From 765eb07cafb8a06a5027f4569ad06d805aba2488 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Thu, 30 Apr 2009 14:53:46 +0000 Subject: [PATCH] run check_if_goal_is_solved on all goals (active+passive) --- .../tactics/paramodulation/saturation.ml | 2 +- helm/software/matita/library/R/r.ma | 21 ++++++++----------- .../matita/library/demo/power_derivative.ma | 7 +++++-- 3 files changed, 15 insertions(+), 15 deletions(-) diff --git a/helm/software/components/tactics/paramodulation/saturation.ml b/helm/software/components/tactics/paramodulation/saturation.ml index fb6017839..96b4d515b 100644 --- a/helm/software/components/tactics/paramodulation/saturation.ml +++ b/helm/software/components/tactics/paramodulation/saturation.ml @@ -903,7 +903,7 @@ let check_if_goals_set_is_solved bag env active passive goals = (fun bag -> check_if_goal_is_subsumed bag env (last passive)) ]) (* provare active and passive?*) - (bag,None) active_goals + (bag,None) (active_goals @ passive_goals) ;; let infer_goal_set bag env active goals = diff --git a/helm/software/matita/library/R/r.ma b/helm/software/matita/library/R/r.ma index ce79a875b..9e7ba97f5 100644 --- a/helm/software/matita/library/R/r.ma +++ b/helm/software/matita/library/R/r.ma @@ -204,18 +204,18 @@ intros;autobatch paramodulation; qed. *) lemma Rtimes_x_R0 : ∀x.x * R0 = R0. -intro; autobatch paramodulation. -(* +(*intro; autobatch paramodulation.*) +intros; rewrite < Rplus_x_R0 in ⊢ (? ? % ?); rewrite < (Rplus_Ropp (x*R0)) in ⊢ (? ? (? ? %) %); rewrite < assoc_Rplus; apply eq_f2;autobatch paramodulation; -*) + qed. lemma eq_Rtimes_Ropp_R1_Ropp : ∀x.x*(-R1) = -x. -intro. autobatch paramodulation. (* -auto paramodulation. +intro. (*autobatch paramodulation.*) + rewrite < Rplus_x_R0 in ⊢ (? ? % ?); rewrite < Rplus_x_R0 in ⊢ (? ? ? %); rewrite < (Rplus_Ropp x) in ⊢ (? ? % ?); @@ -225,7 +225,7 @@ rewrite < sym_Rplus in ⊢ (? ? (? ? %) ?); apply eq_f2 [reflexivity] rewrite < Rtimes_x_R1 in ⊢ (? ? (? % ?) ?); rewrite < distr_Rtimes_Rplus_l;autobatch paramodulation; -*) + qed. lemma Ropp_inv : ∀x.x = Ropp (Ropp x). @@ -362,16 +362,13 @@ lapply (Rlt_times_l (Rinv x * Rinv y) ? ? H1) qed. lemma Rlt_plus_l_to_r : ∀a,b,c.a + b < c → a < c - b. -intros; -(* cut (∀x,y.x+(-x+y) = y);[2: -intros.demodulate all.] -applyS (Rlt_plus_l c (-?+a) (-b) ?) by (Hcut c a); - [2: applyS Hletin; -lapply (Rlt_plus_l (-b) ?? H); autobatch; applyS Hletin; *) +intros; autobatch depth=4; +(* rewrite < Rplus_x_R0;rewrite < (Rplus_Ropp b); rewrite < assoc_Rplus; rewrite < sym_Rplus;rewrite < sym_Rplus in ⊢ (??%); apply Rlt_plus_l;assumption; +*) qed. lemma Rlt_plus_r_to_l : ∀a,b,c.a < b + c → a - c < b. diff --git a/helm/software/matita/library/demo/power_derivative.ma b/helm/software/matita/library/demo/power_derivative.ma index 8e7483e96..a425dfcc3 100644 --- a/helm/software/matita/library/demo/power_derivative.ma +++ b/helm/software/matita/library/demo/power_derivative.ma @@ -259,10 +259,13 @@ theorem derivative_power: ∀n:nat. D[X \sup n] = n·X \sup (pred n). (D[X \sup (1+m)]) = (D[X · X \sup m]). = (D[X] · X \sup m + X · D[X \sup m]). - = (X \sup m + X · (m · X \sup (pred m))) timeout=30. + = (X \sup m + X · (m · X \sup (pred m))). + lapply depth=0 Fmult_associative; + lapply depth=0 Fmult_commutative; + = (X \sup m + m · (X · X \sup (pred m))) by Fmult_associative, Fmult_commutative. = (X \sup m + m · (X \sup (1 + pred m))). = (X \sup m + m · X \sup m). - = ((1+m) · X \sup m) timeout=30 by Fmult_one_f, Fmult_commutative, Fmult_Fplus_distr, costante_sum + = ((1+m) · X \sup m) by Fmult_one_f, Fmult_commutative, Fmult_Fplus_distr, costante_sum done. qed. -- 2.39.2