From 6dbd1ba8983f25118d5f5410bd116d7d4c8801b1 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Thu, 23 Sep 2010 13:42:24 +0000 Subject: [PATCH] Setoid-Rewriting under Ex works for an arbitrary depth of Ex. Patches needed: Index: ../components/ng_refiner/nCicUnification.ml =================================================================== --- ../components/ng_refiner/nCicUnification.ml (revision 10941) +++ ../components/ng_refiner/nCicUnification.ml (working copy) @@ -97,7 +97,7 @@ let time2 = Unix.gettimeofday () in let time1 = match !times with time1::tl -> times := tl; time1 | [] -> assert false in - prerr_endline ("}}} " ^ string_of_float (time2 -. time1)); + prerr_endline ("}}} " ^ !indent ^ " " ^ string_of_float (time2 -. time1)); (match exc_opt with | Some e -> prerr_endline ("exception raised: " ^ Printexc.to_string e) | None -> ()); @@ -730,6 +730,32 @@ | Uncertain _ as exn -> raise exn | _ -> assert false in + let fo_unif_heads_and_cont_or_unwind_and_hints + test_eq_only metasenv subst m1 m2 cont hm1 hm2 + = + let ms, continuation = + (* calling the continuation inside the outermost try is an option + and makes unification stronger, but looks not frequent to me + that heads unify but not the arguments and that an hints can fix + that *) + try fo_unif test_eq_only metasenv subst m1 m2, cont + with + | UnificationFailure _ + | KeepReducing _ | Uncertain _ as exn -> + let (t1,norm1),(t2,norm2) = hm1, hm2 in + match + try_hints metasenv subst + (norm1,NCicReduction.unwind t1) (norm2,NCicReduction.unwind t2) + with + | Some x -> x, fun x -> x + | None -> + match exn with + | KeepReducing msg -> raise (KeepReducingThis (msg,hm1,hm2)) + | UnificationFailure _ | Uncertain _ as exn -> raise exn + | _ -> assert false + in + continuation ms + in let height_of = function | NCic.Const (Ref.Ref (_,Ref.Def h)) | NCic.Const (Ref.Ref (_,Ref.Fix (_,_,h))) @@ -767,7 +793,7 @@ match t1 with | C.Const r -> NCicEnvironment.get_relevance r | _ -> [] *) in - let unif_from_stack t1 t2 b metasenv subst = + let unif_from_stack (metasenv, subst) (t1, t2, b) = try let t1 = NCicReduction.from_stack ~delta:max_int t1 in let t2 = NCicReduction.from_stack ~delta:max_int t2 in @@ -784,14 +810,19 @@ NCicReduction.unwind (k2,e2,t2,List.rev l2), todo in - let hh1,hh2,todo=check_stack (List.rev s1) (List.rev s2) relevance [] in + let check_stack l1 l2 r = + match t1, t2 with + | NCic.Meta _, _ | _, NCic.Meta _ -> + (NCicReduction.unwind (k1,e1,t1,s1)), + (NCicReduction.unwind (k2,e2,t2,s2)),[] + | _ -> check_stack l1 l2 r [] + in + let hh1,hh2,todo = check_stack (List.rev s1) (List.rev s2) relevance in try - let metasenv,subst = - fo_unif_w_hints test_eq_only metasenv subst (norm1,hh1) (norm2,hh2) in - List.fold_left - (fun (metasenv,subst) (x1,x2,r) -> - unif_from_stack x1 x2 r metasenv subst - ) (metasenv,subst) todo + fo_unif_heads_and_cont_or_unwind_and_hints + test_eq_only metasenv subst (norm1,hh1) (norm2,hh2) + (fun ms -> List.fold_left unif_from_stack ms todo) + m1 m2 with | KeepReducing _ -> assert false | KeepReducingThis _ -> --- .../software/matita/nlibrary/re/re-setoids.ma | 201 ++++++++++++++---- 1 file changed, 157 insertions(+), 44 deletions(-) diff --git a/helm/software/matita/nlibrary/re/re-setoids.ma b/helm/software/matita/nlibrary/re/re-setoids.ma index ced520b05..ef533aab3 100644 --- a/helm/software/matita/nlibrary/re/re-setoids.ma +++ b/helm/software/matita/nlibrary/re/re-setoids.ma @@ -16,8 +16,10 @@ include "datatypes/pairs.ma". include "datatypes/bool.ma". include "sets/sets.ma". +(* ninductive Admit : CProp[0] ≝ . naxiom admit : Admit. +*) (* single = is for the abstract equality of setoids, == is for concrete equalities (that may be lifted to the setoid level when needed *) @@ -124,7 +126,7 @@ nqed. interpretation "bool eq" 'eq_low a b = (eq bool a b). ndefinition BOOL : setoid. -@bool; @(eq bool); ncases admit.nqed. +@bool; @(eq bool); nnormalize; //; #x y; ##[ #E; ncases E; ##| #y H; ncases H; ##] //; nqed. alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". alias id "refl" = "cic:/matita/ng/properties/relations/refl.fix(0,1,3)". @@ -413,43 +415,158 @@ unification hint 0 ≔ SS : setoid; (*-----------------------------------------------------------------*) ⊢ list S ≡ carr1 TT. +(* not as morphism *) +nlemma Not_morphism : CProp[0] ⇒_1 CProp[0]. +@(λx:CProp[0].¬ x); #a b; *; #; @; /3/; nqed. + +unification hint 0 ≔ P : CProp[0]; + A ≟ CPROP, + B ≟ CPROP, + M ≟ mk_unary_morphism1 ?? (λP.¬ P) (prop11 ?? Not_morphism) +(*------------------------*)⊢ + fun11 A B M P ≡ ¬ P. + (* XXX Ex setoid support *) -nlemma Sig: ∀S,T:setoid.∀P: S → (T → CPROP). - ∀y,z:T.y = z → (∀x.y=z → P x y = P x z) → (Ex S (λx.P x y)) =_1 (Ex S (λx.P x z)). -#S T P y z Q E; @; *; #x Px; @x; nlapply (E x Q); *; /2/; nqed. +nlemma Ex_morphism : ∀S:setoid.(S ⇒_1 CProp[0]) ⇒_1 CProp[0]. +#S; @(λP: S ⇒_1 CProp[0].Ex S P); #P Q E; @; *; #x Px; @x; ncases (E x x #); /2/; nqed. + +unification hint 0 ≔ S : setoid, P : S ⇒_1 CProp[0]; + A ≟ unary_morphism1_setoid1 (setoid1_of_setoid S) CPROP, + B ≟ CPROP, + M ≟ mk_unary_morphism1 ?? (λP: S ⇒_1 CProp[0].Ex S P) + (prop11 ?? (Ex_morphism S)) +(*------------------------*)⊢ + fun11 A B M P ≡ Ex S (fun11 S CPROP P). + +nlemma Ex_morphism_eta : ∀S:setoid.(S ⇒_1 CProp[0]) ⇒_1 CProp[0]. +#S; @(λP: S ⇒_1 CProp[0].Ex S (λx.P x)); #P Q E; @; *; #x Px; @x; ncases (E x x #); /2/; nqed. + +unification hint 0 ≔ S : setoid, P : S ⇒_1 CProp[0]; + A ≟ unary_morphism1_setoid1 (setoid1_of_setoid S) CPROP, + B ≟ CPROP, + M ≟ mk_unary_morphism1 ?? (λP: S ⇒_1 CProp[0].Ex S (λx.P x)) + (prop11 ?? (Ex_morphism_eta S)) +(*------------------------*)⊢ + fun11 A B M P ≡ Ex S (λx.fun11 S CPROP P x). + +nlemma Ex_setoid : ∀S:setoid.(S ⇒_1 CPROP) → setoid. +#T P; @ (Ex T (λx:T.P x)); @; ##[ #H1 H2; napply True |##*: //; ##] nqed. + +unification hint 0 ≔ T,P ; + S ≟ (Ex_setoid T P) +(*---------------------------*) ⊢ + Ex T (λx:T.P x) ≡ carr S. + +(* couts how many Ex we are traversing *) +ninductive counter : Type[0] ≝ + | End : counter + | Next : (bool → bool) → (* dummy arg please the notation mechanism *) + counter → counter. + +(* to rewrite terms (live in setoid) *) +nlet rec mk_P (S, T : setoid) (n : counter) on n ≝ + match n with [ End ⇒ T → CProp[0] | Next _ m ⇒ S → (mk_P S T m) ]. + +nlet rec mk_F (S, T : setoid) (n : counter) on n ≝ + match n with [ End ⇒ T | Next _ m ⇒ S → (mk_F S T m) ]. + +nlet rec mk_E (S, T : setoid) (n : counter) on n : ∀f,g : mk_F S T n. CProp[0] ≝ + match n with + [ End ⇒ λf,g:T. f = g + | Next q m ⇒ λf,g: mk_F S T (Next q m). ∀x:S.mk_E S T m (f x) (g x) ]. + +nlet rec mk_H (S, T : setoid) (n : counter) on n : +∀P1,P2: mk_P S T n.∀f,g : mk_F S T n. CProp[1] ≝ + match n with + [ End ⇒ λP1,P2:mk_P S T End.λf,g:T. f = g → P1 f =_1 P2 g + | Next q m ⇒ λP1,P2: mk_P S T (Next q m).λf,g: mk_F S T (Next q m). + ∀x:S.mk_H S T m (P1 x) (P2 x) (f x) (g x) ]. + +nlet rec mk_Ex (S, T : setoid) (n : counter) on n : +∀P: mk_P S T n.∀f : mk_F S T n. CProp[0] ≝ + match n with + [ End ⇒ λP:mk_P S T End.λf:T. P f + | Next q m ⇒ λP: mk_P S T (Next q m).λf: mk_F S T (Next q m). + ∃x:S.mk_Ex S T m (P x) (f x) ]. + +nlemma Sig_generic : ∀S,T.∀n:counter.∀P,f,g. + mk_E S T n f g → mk_H S T n P P f g → mk_Ex S T n P f =_1 mk_Ex S T n P g. +#S T n; nelim n; nnormalize; +##[ #P f g E H; /2/; +##| #q m IH P f g E H; @; *; #x Px; @x; ncases (IH … (E x) (H x)); /3/; ##] +nqed. -notation "∑" non associative with precedence 90 for @{Sig ?????}. +(* to rewrite propositions (live in setoid1) *) +nlet rec mk_P1 (S : setoid) (T : setoid1) (n : counter) on n ≝ + match n with [ End ⇒ T → CProp[0] | Next _ m ⇒ S → (mk_P1 S T m) ]. -nlemma test : ∀S:setoid. ∀ee: S ⇒_1 S ⇒_1 CPROP. - ∀x,y:setoid1_of_setoid S.x =_1 y → (Ex S (λw.ee x w ∧ True)) =_1 (Ex S (λw.ee y w ∧ True)). -#S m x y E; -napply (.=_1 (∑ E (λw,H.(H ╪_1 #)╪_1 #))). -napply #. +nlet rec mk_F1 (S : setoid) (T : setoid1) (n : counter) on n ≝ + match n with [ End ⇒ T | Next _ m ⇒ S → (mk_F1 S T m) ]. + +nlet rec mk_E1 (S : setoid) (T : setoid1) (n : counter) on n : ∀f,g : mk_F1 S T n. CProp[1] ≝ + match n with + [ End ⇒ λf,g:T. f =_1 g + | Next q m ⇒ λf,g: mk_F1 S T (Next q m). ∀x:S.mk_E1 S T m (f x) (g x) ]. + +nlet rec mk_H1 (S : setoid) (T : setoid1) (n : counter) on n : +∀P1,P2: mk_P1 S T n.∀f,g : mk_F1 S T n. CProp[1] ≝ + match n with + [ End ⇒ λP1,P2:mk_P1 S T End.λf,g:T. f = g → P1 f =_1 P2 g + | Next q m ⇒ λP1,P2: mk_P1 S T (Next q m).λf,g: mk_F1 S T (Next q m). + ∀x:S.mk_H1 S T m (P1 x) (P2 x) (f x) (g x) ]. + +nlet rec mk_Ex1 (S : setoid) (T : setoid1) (n : counter) on n : +∀P: mk_P1 S T n.∀f : mk_F1 S T n. CProp[0] ≝ + match n with + [ End ⇒ λP:mk_P1 S T End.λf:T. P f + | Next q m ⇒ λP: mk_P1 S T (Next q m).λf: mk_F1 S T (Next q m). + ∃x:S.mk_Ex1 S T m (P x) (f x) ]. + +nlemma Sig_generic1 : ∀S,T.∀n:counter.∀P,f,g. + mk_E1 S T n f g → mk_H1 S T n P P f g → mk_Ex1 S T n P f =_1 mk_Ex1 S T n P g. +#S T n; nelim n; nnormalize; +##[ #P f g E H; /2/; +##| #q m IH P f g E H; @; *; #x Px; @x; ncases (IH … (E x) (H x)); /3/; ##] nqed. +(* notation "∑x1,...,xn. E / H ; P" were: + - x1...xn are bound in E and P, H is bound in P + - H is an identifier that will have the type of E in P + - P is the proof that the two existentially quantified predicates are equal*) +notation > "∑ list1 ident x sep , . term 56 E / ident nE ; term 19 H" with precedence 20 +for @{ 'Sig_gen + ${ fold right @{ 'End } rec acc @{ ('Next (λ${ident x}.${ident x}) $acc) } } + ${ fold right @{ $E } rec acc @{ λ${ident x}.$acc } } + ${ fold right @{ λ${ident nE}.$H } rec acc @{ λ${ident x}.$acc } } +}. + +interpretation "next" 'Next x y = (Next x y). +interpretation "end" 'End = End. +(*interpretation "sig_gen" 'Sig_gen n E H = (Sig_generic ?? n ??? E H).*) +interpretation "sig_gen1" 'Sig_gen n E H = (Sig_generic1 ?? n ??? E H). + +nlemma test0 : ∀S:setoid. ∀P: S ⇒_1 CPROP.∀f,g:S → S. + (∀x:S.f x = g x) → (Ex S (λw.P (f w))) =_1 (Ex S (λw.P (g w))). +#S P f g E; napply (∑w. E w / H ; ┼_1H); nqed. + +nlemma test : ∀S:setoid. ∀P: S ⇒_1 CPROP.∀f,g:S → S. + (∀x:S.f x = g x) → (Ex S (λw.P (f w)∧ True)) =_1 (Ex S (λw.P (g w)∧ True)). +#S P f g E; napply (∑w. E w / H ; (┼_1H)╪_1#); nqed. + +nlemma test_bound : ∀S:setoid. ∀e,f: S ⇒_1 CPROP. e = f → + (Ex S (λw.e w ∧ True)) =_1 (Ex S (λw.f w ∧ True)). +#S f g E; napply (.=_1 ∑x. E x x # / H ; (H ╪_1 #)); //; nqed. + nlemma test2 : ∀S:setoid. ∀ee: S ⇒_1 S ⇒_1 CPROP. ∀x,y:setoid1_of_setoid S.x =_1 y → (True ∧ (Ex S (λw.ee x w ∧ True))) =_1 (True ∧ (Ex S (λw.ee y w ∧ True))). -#S m x y E; -napply (.=_1 #╪_1(∑ E (λw,H.(H ╪_1 #) ╪_1 #))). -napply #. -nqed. - -nlemma ex_setoid : ∀S:setoid.(S ⇒_1 CPROP) → setoid. -#T P; @ (Ex T (λx:T.P x)); @; -##[ #H1 H2; napply True |##*: //; ##] -nqed. - -unification hint 0 ≔ T,P ; S ≟ (ex_setoid T P) ⊢ - Ex T (λx:T.P x) ≡ carr S. +#S m x y E; napply (.=_1 #╪_1(∑w. E / E ; ((E ╪_1 #) ╪_1 #))). //; nqed. nlemma test3 : ∀S:setoid. ∀ee: S ⇒_1 S ⇒_1 CPROP. ∀x,y:setoid1_of_setoid S.x =_1 y → ((Ex S (λw.ee x w ∧ True) ∨ True)) =_1 ((Ex S (λw.ee y w ∧ True) ∨ True)). -#S m x y E; -napply (.=_1 (∑ E (λw,H.(H ╪_1 #) ╪_1 #)) ╪_1 #). -napply #. -nqed. +#S m x y E; napply (.=_1 (∑w. E / E ; ((E ╪_1 #) ╪_1 #)) ╪_1 #). //; nqed. + (* Ex setoid support end *) ndefinition L_pi_ext : ∀S:Alpha.∀r:pitem S.Elang S. @@ -458,24 +575,20 @@ ndefinition L_pi_ext : ∀S:Alpha.∀r:pitem S.Elang S. ##| #x; @; *; ##| #x; @; #H; nchange in H with ([?] =_0 ?); ##[ napply ((.=_0 H) E); ##] napply ((.=_0 H) E^-1); -##| #e1 e2 H1 H2; +##| #e1 e2 H1 H2; (* nchange in match (w1 ∈ 𝐋\p (?·?)) with ((∃_.?)∨?); - nchange in match (w2 ∈ 𝐋\p (?·?)) with ((∃_.?)∨?); + nchange in match (w2 ∈ 𝐋\p (?·?)) with ((∃_.?)∨?); good! *) napply (.= (#‡H2)); - napply (.=_1 (∑ E (λx1,H1.∑ E (λx2,H2.?)))╪_1 #); ##[ - ncut ((w1 = (x1@x2)) = (w2 = (x1@x2)));##[ - @; #X; ##[ napply ((.= H1^-1) X) | napply ((.= H2) X) ] ##] #X; - napply ( (X‡#)‡#); ##] - napply #; -##| #e1 e2 H1 H2; - nnormalize in ⊢ (???%%); - napply (H1‡H2); -##| #e H; nnormalize in ⊢ (???%%); - napply (.=_1 (∑ E (λx1,H1.∑ E (λx2,H2.?)))); ##[ - ncut ((w1 = (x1@x2)) = (w2 = (x1@x2)));##[ - @; #X; ##[ napply ((.= H1^-1) X) | napply ((.= H2) X) ] ##] #X; - napply ((X‡#)‡#); ##] - napply #;##] + ncut (∀x1,x2. (w1 = (x1@x2)) = (w2 = (x1@x2)));##[ + #x1 x2; @; #X; ##[ napply ((.= E^-1) X) | napply ((.= E) X) ] ##] #X; + napply ((∑w1,w2. X w1 w2 / H ; (H╪_1#)╪_1#) ╪_1 #); +##| #e1 e2 H1 H2; napply (H1‡H2); (* good! *) +##| #e H; + ncut (∀x1,x2.(w1 = (x1@x2)) = (w2 = (x1@x2)));##[ + #x1 x2; @; #X; ##[ napply ((.= E^-1) X) | napply ((.= E) X) ] ##] #X; + (* nnormalize in ⊢ (???%%); good! (but a bit too hard) *) + napply (∑w1,w2. X w1 w2 / H ; (H╪_1#)╪_1#); +##] nqed. unification hint 0 ≔ S : Alpha,e : pitem S; @@ -588,10 +701,10 @@ ncoercion if : ∀A,B:CPROP. ∀p:A = B. A → B ≝ if' on _p : eq_rel1 ???? to (* theorem 16: 2 *) nlemma oplus_cup : ∀S:Alpha.∀e1,e2:pre S.𝐋\p (e1 ⊕ e2) = 𝐋\p e1 ∪ 𝐋\p e2. -#S r1; ncases r1; #e1 b1 r2; ncases r2; #e2 b2; +#S r1; ncases r1; #e1 b1 r2; ncases r2; #e2 b2; (* oh my! nwhd in ⊢ (???(??%)?); nchange in ⊢(???%?) with (𝐋\p (e1 + e2) ∪ ϵ (b1 || b2)); -nchange in ⊢(???(??%?)?) with (𝐋\p (e1) ∪ 𝐋\p (e2)); +nchange in ⊢(???(??%?)?) with (𝐋\p (e1) ∪ 𝐋\p (e2)); *) napply (.=_1 #╪_1 (epsilon_or ???)); napply (.=_1 (cupA…)^-1); napply (.=_1 (cupA…)╪_1#); -- 2.39.2