From 737f7dca7da2379a725182776e8c01c3ceae1cc0 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Thu, 15 Jul 2010 16:16:50 +0000 Subject: [PATCH] re 16.4 almost done --- helm/software/matita/nlibrary/re/re.ma | 581 +++++++++++++++---------- 1 file changed, 344 insertions(+), 237 deletions(-) diff --git a/helm/software/matita/nlibrary/re/re.ma b/helm/software/matita/nlibrary/re/re.ma index 6b6a98524..7b6580c87 100644 --- a/helm/software/matita/nlibrary/re/re.ma +++ b/helm/software/matita/nlibrary/re/re.ma @@ -12,21 +12,16 @@ (* *) (**************************************************************************) -(*include "logic/connectives.ma".*) -(*include "logic/equality.ma".*) include "datatypes/list.ma". include "datatypes/pairs.ma". include "arithmetics/nat.ma". -(*include "Plogic/equality.ma".*) - interpretation "iff" 'iff a b = (iff a b). -nrecord Alpha : Type[1] ≝ - { carr :> Type[0]; +nrecord Alpha : Type[1] ≝ { carr :> Type[0]; eqb: carr → carr → bool; eqb_true: ∀x,y. (eqb x y = true) ↔ (x = y) - }. +}. notation "a == b" non associative with precedence 45 for @{ 'eqb $a $b }. interpretation "eqb" 'eqb a b = (eqb ? a b). @@ -62,186 +57,50 @@ interpretation "epsilon" 'epsilon = (e ?). notation "∅" non associative with precedence 90 for @{ 'empty }. interpretation "empty" 'empty = (z ?). -notation > "w ∈ E" non associative with precedence 45 for @{in_l ? $w $E}. -ninductive in_l (S : Alpha) : word S → re S → Prop ≝ - | in_e: [ ] ∈ ϵ - | in_s: ∀x:S. [x] ∈ `x - | in_c: ∀w1,w2,e1,e2. w1 ∈ e1 → w2 ∈ e2 → w1@w2 ∈ e1 · e2 - | in_o1: ∀w,e1,e2. w ∈ e1 → w ∈ e1 + e2 - | in_o2: ∀w,e1,e2. w ∈ e2 → w ∈ e1 + e2 - | in_ke: ∀e. [ ] ∈ e^* - | in_ki: ∀w1,w2,e. w1 ∈ e → w2 ∈ e^* → w1@w2 ∈ e^*. -interpretation "in_l" 'mem w l = (in_l ? w l). - -notation "a || b" left associative with precedence 30 for @{'orb $a $b}. -interpretation "orb" 'orb a b = (orb a b). - -notation "a && b" left associative with precedence 40 for @{'andb $a $b}. -interpretation "andb" 'andb a b = (andb a b). - -notation "~~ a" non associative with precedence 40 for @{'notb $a}. -interpretation "notb" 'notb a = (notb a). - -nlet rec weq (S : Alpha) (l1, l2 : word S) on l1 : bool ≝ -match l1 with -[ nil ⇒ match l2 with [ nil ⇒ true | cons _ _ ⇒ false ] -| cons x xs ⇒ match l2 with [ nil ⇒ false | cons y ys ⇒ (x == y) && weq S xs ys]]. - -ndefinition if_then_else ≝ λT:Type[0].λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. -notation > "'if' term 19 e 'then' term 19 t 'else' term 19 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. -interpretation "if_then_else" 'if_then_else e t f = (if_then_else ? e t f). - -interpretation "qew" 'eqb a b = (weq ? a b). - -ndefinition is_epsilon ≝ λA.λw:word A. w == [ ]. -ndefinition is_empty ≝ λA.λw:word A.false. -ndefinition is_char ≝ λA,x.λw:word A. w == [ x ]. - -nlemma andP : ∀a,b.(a && b) = true ↔ (a = true ∧ b = true). -#a b; ncases a; ncases b; nnormalize; @; ##[##2,4,6,8: *] /2/; -nqed. - -nlemma orP : ∀a,b.(a || b) = true ↔ (a = true ∨ b = true). -#a b; ncases a; ncases b; nnormalize; @; ##[##2,4,6,8: *] /2/; -nqed. - -nlemma iff_l2r : ∀a,p.a = true ↔ p → a = true → p. -#a p; *; /2/; -nqed. +nlet rec flatten (S : Alpha) (l : list (word S)) on l : word S ≝ +match l with [ nil ⇒ [ ] | cons w tl ⇒ w @ flatten ? tl ]. -nlemma iff_r2l : ∀a,p.a = true ↔ p → p → a = true. -#a p; *; /2/; -nqed. +nlet rec conjunct (S : Alpha) (l : list (word S)) (r : word S → Prop) on l: Prop ≝ +match l with [ nil ⇒ ? | cons w tl ⇒ r w ∧ conjunct ? tl r ]. napply True. nqed. -ncoercion xx : ∀a,p.∀H:a = true ↔ p. a = true → p ≝ iff_l2r -on _H : (? = true) ↔ ? to ∀_:?. ?. +ndefinition empty_lang ≝ λS.λw:word S.False. +notation "{}" non associative with precedence 90 for @{'empty_lang}. +interpretation "empty lang" 'empty_lang = (empty_lang ?). -ncoercion yy : ∀a,p.∀H:a = true ↔ p. p → a = true ≝ iff_r2l -on _H : (? = true) ↔ ? to ∀_:?. ?. +ndefinition sing_lang ≝ λS.λx,w:word S.x=w. +notation "{x}" non associative with precedence 90 for @{'sing_lang $x}. +interpretation "sing lang" 'sing_lang x = (sing_lang ? x). -ndefinition wAlpha : Alpha → Alpha. #A; @ (word A) (weq A). -#x; nelim x; ##[ #y; ncases y; /2/; #x xs; @; nnormalize; #; ndestruct; ##] -#x xs; #IH y; nelim y; ##[ @; nnormalize; #; ndestruct; ##] -#y ys; *; #H1 H2; @; #H3; -##[ ##2: ncases (IH ys); #_; #H; ndestruct; nrewrite > (iff_r2l ?? (eqb_true ???) ?); //; napply H; //] -nrewrite > (iff_l2r ?? (eqb_true ? x y) ?); nnormalize in H3; ncases (x == y) in H3; nnormalize; /2/; -##[ #H; ncases (IH ys); #E; #_; nrewrite > (E H); //] #; ndestruct; -nqed. +ndefinition union : ∀S,l1,l2,w.Prop ≝ λS.λl1,l2.λw:word S.l1 w ∨ l2 w. +interpretation "union lang" 'union a b = (union ? a b). -alias symbol "hint_decl" (instance 1) = "hint_decl_Type1". -unification hint 0 ≔ T; Y ≟ T, X ≟ (wAlpha T) ⊢ carr X ≡ word Y. -unification hint 0 ≔ T; Y ≟ T, X ≟ (wAlpha T) ⊢ carr X ≡ list Y. -unification hint 0 ≔ T,x,y; Y ≟ T, X ≟ (wAlpha T) ⊢ eqb X x y ≡ weq Y x y. - -nlet rec ex_split (A : Alpha) (p1,p2 : word A → bool) (w : word A) on w : bool ≝ - match w with - [ nil ⇒ p1 [ ] && p2 [ ] - | cons x xs ⇒ p1 [ ] && p2 (x::xs) || ex_split … (λw.p1 (x :: w)) p2 xs]. - -nlemma ex_splitP : - ∀A,w,p1,p2. ex_split A p1 p2 w = true ↔ - ∃w1,w2. w = w1 @ w2 ∧ p1 w1 = true ∧ p2 w2 = true. -#A w; nelim w; -##[ #p1 p2; @; - ##[ #H; @[ ]; @[ ]; ncases (iff_l2r ?? (andP ??) H); (* bug coercions *) - #E1 E2; nrewrite > E1; nrewrite > E2; /3/; - ##| *; #w1; *;#w2; *; *; ncases w1; ncases w2; nnormalize; #abs H1 H2; #; - ndestruct; nrewrite > H1 ; nrewrite > H2; //] -##| #x xs IH p1 p2; @; - ##[ #H; ncases (iff_l2r ?? (orP ??) H); - ##[ #H1; ncases (iff_l2r ?? (andP ??) H1); #p1T p2T; - @[ ]; @(x::xs); nnormalize; /3/; - ##| #E; ncases (iff_l2r ?? (IH ??) E); #l1; *; #l2; *; *; #defxs p1T p2T; - @(x :: l1); @l2; ndestruct; /3/; ##] - ##| *; #w1; *; #w2; *; *; ncases w1; - ##[ nnormalize in ⊢ (% → ?); ncases w2; ##[ #; ndestruct] #y ys defw2 p1T p2T; - nchange with ((p1 [ ] && p2 (x::xs) || ex_split ? (λw0.p1 (x::w0)) p2 xs) = true); - napply (iff_r2l ?? (orP ??)); @1; napply (iff_r2l ?? (andP ??)); - ndestruct; /2/; - ##| #y ys; nnormalize in ⊢ (% → ?); #E p1T p2T; - nchange with ((p1 [ ] && p2 (x::xs) || ex_split ? (λw0.p1 (x::w0)) p2 xs) = true); - napply (iff_r2l ?? (orP ??)); @2; napply (iff_r2l ?? (IH ??)); - @ys; @w2; ndestruct; /3/; ##]##]##] -nqed. +ndefinition cat : ∀S,l1,l2,w.Prop ≝ + λS.λl1,l2.λw:word S.∃w1,w2.w1 @ w2 = w ∧ l1 w1 ∧ l2 w2. +interpretation "cat lang" 'pc a b = (cat ? a b). -nlet rec allb (A : Alpha) (p,fresh_p : word A → bool) (w : word A) on w : bool ≝ - match w with - [ nil ⇒ p [ ] - | cons x xs ⇒ p [x] && (xs == [ ] || allb … fresh_p fresh_p xs) - || allb … (λw.p (x :: w)) fresh_p xs]. - -nlemma allbP : - ∀A,w,p.allb A p p w = true ↔ - ∃w1,w2.w = w1 @ w2 ∧ p w1 = true ∧ (w2 = [ ] ∨ allb ? p p w2 = true). -#A w; nelim w; -##[ #p; @; - ##[ #H; @[ ]; @[ ]; nnormalize in H; /4/ by conj, or_introl; - ##| *; #w1; *; #w2; ncases w1; - ##[ *; *; nnormalize in ⊢ (% → ?); #defw2 pnil; *; ##[ #; ndestruct] //; - ##| #y ys; *; *; nnormalize in ⊢ (% → ?); #; ndestruct; ##]##] -##| #y ys IH p; @; - ##[ #E; ncases (iff_l2r ?? (orP ??) E); - ##[ #H; ncases (iff_l2r ?? (andP ??) H); #px allys; - nlapply (iff_l2r ?? (orP ??) allys); *; - ##[ #defys; @[y]; @[ ]; nrewrite > (iff_l2r ?? (eqb_true ? ys ?) defys); - /4/ by conj, or_introl; - ##| #IHa; ncases (iff_l2r ?? (IH ?) IHa); #z; *; #zs; *; *; - #defys pz; *; - ##[ #; ndestruct; @[y]; @z; - nrewrite > (append_nil ? z) in IHa; /4/ by or_intror, conj; - ##| #allzs; @[y]; @(z@zs); nrewrite > defys; /3/ by or_intror, conj;##]##] - ##| #allbp; - ; - - +ndefinition star ≝ λS.λl.λw:word S.∃lw.flatten ? lw = w ∧ conjunct ? lw l. +interpretation "star lang" 'pk l = (star ? l). -nlet rec in_lb (A : Alpha) (e : re A) on e : word A → bool ≝ - match e with - [ e ⇒ is_epsilon … - | z ⇒ is_empty … - | s x ⇒ is_char … x - | o e1 e2 ⇒ λw.in_lb … e1 w || in_lb … e2 w - | c e1 e2 ⇒ ex_split … (in_lb A e1) (in_lb A e2) - | k e ⇒ allb … (in_lb A e) (in_lb A e)]. - - -nlemma equiv_l_lb : ∀A,e,w. w ∈ e ↔ in_lb A e w = true. -#A e; nelim e; nnormalize; -##[ #w; @; ##[##2: #; ndestruct] #H; ninversion H; #; ndestruct; -##| #w; @; ##[##2: #H; nrewrite > (l2r ??? H); //; ##] - #H; ninversion H; #; ndestruct; //; -##| #x w; @; ##[ #H; ninversion H; #; ndestruct; nrewrite > (r2l ????); //; ##] - #H; nrewrite > (l2r ??? H); @2; -##| #e1 e2 IH1 IH2 w; @; #E; - ##[ ninversion E; ##[##1,2,4,5,6,7: #; ndestruct] - #w1 w2 e1 e2 w1r1 w2r2 H1 H2 defw defr1r2; ndestruct; - nlapply (IH1 w1); *; #IH1; #_; nlapply (IH1 w1r1); - nlapply (IH2 w2); *; #IH2; #_; nlapply (IH2 w2r2); - nelim w1;nnormalize; ncases w2; //; nnormalize; - - ##[ nelim w; ##[ nnormalize; //] #x xs IH E; nnormalize; - nlapply (IH1 [x]); nlapply (IH2 xs); - ncases (in_lb A e1 [x]); ncases (in_lb A e2 xs); nnormalize; *; #E1 E2; *; #E3 E4; /2/; - ##[ ncases xs in IH E3 E4; nnormalize; //; #xx xs H; #_; - - *; nnormalize; - - -nlemma in_l_inv_e: - ∀S.∀w:word S. w ∈ ∅ → w = []. - #S; #w; #H; ninversion H; #; ndestruct; -nqed. +notation > "𝐋 term 90 E" non associative with precedence 90 for @{in_l ? $E}. +nlet rec in_l (S : Alpha) (r : re S) on r : word S → Prop ≝ +match r with +[ z ⇒ {} +| e ⇒ { [ ] } +| s x ⇒ { [x] } +| c r1 r2 ⇒ 𝐋 r1 · 𝐋 r2 +| o r1 r2 ⇒ 𝐋 r1 ∪ 𝐋 r2 +| k r1 ⇒ (𝐋 r1) ^*]. +notation "𝐋 term 90 E" non associative with precedence 90 for @{'in_l $E}. +interpretation "in_l" 'in_l E = (in_l ? E). +interpretation "in_l mem" 'mem w l = (in_l ? l w). -nlemma in_l_inv_s: ∀S.∀w:word S.∀x. w ∈ `x → w = [x]. -#S w x H; ninversion H; #; ndestruct; //. -nqed. +notation "a || b" left associative with precedence 30 for @{'orb $a $b}. +interpretation "orb" 'orb a b = (orb a b). -nlemma in_l_inv_c: - ∀S.∀w:word S.∀E1,E2. w ∈ E1 · E2 → ∃w1.∃w2. w = w1@w2 ∧ w1 ∈ E1 ∧ w2 ∈ E2. -#S w e1 e2 H; ninversion H; ##[##1,2,4,5,6,7: #; ndestruct; ##] -#w1 w2 r1 r2 w1r1 w2r2; #_; #_; #defw defe; @w1; @w2; ndestruct; /3/. -nqed. +ndefinition if_then_else ≝ λT:Type[0].λe,t,f.match e return λ_.T with [ true ⇒ t | false ⇒ f]. +notation > "'if' term 19 e 'then' term 19 t 'else' term 19 f" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. +notation < "'if' \nbsp term 19 e \nbsp 'then' \nbsp term 19 t \nbsp 'else' \nbsp term 90 f \nbsp" non associative with precedence 19 for @{ 'if_then_else $e $t $f }. +interpretation "if_then_else" 'if_then_else e t f = (if_then_else ? e t f). ninductive pitem (S: Alpha) : Type[0] ≝ pz: pitem S @@ -273,8 +132,8 @@ nlet rec forget (S: Alpha) (l : pitem S) on l: re S ≝ | pe ⇒ ϵ | ps x ⇒ `x | pp x ⇒ `x - | pc E1 E2 ⇒ .|E1| .|E2| - | po E1 E2 ⇒ .|E1| + .|E2| + | pc E1 E2 ⇒ (.|E1| · .|E2|) + | po E1 E2 ⇒ (.|E1| + .|E2|) | pk E ⇒ .|E|^* ]. notation < ".|term 19 e|" non associative with precedence 90 for @{'forget $e}. interpretation "forget" 'forget a = (forget ? a). @@ -284,53 +143,53 @@ interpretation "fst" 'fst x = (fst ? ? x). notation > "\snd term 90 x" non associative with precedence 90 for @{'snd $x}. interpretation "snd" 'snd x = (snd ? ? x). -notation > "w .∈ E" non associative with precedence 40 for @{in_pl ? $w $E}. -ninductive in_pl (S: Alpha): word S → pitem S → Prop ≝ - | in_pp: ∀x:S.[x] .∈ `.x - | in_pc1: ∀w1,w2:word S.∀e1,e2:pitem S. - w1 .∈ e1 → w2 ∈ .|e2| → (w1@w2) .∈ e1 · e2 - | in_pc2: ∀w,e1,e2. w .∈ e2 → w .∈ e1 · e2 - | in_po1: ∀w,e1,e2. w .∈ e1 → w .∈ e1 + e2 - | in_po2: ∀w,e1,e2. w .∈ e2 → w .∈ e1 + e2 - | in_pki: ∀w1,w2,e. w1 .∈ e → w2 ∈ .|e|^* → (w1@w2) .∈ e^*. - -interpretation "in_pl" 'in_pl w l = (in_pl ? w l). - -ndefinition in_prl ≝ λS : Alpha.λw:word S.λp:pre S. - (w = [ ] ∧ \snd p = true) ∨ w .∈ (\fst p). +notation > "𝐋\p\ term 90 E" non associative with precedence 90 for @{in_pl ? $E}. +nlet rec in_pl (S : Alpha) (r : pitem S) on r : word S → Prop ≝ +match r with +[ pz ⇒ {} +| pe ⇒ {} +| ps _ ⇒ {} +| pp x ⇒ { [x] } +| pc r1 r2 ⇒ 𝐋\p\ r1 · 𝐋 .|r2| ∪ 𝐋\p\ r2 +| po r1 r2 ⇒ 𝐋\p\ r1 ∪ 𝐋\p\ r2 +| pk r1 ⇒ 𝐋\p\ r1 · 𝐋 (.|r1|^* ) ]. +notation > "𝐋\p term 90 E" non associative with precedence 90 for @{'in_pl $E}. +notation "𝐋\sub(\p) term 90 E" non associative with precedence 90 for @{'in_pl $E}. +interpretation "in_pl" 'in_pl E = (in_pl ? E). +interpretation "in_pl mem" 'mem w l = (in_pl ? l w). + +ndefinition epsilon ≝ λS,b.if b then { ([ ] : word S) } else {}. + +interpretation "epsilon" 'epsilon = (epsilon ?). +notation < "ϵ b" non associative with precedence 90 for @{'app_epsilon $b}. +interpretation "epsilon lang" 'app_epsilon b = (epsilon ? b). + +ndefinition in_prl ≝ λS : Alpha.λp:pre S. 𝐋\p\ (\fst p) ∪ ϵ (\snd p). -notation > "w .∈ E" non associative with precedence 40 for @{'in_pl $w $E}. -notation < "w\shy .∈\shy E" non associative with precedence 40 for @{'in_pl $w $E}. -interpretation "in_prl" 'in_pl w l = (in_prl ? w l). - - - -nlemma append_eq_nil : - ∀S.∀w1,w2:word S. [ ] = w1 @ w2 → w1 = [ ]. -#S w1; nelim w1; //. #x tl IH w2; nnormalize; #abs; ndestruct; -nqed. - -nlemma append_eq_nil_r : - ∀S.∀w1,w2:word S. [ ] = w1 @ w2 → w2 = [ ]. -#S w1; nelim w1; ##[ #w2 H; nrewrite > H; // ] -#x tl IH w2; nnormalize; #abs; ndestruct; +interpretation "in_prl mem" 'mem w l = (in_prl ? l w). +interpretation "in_prl" 'in_pl E = (in_prl ? E). + +nlemma append_eq_nil : ∀S.∀w1,w2:word S. w1 @ w2 = [ ] → w1 = [ ]. +#S w1; nelim w1; //. #x tl IH w2; nnormalize; #abs; ndestruct; nqed. + +(* lemma 12 *) +nlemma epsilon_in_true : ∀S.∀e:pre S. [ ] ∈ e ↔ \snd e = true. +#S r; ncases r; #e b; @; ##[##2: #H; nrewrite > H; @2; /2/; ##] ncases b;//; +nnormalize; *; ##[##2:*] nelim e; +##[ ##1,2: *; ##| #c; *; ##| #c; nnormalize; #; ndestruct; ##| ##7: #p H; +##| #r1 r2 H G; *; ##[##2: /3/ by or_intror] +##| #r1 r2 H1 H2; *; /3/ by or_intror, or_introl; ##] +*; #w1; *; #w2; *; *; #defw1; nrewrite > (append_eq_nil … w1 w2 …); /3/ by {};//; nqed. -nlemma lemma16 : - ∀S.∀e:pre S. [ ] .∈ e ↔ \snd e = true. -#S p; ncases p; #e b; @; ##[##2: #H; nrewrite > H; @; @; //. ##] -ncases b; //; *; ##[*; //] nelim e; -##[##1,2: #abs; ninversion abs; #; ndestruct; -##|##3,4: #x abs; ninversion abs; #; ndestruct; -##|#p1 p2 H1 H2 H; ninversion H; ##[##1,3,4,5,6: #; ndestruct; /2/. ##] - #w1 w2 r1 r2 w1r1 w2fr2 H3 H4 Ep1p2; ndestruct; - nrewrite > (append_eq_nil … H4) in w1r1; /2/ by {}; -##|#r1 r2 H1 H2 H; ninversion H; #; ndestruct; /2/ by {}; -##|#r H1 H2; ninversion H2; ##[##1,2,3,4,5: #; ndestruct; ##] - #w1 w2 r1 w1r1 w1er1 H11 H21 H31; - nrewrite > (append_eq_nil … H21) in w1r1 H1; - nrewrite > (?: r = r1); /2/ by {}; - ndestruct; //. ##] +nlemma not_epsilon_lp : ∀S.∀e:pitem S. ¬ (𝐋\p e [ ]). +#S e; nelim e; nnormalize; /2/ by nmk; +##[ #; @; #; ndestruct; +##| #r1 r2 n1 n2; @; *; /2/; *; #w1; *; #w2; *; *; #H; + nrewrite > (append_eq_nil …H…); /2/; +##| #r1 r2 n1 n2; @; *; /2/; +##| #r n; @; *; #w1; *; #w2; *; *; #H; + nrewrite > (append_eq_nil …H…); /2/;##] nqed. ndefinition lo ≝ λS:Alpha.λa,b:pre S.〈\fst a + \fst b,\snd a || \snd b〉. @@ -339,10 +198,9 @@ interpretation "oplus" 'oplus a b = (lo ? a b). ndefinition lc ≝ λS:Alpha.λbcast:∀S:Alpha.∀E:pitem S.pre S.λa,b:pre S. match a with [ mk_pair e1 b1 ⇒ - match b with [ mk_pair e2 b2 ⇒ match b1 with - [ false ⇒ 〈e1 · e2, b2〉 - | true ⇒ match bcast ? e2 with [ mk_pair e2' b2' ⇒ 〈e1 · e2', b2 || b2'〉 ]]]]. + [ false ⇒ 〈e1 · \fst b, \snd b〉 + | true ⇒ 〈e1 · \fst (bcast ? (\fst b)),\snd b || \snd (bcast ? (\fst b))〉]]. notation < "a ⊙ b" left associative with precedence 60 for @{'lc $op $a $b}. interpretation "lc" 'lc op a b = (lc ? op a b). @@ -352,9 +210,9 @@ ndefinition lk ≝ λS:Alpha.λbcast:∀S:Alpha.∀E:pitem S.pre S.λa:pre S. match a with [ mk_pair e1 b1 ⇒ match b1 with [ false ⇒ 〈e1^*, false〉 - | true ⇒ match bcast ? e1 with [ mk_pair e1' b1' ⇒ 〈e1'^*, true〉 ]]]. + | true ⇒ 〈(\fst (bcast ? e1))^*, true〉]]. -notation < "a \sup ⊛" non associative with precedence 90 for @{'lk ? $a}. +notation < "a \sup ⊛" non associative with precedence 90 for @{'lk $op $a}. interpretation "lk" 'lk op a = (lk ? op a). notation > "a^⊛" non associative with precedence 90 for @{'lk eclose $a}. @@ -367,7 +225,7 @@ nlet rec eclose (S: Alpha) (E: pitem S) on E : pre S ≝ | pp x ⇒ 〈 `.x, false 〉 | po E1 E2 ⇒ •E1 ⊕ •E2 | pc E1 E2 ⇒ •E1 ⊙ 〈 E2, false 〉 - | pk E ⇒ 〈E,true〉^⊛]. + | pk E ⇒ 〈(\fst (•E))^*,true〉]. notation < "• x" non associative with precedence 60 for @{'eclose $x}. interpretation "eclose" 'eclose x = (eclose ? x). notation > "• x" non associative with precedence 60 for @{'eclose $x}. @@ -375,15 +233,264 @@ notation > "• x" non associative with precedence 60 for @{'eclose $x}. ndefinition reclose ≝ λS:Alpha.λp:pre S.let p' ≝ •\fst p in 〈\fst p',\snd p || \snd p'〉. interpretation "reclose" 'eclose x = (reclose ? x). -nlemma lemma19_2 : - ∀S:Alpha.∀e1,e2:pre S.∀w. w .∈ e1 ⊕ e2 → w .∈ e1 ∨ w .∈ e2. -#S e1 e2 w H; nnormalize in H; ncases H; -##[ *; #defw; ncases e1; #p b; ncases b; nnormalize; - ##[ #_; @1; @1; /2/ by conj; - ##| #H1; @2; @1; /2/ by conj; ##] -##| #H1; ninversion H1; #; ndestruct; /4/ by or_introl, or_intror; ##] +ndefinition eq_f1 ≝ λS.λa,b:word S → Prop.∀w.a w ↔ b w. +notation > "A =1 B" non associative with precedence 45 for @{'eq_f1 $A $B}. +notation "A =\sub 1 B" non associative with precedence 45 for @{'eq_f1 $A $B}. +interpretation "eq f1" 'eq_f1 a b = (eq_f1 ? a b). + +naxiom extP : ∀S.∀p,q:word S → Prop.(p =1 q) → p = q. + +nlemma epsilon_or : ∀S:Alpha.∀b1,b2. ϵ(b1 || b2) = ϵ b1 ∪ ϵ b2. ##[##2: napply S] +#S b1 b2; ncases b1; ncases b2; napply extP; #w; nnormalize; @; /2/; *; //; *; +nqed. + +nlemma cupA : ∀S.∀a,b,c:word S → Prop.a ∪ b ∪ c = a ∪ (b ∪ c). +#S a b c; napply extP; #w; nnormalize; @; *; /3/; *; /3/; nqed. + +nlemma cupC : ∀S. ∀a,b:word S → Prop.a ∪ b = b ∪ a. +#S a b; napply extP; #w; @; *; nnormalize; /2/; nqed. + +(* theorem 16: 2 *) +nlemma oplus_cup : ∀S:Alpha.∀e1,e2:pre S.𝐋\p (e1 ⊕ e2) = 𝐋\p e1 ∪ 𝐋\p e2. +#S r1; ncases r1; #e1 b1 r2; ncases r2; #e2 b2; +nwhd in ⊢ (??(??%)?); +nchange in ⊢(??%?) with (𝐋\p (e1 + e2) ∪ ϵ (b1 || b2)); +nchange in ⊢(??(??%?)?) with (𝐋\p (e1) ∪ 𝐋\p (e2)); +nrewrite > (epsilon_or S …); nrewrite > (cupA S (𝐋\p e1) …); +nrewrite > (cupC ? (ϵ b1) …); nrewrite < (cupA S (𝐋\p e2) …); +nrewrite > (cupC ? ? (ϵ b1) …); nrewrite < (cupA …); //; +nqed. + +nlemma odotEt : + ∀S.∀e1,e2:pitem S.∀b2. 〈e1,true〉 ⊙ 〈e2,b2〉 = 〈e1 · \fst (•e2),b2 || \snd (•e2)〉. +#S e1 e2 b2; nnormalize; ncases (•e2); //; nqed. + +nlemma LcatE : ∀S.∀e1,e2:pitem S.𝐋\p (e1 · e2) = 𝐋\p e1 · 𝐋 .|e2| ∪ 𝐋\p e2. //; nqed. + +nlemma cup_dotD : ∀S.∀p,q,r:word S → Prop.(p ∪ q) · r = (p · r) ∪ (q · r). +#S p q r; napply extP; #w; nnormalize; @; +##[ *; #x; *; #y; *; *; #defw; *; /7/ by or_introl, or_intror, ex_intro, conj; +##| *; *; #x; *; #y; *; *; /7/ by or_introl, or_intror, ex_intro, conj; ##] +nqed. + +nlemma cup0 :∀S.∀p:word S → Prop.p ∪ {} = p. +#S p; napply extP; #w; nnormalize; @; /2/; *; //; *; nqed. + +nlemma erase_dot : ∀S.∀e1,e2:pitem S.𝐋 .|e1 · e2| = 𝐋 .|e1| · 𝐋 .|e2|. +#S e1 e2; napply extP; nnormalize; #w; @; *; #w1; *; #w2; *; *; /7/ by ex_intro, conj; +nqed. + +nlemma erase_plus : ∀S.∀e1,e2:pitem S.𝐋 .|e1 + e2| = 𝐋 .|e1| ∪ 𝐋 .|e2|. +#S e1 e2; napply extP; nnormalize; #w; @; *; /4/ by or_introl, or_intror; nqed. + +nlemma erase_star : ∀S.∀e1:pitem S.𝐋 .|e1|^* = 𝐋 .|e1^*|. //; nqed. + +ndefinition substract := λS.λp,q:word S → Prop.λw.p w ∧ ¬ q w. +interpretation "substract" 'minus a b = (substract ? a b). + +nlemma cup_sub: ∀S.∀a,b:word S → Prop. ¬ (a []) → a ∪ (b - {[]}) = (a ∪ b) - {[]}. +#S a b c; napply extP; #w; nnormalize; @; *; /4/; *; /4/; nqed. + +nlemma sub0 : ∀S.∀a:word S → Prop. a - {} = a. +#S a; napply extP; #w; nnormalize; @; /3/; *; //; nqed. + +nlemma subK : ∀S.∀a:word S → Prop. a - a = {}. +#S a; napply extP; #w; nnormalize; @; *; /2/; nqed. + +nlemma subW : ∀S.∀a,b:word S → Prop.∀w.(a - b) w → a w. +#S a b w; nnormalize; *; //; nqed. + +nlemma erase_bull : ∀S.∀a:pitem S. .|\fst (•a)| = .|a|. +#S a; nelim a; // by {}; +##[ #e1 e2 IH1 IH2; nchange in ⊢ (???%) with (.|e1| · .|e2|); + nrewrite < IH1; nrewrite < IH2; + nchange in ⊢ (??(??%)?) with (\fst (•e1 ⊙ 〈e2,false〉)); + ncases (•e1); #e3 b; ncases b; nnormalize; + ##[ ncases (•e2); //; ##| nrewrite > IH2; //] +##| #e1 e2 IH1 IH2; nchange in ⊢ (???%) with (.|e1| + .|e2|); + nrewrite < IH2; nrewrite < IH1; + nchange in ⊢ (??(??%)?) with (\fst (•e1 ⊕ •e2)); + ncases (•e1); ncases (•e2); //; +##| #e IH; nchange in ⊢ (???%) with (.|e|^* ); nrewrite < IH; + nchange in ⊢ (??(??%)?) with (\fst (•e))^*; //; ##] +nqed. + +nlemma eta_lp : ∀S.∀p:pre S.𝐋\p p = 𝐋\p 〈\fst p, \snd p〉. +#S p; ncases p; //; nqed. + +nlemma epsilon_dot: ∀S.∀p:word S → Prop. {[]} · p = p. +#S e; napply extP; #w; nnormalize; @; ##[##2: #Hw; @[]; @w; /3/; ##] +*; #w1; *; #w2; *; *; #defw defw1 Hw2; nrewrite < defw; nrewrite < defw1; +napply Hw2; nqed. + +(* theorem 16: 1 → 3 *) +nlemma odot_dot_aux : ∀S.∀e1,e2: pre S. + 𝐋\p (•(\fst e2)) = 𝐋\p (\fst e2) ∪ 𝐋 .|\fst e2| → + 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 .|\fst e2| ∪ 𝐋\p e2. +#S e1 e2 th1; ncases e1; #e1' b1'; ncases b1'; +##[ nwhd in ⊢ (??(??%)?); nletin e2' ≝ (\fst e2); nletin b2' ≝ (\snd e2); + nletin e2'' ≝ (\fst (•(\fst e2))); nletin b2'' ≝ (\snd (•(\fst e2))); + nchange in ⊢ (??%?) with (?∪?); + nchange in ⊢ (??(??%?)?) with (?∪?); + nchange in match (𝐋\p 〈?,?〉) with (?∪?); + nrewrite > (epsilon_or …); nrewrite > (cupC ? (ϵ ?)…); + nrewrite > (cupA …);nrewrite < (cupA ?? (ϵ?)…); + nrewrite > (?: 𝐋\p e2'' ∪ ϵ b2'' = 𝐋\p e2' ∪ 𝐋 .|e2'|); ##[##2: + nchange with (𝐋\p 〈e2'',b2''〉 = 𝐋\p e2' ∪ 𝐋 .|e2'|); + ngeneralize in match th1; + nrewrite > (eta_lp…); #th1; nrewrite > th1; //;##] + nrewrite > (eta_lp ? e2); + nchange in match (𝐋\p 〈\fst e2,?〉) with (𝐋\p e2'∪ ϵ b2'); + nrewrite > (cup_dotD …); nrewrite > (epsilon_dot…); + nrewrite > (cupC ? (𝐋\p e2')…); nrewrite > (cupA…);nrewrite > (cupA…); + nrewrite < (erase_bull S e2') in ⊢ (???(??%?)); //; +##| ncases e2; #e2' b2'; nchange in match (〈e1',false〉⊙?) with 〈?,?〉; + nchange in match (𝐋\p ?) with (?∪?); + nchange in match (𝐋\p (e1'·?)) with (?∪?); + nchange in match (𝐋\p 〈e1',?〉) with (?∪?); + nrewrite > (cup0…); + nrewrite > (cupA…); //;##] +nqed. + +(* theorem 16: 1 *) +alias symbol "pc" (instance 13) = "cat lang". +alias symbol "in_pl" (instance 23) = "in_pl". +alias symbol "in_pl" (instance 5) = "in_pl". +alias symbol "eclose" (instance 21) = "eclose". +ntheorem bull_cup : ∀S:Alpha. ∀e:pitem S. 𝐋\p (•e) = 𝐋\p e ∪ 𝐋 .|e|. +#S e; nelim e; //; + ##[ #a; napply extP; #w; nnormalize; @; *; /3/ by or_introl, or_intror; + ##| #a; napply extP; #w; nnormalize; @; *; /3/ by or_introl; *; + ##| #e1 e2 IH1 IH2; + nchange in ⊢ (??(??(%))?) with (•e1 ⊙ 〈e2,false〉); + nrewrite > (odot_dot_aux S (•e1) 〈e2,false〉 IH2); + nrewrite > (IH1 …); nrewrite > (cup_dotD …); + nrewrite > (cupA …); nrewrite > (cupC ?? (𝐋\p ?) …); + nchange in match (𝐋\p 〈?,?〉) with (𝐋\p e2 ∪ {}); nrewrite > (cup0 …); + nrewrite < (erase_dot …); nrewrite < (cupA …); //; + ##| #e1 e2 IH1 IH2; + nchange in match (•(?+?)) with (•e1 ⊕ •e2); nrewrite > (oplus_cup …); + nrewrite > (IH1 …); nrewrite > (IH2 …); nrewrite > (cupA …); + nrewrite > (cupC ? (𝐋\p e2)…);nrewrite < (cupA ??? (𝐋\p e2)…); + nrewrite > (cupC ?? (𝐋\p e2)…); nrewrite < (cupA …); + nrewrite < (erase_plus …); //. + ##| #e; nletin e' ≝ (\fst (•e)); nletin b' ≝ (\snd (•e)); #IH; + nchange in match (𝐋\p ?) with (𝐋\p 〈e'^*,true〉); + nchange in match (𝐋\p ?) with (𝐋\p (e'^* ) ∪ {[ ]}); + nchange in ⊢ (??(??%?)?) with (𝐋\p e' · 𝐋 .|e'|^* ); + nrewrite > (erase_bull…e); + nrewrite > (erase_star …); + nrewrite > (?: 𝐋\p e' = 𝐋\p e ∪ (𝐋 .|e| - ϵ b')); ##[##2: + nchange in IH : (??%?) with (𝐋\p e' ∪ ϵ b'); ncases b' in IH; + ##[ #IH; nrewrite > (cup_sub…); //; nrewrite < IH; + nrewrite < (cup_sub…); //; nrewrite > (subK…); nrewrite > (cup0…);//; + ##| nrewrite > (sub0 …); #IH; nrewrite < IH; nrewrite > (cup0 …);//; ##]##] + nrewrite > (cup_dotD…); nrewrite > (cupA…); + nrewrite > (?: ((?·?)∪{[]} = 𝐋 .|e^*|)); //; + nchange in ⊢ (???%) with ((𝐋. |e|)^* ); napply extP; #w; @; + ##[ *; ##[##2: nnormalize; #defw; nrewrite < defw; @[]; @; //] + *; #w1; *; #w2; *; *; #defw sube; *; #lw; *; #flx cj; + @ (w1 :: lw); nrewrite < defw; nrewrite < flx; @; //; + @; //; napply (subW … sube); + ##| *; #wl; *; #defw Pwl; nrewrite < defw; nelim wl in Pwl; + ##[ #_; @2; //; + ##| #w' wl' IH; *; #Pw' IHp; nlapply (IH IHp); *; + ##[ *; #w1; *; #w2; *; *; #defwl' H1 H2; + @; ncases b' in H1; #H1; + ##[##2: nrewrite > (sub0…); @w'; @(w1@w2); + nrewrite > (associative_append ? w' w1 w2); + nrewrite > defwl'; @; ##[@;//] @(wl'); @; //; + ##| ncases w' in Pw'; + ##[ #ne; @w1; @w2; nrewrite > defwl'; @; //; @; //; + ##| #x xs Px; @(x::xs); @(w1@w2); + nrewrite > (defwl'); @; ##[@; //; @; //; @; nnormalize; #; ndestruct] + @wl'; @; //; ##] ##] + ##| #wlnil; nchange in match (flatten ? (w'::wl')) with (w' @ flatten ? wl'); + nrewrite < (wlnil); nrewrite > (append_nil…); ncases b'; + ##[ ncases w' in Pw'; /2/; #x xs Pxs; @; @(x::xs); @([]); + nrewrite > (append_nil…); @; ##[ @; //;@; //; nnormalize; @; #; ndestruct] + @[]; @; //; + ##| @; @w'; @[]; nrewrite > (append_nil…); @; ##[##2: @[]; @; //] + @; //; @; //; @; *;##]##]##]##]##] +nqed. + +(* theorem 16: 3 *) +nlemma odot_dot: + ∀S.∀e1,e2: pre S. 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 .|\fst e2| ∪ 𝐋\p e2. +#S e1 e2; napply odot_dot_aux; napply (bull_cup S (\fst e2)); nqed. + +nlemma dot_star_epsilon : ∀S.∀e:re S.𝐋 e · 𝐋 e^* ∪ {[]} = 𝐋 e^*. +#S e; napply extP; #w; nnormalize; @; +##[ *; ##[##2: #H; nrewrite < H; @[]; /3/] *; #w1; *; #w2; + *; *; #defw Hw1; *; #wl; *; #defw2 Hwl; @(w1 :: wl); + nrewrite < defw; nrewrite < defw2; @; //; @;//; +##| *; #wl; *; #defw Hwl; ncases wl in defw Hwl; ##[#defw; #; @2; nrewrite < defw; //] + #x xs defw; *; #Hx Hxs; @; @x; @(flatten ? xs); nrewrite < defw; + @; /2/; @xs; /2/;##] + nqed. + +nlemma nil_star : ∀S.∀e:re S. [ ] ∈ e^*. +#S e; @[]; /2/; nqed. + +nlemma cupID : ∀S.∀l:word S → Prop.l ∪ l = l. +#S l; napply extP; #w; @; ##[*]//; #; @; //; nqed. + +nlemma cup_star_nil : ∀S.∀l:word S → Prop. l^* ∪ {[]} = l^*. +#S a; napply extP; #w; @; ##[*; //; #H; nrewrite < H; @[]; @; //] #;@; //;nqed. + +naxiom Admit : False. + +nlemma key_id : ∀S.∀e:pitem S. 𝐋\p e · 𝐋 .|e|^* ∪ {[]} = 𝐋\p e · 𝐋 .|e|^* ∪ 𝐋 .|e|^*. +#S e; napply extP; #w; @;##[##2:*] +##[*; #w1; *; #w2; *; *; #defw Hw1 Hw2;@; @w1; @w2; /3/; +##|*; #wl; *; #H; nrewrite < H; +(* + ngeneralize in match e; + nelim wl;##[#e;#_;@2;//] #x xs IH e;*; #Hx Hxs; ncases (IH Hxs); + ##[##2: #H; nnormalize; nrewrite < H; nrewrite > (append_nil…); + + ncases wl; ##[#_;@2; //] #x xs; *; #Hx Hxs; @; @x; @(flatten ? xs); @; + ##[@;//;##|@xs; @; //] + ngeneralize in match Hx; ngeneralize in match x; nelim e; nnormalize; //; + ##[#e1 e2 IH1 IH2 x; *; #w1; *; #w2; *; *; #defx Hw1 Hw2; + @; @w1; @w2; /4/ by conj; + ##|#e1 e2 IH1 IH2 y;*; #; ##[@|@2] /2/; + ##|#e IH y; *; #wl; *; #delwl Hw2; nrewrite < delwl; + nelim wl in Hw2; ##[#_;@[];@[];@;//; +*) + ncases Admit; +##|*;##[##2: #H; nrewrite < H; @2; //] *; #w1; *; #w2; *; *; #defw Hw1 Hw2; + @; @w1; @w2; /3/;##] nqed. +(* theorem 16: 4 *) +nlemma star_dot: ∀S.∀e:pre S. 𝐋\p (e^⊛) = 𝐋\p e · (𝐋 .|\fst e|)^*. +#S e; ncases e; #e' b'; ncases b'; +##[ nchange in match (〈e',true〉^⊛) with 〈?,?〉; + nletin e'' ≝ (\fst (•e')); + nchange in ⊢ (??%?) with (?∪?); + nchange in ⊢ (??(??%?)?) with (𝐋\p e'' · 𝐋 .|e''|^* ); + nrewrite > (?: 𝐋\p e'' · 𝐋.|e''|^* ∪ {[]} = (𝐋\p e' ∪ 𝐋.|e'|) · 𝐋.|e''|^* ∪ {[]}); ##[##2: + nrewrite < (bull_cup…); nchange in ⊢ (???(??(??%?)?)) with (?∪?); + nchange in match e'' with e''; + ncases (\snd (•e')); ##[##2: nrewrite > (cup0…); //] + nrewrite > (cup_dotD…); nrewrite > (epsilon_dot…); + nrewrite > (cupA…); nrewrite > (cup_star_nil…); + napply key_id;##] + nrewrite > (cup_dotD…); nrewrite > (cupA…); + nrewrite > (?: ?·? ∪ {[]} = 𝐋.|e'|^* ); ##[##2: + nrewrite > (erase_bull…); nrewrite > (dot_star_epsilon…); //] + nrewrite > (erase_bull…); + nchange in match (𝐋\p 〈?,?〉) with (?∪?); + nrewrite > (cup_dotD…);nrewrite > (epsilon_dot…); //; +##| nwhd in match (〈e',false〉^⊛); nchange in match (𝐋\p 〈?,?〉) with (?∪?); + nrewrite > (cup0…); + nchange in ⊢ (??%?) with (𝐋\p e' · 𝐋 .|e'|^* ); + nrewrite < (cup0 ? (𝐋\p e')); //;##] +nqed. + +STOP + notation > "\move term 90 x term 90 E" non associative with precedence 60 for @{move ? $x $E}. nlet rec move (S: Alpha) (x:S) (E: pitem S) on E : pre S ≝ -- 2.39.2