] + | intros. + reflexivity + ] + ] + ] + | rewrite < (sigma_p2' n n + (\lambda d:nat.divides_b d (pred n)) + (\lambda d,m:nat.leb (S m) d\land eqb (gcd m d) (S O)) + (\lambda x,y.(S O))). + apply (trans_eq ? ? (sigma_p (pred n) (\lambda x.true) (\lambda x.S O))) + [ apply (eq_sigma_p_gh + (\lambda x:nat. (S O)) + (\lambda i:nat. (((i \mod n)*(pred n)) / (i / n) ) ) + (\lambda j:nat. (((pred n)/(gcd (pred n) j))*n + (j / (gcd (pred n) j))) ) + (n*n) + (pred n) + (\lambda x:nat. + divides_b (x/n) (pred n) + \land (leb (S (x \mod n)) (x/n) + \land eqb (gcd (x \mod n) (x/n)) (S O))) + (\lambda x:nat.true) + ) + [ intros. + reflexivity + | intros. + cut ((i/n) \divides (pred n)) + [ cut ((i \mod n ) \lt (i/n)) + [ cut ((gcd (i \mod n) (i / n)) = (S O)) + [ cut ((gcd (pred n) ((i \mod n)*(pred n)/ (i/n)) = (pred n) / (i/n))) + [ rewrite > Hcut3. + cut ((i \mod n) * (pred n)/(i/n)/((pred n)/(i/n)) = (i \mod n)) + [ rewrite > Hcut4. + cut ((pred n)/ ((pred n)/(i/n)) = (i/n)) + [ rewrite > Hcut5. + apply sym_eq. + apply div_mod. + apply (trans_lt O (S O) n) + [ apply (lt_O_S O) + | assumption + ] + | elim Hcut. + rewrite > H3 in \vdash (? ? (? ? (? % ?)) ?). + rewrite > sym_times in \vdash (? ? (? ? (? % ?)) ?). + rewrite > (div_times_ltO n2 (i/n)) + [ rewrite > H3. + apply div_times_ltO. + apply (divides_to_lt_O n2 (pred n)) + [ apply (n_gt_Uno_to_O_lt_pred_n n). + assumption + | apply (witness n2 (pred n) (i/n)). + rewrite > sym_times. + assumption + ] + | apply (divides_to_lt_O (i/n) (pred n)) + [ apply (n_gt_Uno_to_O_lt_pred_n n). + assumption + | apply (witness (i/n) (pred n) n2). + assumption + ] + ] + ] + | elim Hcut. + cut (( i \mod n * (pred n)/(i/n)) = ( i\mod n * ((pred n)/(i/n)))) + [ rewrite > Hcut4. + rewrite > H3. + rewrite < (sym_times n2 (i/n)). + rewrite > (div_times_ltO n2 (i/n)) + [ rewrite > (div_times_ltO (i \mod n) n2) + [ reflexivity + | apply (divides_to_lt_O n2 (pred n)) + [ apply (n_gt_Uno_to_O_lt_pred_n n). + assumption + | apply (witness n2 (pred n) (i/n)). + rewrite > sym_times. + assumption + ] + ] + | apply (divides_to_lt_O (i/n) (pred n)) + [ apply (n_gt_Uno_to_O_lt_pred_n n). + assumption + | assumption + ] + ] + | apply (sym_eq). + apply (separazioneFattoriSuDivisione (i \mod n) (pred n) (i/n)) + [ apply (n_gt_Uno_to_O_lt_pred_n n). + assumption + | assumption + ] + ] + ] + | apply (sum_divisor_totient1_aux2); + assumption + ] + | apply (eqb_true_to_eq (gcd (i \mod n) (i/n)) (S O)). + apply (andb_true_true + (eqb (gcd (i\mod n) (i/n)) (S O)) + (leb (S (i\mod n)) (i/n)) + ). + apply (andb_true_true + ((eqb (gcd (i\mod n) (i/n)) (S O)) + \land + (leb (S (i\mod n)) (i/n))) + (divides_b (i/n) (pred n)) + ). + rewrite > andb_sym. + rewrite > andb_sym in \vdash (? ? (? ? %) ?). + assumption + ] + | change with (S (i \mod n) \le (i/n)). + cut (leb (S (i \mod n)) (i/n) = true) + [ change with ( + match (true) with + [ true \Rightarrow (S (i \mod n)) \leq (i/n) + | false \Rightarrow (S (i \mod n)) \nleq (i/n)] + ). + rewrite < Hcut1. + apply (leb_to_Prop (S(i \mod n)) (i/n)) + | apply (andb_true_true (leb (S(i\mod n)) (i/n)) (divides_b (i/n) (pred n)) ). + apply (andb_true_true ((leb (S(i\mod n)) (i/n)) \land (divides_b (i/n) (pred n))) + (eqb (gcd (i\mod n) (i/n)) (S O)) + ). + rewrite > andb_sym in \vdash (? ? (? % ?) ?). + rewrite < (andb_assoc) in \vdash (? ? % ?). + assumption + ] + ] + | apply (divides_b_true_to_divides ). + apply (andb_true_true (divides_b (i/n) (pred n)) + (leb (S (i\mod n)) (i/n))). + apply (andb_true_true ( (divides_b (i/n) (pred n)) \land (leb (S (i\mod n)) (i/n)) ) + (eqb (gcd (i\mod n) (i/n)) (S O)) + ). + rewrite < andb_assoc. + assumption. + ] + | intros. + apply (sum_divisor_totient1_aux_3); + assumption. + | intros. + apply (sum_divisor_totient1_aux_4); + assumption. + | intros. + cut (j/(gcd (pred n) j) \lt n) + [ rewrite > (div_plus_times n (pred n/gcd (pred n) j) (j/gcd (pred n) j)) + [ rewrite > (mod_plus_times n (pred n/gcd (pred n) j) (j/gcd (pred n) j)) + [ apply (sum_divisor_totient1_aux5 j (gcd (pred n) j) (pred n)) + [ apply (n_gt_Uno_to_O_lt_pred_n n). + assumption + | rewrite > sym_gcd. + apply lt_O_gcd. + apply (n_gt_Uno_to_O_lt_pred_n n). + assumption + | assumption + | apply divides_gcd_m + | rewrite > sym_gcd. + apply divides_gcd_m + ] + | assumption + ] + | assumption + ] + | apply (le_to_lt_to_lt (j/gcd (pred n) j) j n) + [ apply (lt_to_divides_to_div_le) + [ rewrite > sym_gcd. + apply lt_O_gcd. + apply (n_gt_Uno_to_O_lt_pred_n n). + assumption + | apply divides_gcd_m + ] + | apply (lt_to_le_to_lt j (pred n) n) + [ assumption + | apply le_pred_n + ] + ] + ] + | intros. + apply (sum_divisor_totient1_aux_6); + assumption. + ] + | apply (sigma_p_true). + ] + ] +qed. + + +(*there's a little difference between the following definition of the + theorem, and the abstract definition given before. + in fact (sigma_p n f p) works on (pred n), and not on n, as first element. + that's why in the definition of the theorem the summary is set equal to + (pred n). + *) +theorem sum_divisor_totient: \forall n. +sigma_p n (\lambda d.divides_b d (pred n)) totient = (pred n). +intros. +apply (nat_case1 n) +[ intros. + simplify. + reflexivity +| intros. + apply (nat_case1 m) + [ intros. + simplify. + reflexivity + | intros. + rewrite < H1. + rewrite < H. + rewrite > (pred_Sn m). + rewrite < H. + apply( sum_divisor_totient1). + rewrite > H. + rewrite > H1. + apply cic:/matita/algebra/finite_groups/lt_S_S.con. + apply lt_O_S + ] +] +qed. + + + + + + + + + + + + + + + + + + -- 2.39.2