From 7aa41e02e64bd09df253cc4267a44b4f49b16e03 Mon Sep 17 00:00:00 2001 From: Ferruccio Guidi Date: Sat, 26 Nov 2011 17:34:17 +0000 Subject: [PATCH] component "unfold" updated to new syntax ... --- .../lambda_delta/Basic_2/unfold/ltpss.ma | 20 ++++--- .../Basic_2/unfold/ltpss_ldrop.ma | 20 +++---- .../Basic_2/unfold/ltpss_ltpss.ma | 14 ++--- .../lambda_delta/Basic_2/unfold/ltpss_tpss.ma | 52 +++++++++---------- .../lambda_delta/Basic_2/unfold/tpss.ma | 46 ++++++++-------- .../lambda_delta/Basic_2/unfold/tpss_lift.ma | 52 +++++++++---------- .../lambda_delta/Basic_2/unfold/tpss_ltps.ma | 43 +++++++-------- .../lambda_delta/Basic_2/unfold/tpss_tpss.ma | 30 +++++------ 8 files changed, 138 insertions(+), 139 deletions(-) diff --git a/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss.ma b/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss.ma index eb02c3a06..7c86262d9 100644 --- a/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss.ma +++ b/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss.ma @@ -35,10 +35,10 @@ qed-. lemma ltpss_strap: ∀L1,L,L2,d,e. L1 [d, e] ≫ L → L [d, e] ≫* L2 → L1 [d, e] ≫* L2. -/2/ qed. +/2 width=3/ qed. lemma ltpss_refl: ∀L,d,e. L [d, e] ≫* L. -/2/ qed. +/2 width=1/ qed. (* Basic inversion lemmas ***************************************************) @@ -49,15 +49,14 @@ qed-. lemma ltpss_inv_atom1: ∀d,e,L2. ⋆ [d, e] ≫* L2 → L2 = ⋆. #d #e #L2 #H @(ltpss_ind … H) -L2 // -#L #L2 #_ #HL2 #IHL destruct -L +#L #L2 #_ #HL2 #IHL destruct >(ltps_inv_atom1 … HL2) -HL2 // qed-. -fact ltpss_inv_atom2_aux: ∀d,e,L1,L2. - L1 [d, e] ≫* L2 → L2 = ⋆ → L1 = ⋆. +fact ltpss_inv_atom2_aux: ∀d,e,L1,L2. L1 [d, e] ≫* L2 → L2 = ⋆ → L1 = ⋆. #d #e #L1 #L2 #H @(ltpss_ind … H) -L2 // -#L2 #L #_ #HL2 #IHL2 #H destruct -L; -lapply (ltps_inv_atom2 … HL2) -HL2 /2/ +#L2 #L #_ #HL2 #IHL2 #H destruct +lapply (ltps_inv_atom2 … HL2) -HL2 /2 width=1/ qed. lemma ltpss_inv_atom2: ∀d,e,L1. L1 [d, e] ≫* ⋆ → L1 = ⋆. @@ -71,7 +70,7 @@ fact ltps_inv_tps22_aux: ∀d,e,L1,L2. L1 [d, e] ≫ L2 → d = 0 → 0 < e → #d #e #L1 #L2 * -d e L1 L2 [ #d #e #_ #_ #K1 #I #V1 #H destruct | #L1 #I #V #_ #H elim (lt_refl_false … H) -| #L1 #L2 #I #V1 #V2 #e #HL12 #HV12 #_ #_ #K2 #J #W2 #H destruct -L2 I V2 /2 width=5/ +| #L1 #L2 #I #V1 #V2 #e #HL12 #HV12 #_ #_ #K2 #J #W2 #H destruct /2 width=5/ | #L1 #L2 #I #V1 #V2 #d #e #_ #_ #H elim (plus_S_eq_O_false … H) ] qed. @@ -90,8 +89,7 @@ fact ltps_inv_tps12_aux: ∀d,e,L1,L2. L1 [d, e] ≫ L2 → 0 < d → [ #d #e #_ #I #K2 #V2 #H destruct | #L #I #V #H elim (lt_refl_false … H) | #L1 #L2 #I #V1 #V2 #e #_ #_ #H elim (lt_refl_false … H) -| #L1 #L2 #I #V1 #V2 #d #e #HL12 #HV12 #_ #J #K2 #W2 #H destruct -L2 I V2 - /2 width=5/ +| #L1 #L2 #I #V1 #V2 #d #e #HL12 #HV12 #_ #J #K2 #W2 #H destruct /2 width=5/ ] qed. @@ -99,5 +97,5 @@ lemma ltps_inv_tps12: ∀L1,K2,I,V2,d,e. L1 [d, e] ≫ K2. 𝕓{I} V2 → 0 < d ∃∃K1,V1. K1 [d - 1, e] ≫ K2 & K2 ⊢ V1 [d - 1, e] ≫ V2 & L1 = K1. 𝕓{I} V1. -/2/ qed. +/2 width=1/ qed. *) diff --git a/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_ldrop.ma b/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_ldrop.ma index 14d529db8..c9a8dda93 100644 --- a/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_ldrop.ma +++ b/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_ldrop.ma @@ -20,23 +20,23 @@ include "Basic_2/unfold/ltpss.ma". lemma ltpss_ldrop_conf_ge: ∀L0,L1,d1,e1. L0 [d1, e1] ≫* L1 → ∀L2,e2. ↓[0, e2] L0 ≡ L2 → d1 + e1 ≤ e2 → ↓[0, e2] L1 ≡ L2. -#L0 #L1 #d1 #e1 #H @(ltpss_ind … H) -L1 /3 width=6/ +#L0 #L1 #d1 #e1 #H @(ltpss_ind … H) -L1 // /3 width=6/ qed. lemma ltpss_ldrop_trans_ge: ∀L1,L0,d1,e1. L1 [d1, e1] ≫* L0 → ∀L2,e2. ↓[0, e2] L0 ≡ L2 → d1 + e1 ≤ e2 → ↓[0, e2] L1 ≡ L2. -#L1 #L0 #d1 #e1 #H @(ltpss_ind … H) -L0 /3 width=6/ +#L1 #L0 #d1 #e1 #H @(ltpss_ind … H) -L0 // /3 width=6/ qed. lemma ltpss_ldrop_conf_be: ∀L0,L1,d1,e1. L0 [d1, e1] ≫* L1 → ∀L2,e2. ↓[0, e2] L0 ≡ L2 → d1 ≤ e2 → e2 ≤ d1 + e1 → ∃∃L. L2 [0, d1 + e1 - e2] ≫* L & ↓[0, e2] L1 ≡ L. #L0 #L1 #d1 #e1 #H @(ltpss_ind … H) -L1 -[ /2/ +[ /2 width=3/ | #L #L1 #_ #HL1 #IHL #L2 #e2 #HL02 #Hd1e2 #He2de1 elim (IHL … HL02 Hd1e2 He2de1) -L0 #L0 #HL20 #HL0 - elim (ltps_ldrop_conf_be … HL1 … HL0 Hd1e2 He2de1) -L /3/ + elim (ltps_ldrop_conf_be … HL1 … HL0 Hd1e2 He2de1) -L /3 width=3/ ] qed. @@ -44,10 +44,10 @@ lemma ltpss_ldrop_trans_be: ∀L1,L0,d1,e1. L1 [d1, e1] ≫* L0 → ∀L2,e2. ↓[0, e2] L0 ≡ L2 → d1 ≤ e2 → e2 ≤ d1 + e1 → ∃∃L. L [0, d1 + e1 - e2] ≫* L2 & ↓[0, e2] L1 ≡ L. #L1 #L0 #d1 #e1 #H @(ltpss_ind … H) -L0 -[ /2/ +[ /2 width=3/ | #L #L0 #_ #HL0 #IHL #L2 #e2 #HL02 #Hd1e2 #He2de1 elim (ltps_ldrop_trans_be … HL0 … HL02 Hd1e2 He2de1) -L0 #L0 #HL02 #HL0 - elim (IHL … HL0 Hd1e2 He2de1) -L /3/ + elim (IHL … HL0 Hd1e2 He2de1) -L /3 width=3/ ] qed. @@ -55,10 +55,10 @@ lemma ltpss_ldrop_conf_le: ∀L0,L1,d1,e1. L0 [d1, e1] ≫* L1 → ∀L2,e2. ↓[0, e2] L0 ≡ L2 → e2 ≤ d1 → ∃∃L. L2 [d1 - e2, e1] ≫* L & ↓[0, e2] L1 ≡ L. #L0 #L1 #d1 #e1 #H @(ltpss_ind … H) -L1 -[ /2/ +[ /2 width=3/ | #L #L1 #_ #HL1 #IHL #L2 #e2 #HL02 #He2d1 elim (IHL … HL02 He2d1) -L0 #L0 #HL20 #HL0 - elim (ltps_ldrop_conf_le … HL1 … HL0 He2d1) -L /3/ + elim (ltps_ldrop_conf_le … HL1 … HL0 He2d1) -L /3 width=3/ ] qed. @@ -66,9 +66,9 @@ lemma ltpss_ldrop_trans_le: ∀L1,L0,d1,e1. L1 [d1, e1] ≫* L0 → ∀L2,e2. ↓[0, e2] L0 ≡ L2 → e2 ≤ d1 → ∃∃L. L [d1 - e2, e1] ≫* L2 & ↓[0, e2] L1 ≡ L. #L1 #L0 #d1 #e1 #H @(ltpss_ind … H) -L0 -[ /2/ +[ /2 width=3/ | #L #L0 #_ #HL0 #IHL #L2 #e2 #HL02 #He2d1 elim (ltps_ldrop_trans_le … HL0 … HL02 He2d1) -L0 #L0 #HL02 #HL0 - elim (IHL … HL0 He2d1) -L /3/ + elim (IHL … HL0 He2d1) -L /3 width=3/ ] qed. diff --git a/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_ltpss.ma b/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_ltpss.ma index 9a023056d..e4291acf9 100644 --- a/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_ltpss.ma +++ b/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_ltpss.ma @@ -20,14 +20,14 @@ include "Basic_2/unfold/ltpss_tpss.ma". theorem ltpss_trans_eq: ∀L1,L,L2,d,e. L1 [d, e] ≫* L → L [d, e] ≫* L2 → L1 [d, e] ≫* L2. -/2/ qed. +/2 width=3/ qed. lemma ltpss_tpss2: ∀L1,L2,I,V1,V2,e. L1 [0, e] ≫* L2 → L2 ⊢ V1 [0, e] ≫* V2 → L1. 𝕓{I} V1 [0, e + 1] ≫* L2. 𝕓{I} V2. #L1 #L2 #I #V1 #V2 #e #HL12 #H @(tpss_ind … H) -V2 -[ /2/ -| #V #V2 #_ #HV2 #IHV @(ltpss_trans_eq … IHV) /2/ +[ /2 width=1/ +| #V #V2 #_ #HV2 #IHV @(ltpss_trans_eq … IHV) /2 width=1/ ] qed. @@ -35,15 +35,15 @@ lemma ltpss_tpss2_lt: ∀L1,L2,I,V1,V2,e. L1 [0, e - 1] ≫* L2 → L2 ⊢ V1 [0, e - 1] ≫* V2 → 0 < e → L1. 𝕓{I} V1 [0, e] ≫* L2. 𝕓{I} V2. #L1 #L2 #I #V1 #V2 #e #HL12 #HV12 #He ->(plus_minus_m_m e 1) /2/ +>(plus_minus_m_m e 1) // /2 width=1/ qed. lemma ltpss_tpss1: ∀L1,L2,I,V1,V2,d,e. L1 [d, e] ≫* L2 → L2 ⊢ V1 [d, e] ≫* V2 → L1. 𝕓{I} V1 [d + 1, e] ≫* L2. 𝕓{I} V2. #L1 #L2 #I #V1 #V2 #d #e #HL12 #H @(tpss_ind … H) -V2 -[ /2/ -| #V #V2 #_ #HV2 #IHV @(ltpss_trans_eq … IHV) /2/ +[ /2 width=1/ +| #V #V2 #_ #HV2 #IHV @(ltpss_trans_eq … IHV) /2 width=1/ ] qed. @@ -51,5 +51,5 @@ lemma ltpss_tpss1_lt: ∀L1,L2,I,V1,V2,d,e. L1 [d - 1, e] ≫* L2 → L2 ⊢ V1 [d - 1, e] ≫* V2 → 0 < d → L1. 𝕓{I} V1 [d, e] ≫* L2. 𝕓{I} V2. #L1 #L2 #I #V1 #V2 #d #e #HL12 #HV12 #Hd ->(plus_minus_m_m d 1) /2/ +>(plus_minus_m_m d 1) // /2 width=1/ qed. diff --git a/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_tpss.ma b/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_tpss.ma index af49f1c05..c75119b66 100644 --- a/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_tpss.ma +++ b/matita/matita/contribs/lambda_delta/Basic_2/unfold/ltpss_tpss.ma @@ -24,28 +24,28 @@ lemma ltpss_tpss_trans_ge: ∀L1,L0,d1,e1. L1 [d1, e1] ≫* L0 → d1 + e1 ≤ d2 → L1 ⊢ T2 [d2, e2] ≫* U2. #L1 #L0 #d1 #e1 #H @(ltpss_ind … H) -L0 // #L #L0 #_ #HL0 #IHL #T2 #U2 #d2 #e2 #HTU2 #Hde1d2 -lapply (ltps_tpss_trans_ge … HL0 HTU2) -HL0 HTU2 /2/ +lapply (ltps_tpss_trans_ge … HL0 HTU2) -HL0 -HTU2 /2 width=1/ qed. lemma ltpss_tps_trans_ge: ∀L1,L0,d1,e1. L1 [d1, e1] ≫* L0 → ∀T2,U2,d2,e2. L0 ⊢ T2 [d2, e2] ≫ U2 → d1 + e1 ≤ d2 → L1 ⊢ T2 [d2, e2] ≫* U2. #L1 #L0 #d1 #e1 #HL10 #T2 #U2 #d2 #e2 #HTU2 #Hde1d2 -@(ltpss_tpss_trans_ge … HL10 … Hde1d2) /2/ (**) (* /3 width=6/ is too slow *) +@(ltpss_tpss_trans_ge … HL10 … Hde1d2) /2 width=1/ (**) (* /3 width=6/ is too slow *) qed. lemma ltpss_tpss_trans_eq: ∀L0,L1,d,e. L0 [d, e] ≫* L1 → ∀T2,U2. L1 ⊢ T2 [d, e] ≫* U2 → L0 ⊢ T2 [d, e] ≫* U2. #L0 #L1 #d #e #H @(ltpss_ind … H) -L1 -[ /2/ +[ /2 width=1/ | #L #L1 #_ #HL1 #IHL #T2 #U2 #HTU2 - lapply (ltps_tpss_trans_eq … HL1 HTU2) -HL1 HTU2 /2/ + lapply (ltps_tpss_trans_eq … HL1 HTU2) -HL1 -HTU2 /2 width=1/ ] qed. lemma ltpss_tps_trans_eq: ∀L0,L1,d,e. L0 [d, e] ≫* L1 → ∀T2,U2. L1 ⊢ T2 [d, e] ≫ U2 → L0 ⊢ T2 [d, e] ≫* U2. -/3/ qed. +/3 width=3/ qed. lemma ltpss_tpss_conf_ge: ∀L0,L1,T2,U2,d1,e1,d2,e2. d1 + e1 ≤ d2 → L0 ⊢ T2 [d2, e2] ≫* U2 → L0 [d1, e1] ≫* L1 → @@ -53,7 +53,7 @@ lemma ltpss_tpss_conf_ge: ∀L0,L1,T2,U2,d1,e1,d2,e2. d1 + e1 ≤ d2 → #L0 #L1 #T2 #U2 #d1 #e1 #d2 #e2 #Hde1d2 #HTU2 #H @(ltpss_ind … H) -L1 [ // | -HTU2 #L #L1 #_ #HL1 #IHL - lapply (ltps_tpss_conf_ge … HL1 IHL) -HL1 IHL // + lapply (ltps_tpss_conf_ge … HL1 IHL) -HL1 -IHL // ] qed. @@ -61,45 +61,45 @@ lemma ltpss_tps_conf_ge: ∀L0,L1,T2,U2,d1,e1,d2,e2. d1 + e1 ≤ d2 → L0 ⊢ T2 [d2, e2] ≫ U2 → L0 [d1, e1] ≫* L1 → L1 ⊢ T2 [d2, e2] ≫* U2. #L0 #L1 #T2 #U2 #d1 #e1 #d2 #e2 #Hde1d2 #HTU2 #HL01 -@(ltpss_tpss_conf_ge … Hde1d2 … HL01) /2/ (**) (* /3 width=6/ is too slow *) +@(ltpss_tpss_conf_ge … Hde1d2 … HL01) /2 width=1/ (**) (* /3 width=6/ is too slow *) qed. lemma ltpss_tpss_conf_eq: ∀L0,L1,T2,U2,d,e. L0 ⊢ T2 [d, e] ≫* U2 → L0 [d, e] ≫* L1 → ∃∃T. L1 ⊢ T2 [d, e] ≫* T & L1 ⊢ U2 [d, e] ≫* T. #L0 #L1 #T2 #U2 #d #e #HTU2 #H @(ltpss_ind … H) -L1 -[ /2/ +[ /2 width=3/ | -HTU2 #L #L1 #_ #HL1 * #W2 #HTW2 #HUW2 elim (ltps_tpss_conf … HL1 HTW2) -HTW2 #T #HT2 #HW2T - elim (ltps_tpss_conf … HL1 HUW2) -HL1 HUW2 #U #HU2 #HW2U - elim (tpss_conf_eq … HW2T … HW2U) -HW2T HW2U #V #HTV #HUV - lapply (tpss_trans_eq … HT2 … HTV) -T; - lapply (tpss_trans_eq … HU2 … HUV) -U /2/ + elim (ltps_tpss_conf … HL1 HUW2) -HL1 -HUW2 #U #HU2 #HW2U + elim (tpss_conf_eq … HW2T … HW2U) -HW2T -HW2U #V #HTV #HUV + lapply (tpss_trans_eq … HT2 … HTV) -T + lapply (tpss_trans_eq … HU2 … HUV) -U /2 width=3/ ] qed. lemma ltpss_tps_conf_eq: ∀L0,L1,T2,U2,d,e. L0 ⊢ T2 [d, e] ≫ U2 → L0 [d, e] ≫* L1 → ∃∃T. L1 ⊢ T2 [d, e] ≫* T & L1 ⊢ U2 [d, e] ≫* T. -/3/ qed. +/3 width=3/ qed. lemma ltpss_tpss_conf: ∀L1,T1,T2,d,e. L1 ⊢ T1 [d, e] ≫* T2 → ∀L2,ds,es. L1 [ds, es] ≫* L2 → ∃∃T. L2 ⊢ T1 [d, e] ≫* T & L1 ⊢ T2 [ds, es] ≫* T. #L1 #T1 #T2 #d #e #HT12 #L2 #ds #es #H @(ltpss_ind … H) -L2 -[ /3/ +[ /3 width=3/ | #L #L2 #HL1 #HL2 * #T #HT1 #HT2 elim (ltps_tpss_conf … HL2 HT1) -HT1 #T0 #HT10 #HT0 - lapply (ltps_tpss_trans_eq … HL2 … HT0) -HL2 HT0 #HT0 - lapply (ltpss_tpss_trans_eq … HL1 … HT0) -HL1 HT0 #HT0 - lapply (tpss_trans_eq … HT2 … HT0) -T /2/ + lapply (ltps_tpss_trans_eq … HL2 … HT0) -HL2 -HT0 #HT0 + lapply (ltpss_tpss_trans_eq … HL1 … HT0) -HL1 -HT0 #HT0 + lapply (tpss_trans_eq … HT2 … HT0) -T /2 width=3/ ] qed. lemma ltpss_tps_conf: ∀L1,T1,T2,d,e. L1 ⊢ T1 [d, e] ≫ T2 → ∀L2,ds,es. L1 [ds, es] ≫* L2 → ∃∃T. L2 ⊢ T1 [d, e] ≫* T & L1 ⊢ T2 [ds, es] ≫* T. -/3/ qed. +/3 width=1/ qed. (* Advanced properties ******************************************************) @@ -107,10 +107,10 @@ lemma ltpss_tps2: ∀L1,L2,I,e. L1 [0, e] ≫* L2 → ∀V1,V2. L2 ⊢ V1 [0, e] ≫ V2 → L1. 𝕓{I} V1 [0, e + 1] ≫* L2. 𝕓{I} V2. #L1 #L2 #I #e #H @(ltpss_ind … H) -L2 -[ /3/ +[ /3 width=1/ | #L #L2 #_ #HL2 #IHL #V1 #V2 #HV12 elim (ltps_tps_trans … HV12 … HL2) -HV12 #V #HV1 #HV2 - lapply (IHL … HV1) -IHL HV1 #HL1 + lapply (IHL … HV1) -IHL -HV1 #HL1 @step /2 width=5/ (**) (* /3 width=5/ is too slow *) ] qed. @@ -119,17 +119,17 @@ lemma ltpss_tps2_lt: ∀L1,L2,I,V1,V2,e. L1 [0, e - 1] ≫* L2 → L2 ⊢ V1 [0, e - 1] ≫ V2 → 0 < e → L1. 𝕓{I} V1 [0, e] ≫* L2. 𝕓{I} V2. #L1 #L2 #I #V1 #V2 #e #HL12 #HV12 #He ->(plus_minus_m_m e 1) /2/ +>(plus_minus_m_m e 1) // /2 width=1/ qed. lemma ltpss_tps1: ∀L1,L2,I,d,e. L1 [d, e] ≫* L2 → ∀V1,V2. L2 ⊢ V1 [d, e] ≫ V2 → L1. 𝕓{I} V1 [d + 1, e] ≫* L2. 𝕓{I} V2. #L1 #L2 #I #d #e #H @(ltpss_ind … H) -L2 -[ /3/ +[ /3 width=1/ | #L #L2 #_ #HL2 #IHL #V1 #V2 #HV12 elim (ltps_tps_trans … HV12 … HL2) -HV12 #V #HV1 #HV2 - lapply (IHL … HV1) -IHL HV1 #HL1 + lapply (IHL … HV1) -IHL -HV1 #HL1 @step /2 width=5/ (**) (* /3 width=5/ is too slow *) ] qed. @@ -138,7 +138,7 @@ lemma ltpss_tps1_lt: ∀L1,L2,I,V1,V2,d,e. L1 [d - 1, e] ≫* L2 → L2 ⊢ V1 [d - 1, e] ≫ V2 → 0 < d → L1. 𝕓{I} V1 [d, e] ≫* L2. 𝕓{I} V2. #L1 #L2 #I #V1 #V2 #d #e #HL12 #HV12 #Hd ->(plus_minus_m_m d 1) /2/ +>(plus_minus_m_m d 1) // /2 width=1/ qed. (* Advanced forward lemmas **************************************************) @@ -148,7 +148,7 @@ lemma ltpss_fwd_tpss21: ∀e,K1,I,V1,L2. 0 < e → K1. 𝕓{I} V1 [0, e] ≫* L2 L2 = K2. 𝕓{I} V2. #e #K1 #I #V1 #L2 #He #H @(ltpss_ind … H) -L2 [ /2 width=5/ -| #L #L2 #_ #HL2 * #K #V #HK1 #HV1 #H destruct -L; +| #L #L2 #_ #HL2 * #K #V #HK1 #HV1 #H destruct elim (ltps_inv_tps21 … HL2 ?) -HL2 // #K2 #V2 #HK2 #HV2 #H lapply (ltps_tps_trans_eq … HV2 … HK2) -HV2 #HV2 lapply (ltpss_tpss_trans_eq … HK1 … HV2) -HV2 #HV2 /3 width=5/ @@ -161,7 +161,7 @@ lemma ltpss_fwd_tpss11: ∀d,e,I,K1,V1,L2. 0 < d → K1. 𝕓{I} V1 [d, e] ≫* L2 = K2. 𝕓{I} V2. #d #e #K1 #I #V1 #L2 #Hd #H @(ltpss_ind … H) -L2 [ /2 width=5/ -| #L #L2 #_ #HL2 * #K #V #HK1 #HV1 #H destruct -L; +| #L #L2 #_ #HL2 * #K #V #HK1 #HV1 #H destruct elim (ltps_inv_tps11 … HL2 ?) -HL2 // #K2 #V2 #HK2 #HV2 #H lapply (ltps_tps_trans_eq … HV2 … HK2) -HV2 #HV2 lapply (ltpss_tpss_trans_eq … HK1 … HV2) -HV2 #HV2 /3 width=5/ diff --git a/matita/matita/contribs/lambda_delta/Basic_2/unfold/tpss.ma b/matita/matita/contribs/lambda_delta/Basic_2/unfold/tpss.ma index f21f3603e..98a8caa50 100644 --- a/matita/matita/contribs/lambda_delta/Basic_2/unfold/tpss.ma +++ b/matita/matita/contribs/lambda_delta/Basic_2/unfold/tpss.ma @@ -34,58 +34,58 @@ qed-. lemma tpss_strap: ∀L,T1,T,T2,d,e. L ⊢ T1 [d, e] ≫ T → L ⊢ T [d, e] ≫* T2 → L ⊢ T1 [d, e] ≫* T2. -/2/ qed. +/2 width=3/ qed. lemma tpss_lsubs_conf: ∀L1,T1,T2,d,e. L1 ⊢ T1 [d, e] ≫* T2 → ∀L2. L1 [d, e] ≼ L2 → L2 ⊢ T1 [d, e] ≫* T2. -/3/ qed. +/3 width=3/ qed. lemma tpss_refl: ∀d,e,L,T. L ⊢ T [d, e] ≫* T. -/2/ qed. +/2 width=1/ qed. lemma tpss_bind: ∀L,V1,V2,d,e. L ⊢ V1 [d, e] ≫* V2 → ∀I,T1,T2. L. 𝕓{I} V2 ⊢ T1 [d + 1, e] ≫* T2 → L ⊢ 𝕓{I} V1. T1 [d, e] ≫* 𝕓{I} V2. T2. -#L #V1 #V2 #d #e #HV12 elim HV12 -HV12 V2 -[ #V2 #HV12 #I #T1 #T2 #HT12 elim HT12 -HT12 T2 +#L #V1 #V2 #d #e #HV12 elim HV12 -V2 +[ #V2 #HV12 #I #T1 #T2 #HT12 elim HT12 -T2 [ /3 width=5/ | #T #T2 #_ #HT2 #IHT @step /2 width=5/ (**) (* /3 width=5/ is too slow *) ] | #V #V2 #_ #HV12 #IHV #I #T1 #T2 #HT12 - lapply (tpss_lsubs_conf … HT12 (L. 𝕓{I} V) ?) -HT12 /2/ #HT12 - lapply (IHV … HT12) -IHV HT12 #HT12 @step /2 width=5/ (**) (* /3 width=5/ is too slow *) + lapply (tpss_lsubs_conf … HT12 (L. 𝕓{I} V) ?) -HT12 /2 width=1/ #HT12 + lapply (IHV … HT12) -IHV -HT12 #HT12 @step /2 width=5/ (**) (* /3 width=5/ is too slow *) ] qed. lemma tpss_flat: ∀L,I,V1,V2,T1,T2,d,e. L ⊢ V1 [d, e] ≫ * V2 → L ⊢ T1 [d, e] ≫* T2 → L ⊢ 𝕗{I} V1. T1 [d, e] ≫* 𝕗{I} V2. T2. -#L #I #V1 #V2 #T1 #T2 #d #e #HV12 elim HV12 -HV12 V2 -[ #V2 #HV12 #HT12 elim HT12 -HT12 T2 - [ /3/ +#L #I #V1 #V2 #T1 #T2 #d #e #HV12 elim HV12 -V2 +[ #V2 #HV12 #HT12 elim HT12 -T2 + [ /3 width=1/ | #T #T2 #_ #HT2 #IHT @step /2 width=5/ (**) (* /3 width=5/ is too slow *) ] | #V #V2 #_ #HV12 #IHV #HT12 - lapply (IHV … HT12) -IHV HT12 #HT12 @step /2 width=5/ (**) (* /3 width=5/ is too slow *) + lapply (IHV … HT12) -IHV -HT12 #HT12 @step /2 width=5/ (**) (* /3 width=5/ is too slow *) ] qed. lemma tpss_weak: ∀L,T1,T2,d1,e1. L ⊢ T1 [d1, e1] ≫* T2 → ∀d2,e2. d2 ≤ d1 → d1 + e1 ≤ d2 + e2 → L ⊢ T1 [d2, e2] ≫* T2. -#L #T1 #T2 #d1 #e1 #H #d1 #d2 #Hd21 #Hde12 @(tpss_ind … H) -H T2 +#L #T1 #T2 #d1 #e1 #H #d1 #d2 #Hd21 #Hde12 @(tpss_ind … H) -T2 [ // | #T #T2 #_ #HT12 #IHT - lapply (tps_weak … HT12 … Hd21 Hde12) -HT12 Hd21 Hde12 /2/ + lapply (tps_weak … HT12 … Hd21 Hde12) -HT12 -Hd21 -Hde12 /2 width=3/ ] qed. lemma tpss_weak_top: ∀L,T1,T2,d,e. L ⊢ T1 [d, e] ≫* T2 → L ⊢ T1 [d, |L| - d] ≫* T2. -#L #T1 #T2 #d #e #H @(tpss_ind … H) -H T2 +#L #T1 #T2 #d #e #H @(tpss_ind … H) -T2 [ // | #T #T2 #_ #HT12 #IHT - lapply (tps_weak_top … HT12) -HT12 /2/ + lapply (tps_weak_top … HT12) -HT12 /2 width=3/ ] qed. @@ -100,9 +100,9 @@ qed. (* Note: this can be derived from tpss_inv_atom1 *) lemma tpss_inv_sort1: ∀L,T2,k,d,e. L ⊢ ⋆k [d, e] ≫* T2 → T2 = ⋆k. -#L #T2 #k #d #e #H @(tpss_ind … H) -H T2 +#L #T2 #k #d #e #H @(tpss_ind … H) -T2 [ // -| #T #T2 #_ #HT2 #IHT destruct -T +| #T #T2 #_ #HT2 #IHT destruct >(tps_inv_sort1 … HT2) -HT2 // ] qed-. @@ -111,26 +111,26 @@ lemma tpss_inv_bind1: ∀d,e,L,I,V1,T1,U2. L ⊢ 𝕓{I} V1. T1 [d, e] ≫* U2 ∃∃V2,T2. L ⊢ V1 [d, e] ≫* V2 & L. 𝕓{I} V2 ⊢ T1 [d + 1, e] ≫* T2 & U2 = 𝕓{I} V2. T2. -#d #e #L #I #V1 #T1 #U2 #H @(tpss_ind … H) -H U2 +#d #e #L #I #V1 #T1 #U2 #H @(tpss_ind … H) -U2 [ /2 width=5/ -| #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct -U; +| #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct elim (tps_inv_bind1 … HU2) -HU2 #V2 #T2 #HV2 #HT2 #H - lapply (tpss_lsubs_conf … HT1 (L. 𝕓{I} V2) ?) -HT1 /3 width=5/ + lapply (tpss_lsubs_conf … HT1 (L. 𝕓{I} V2) ?) -HT1 /2 width=1/ /3 width=5/ ] qed-. lemma tpss_inv_flat1: ∀d,e,L,I,V1,T1,U2. L ⊢ 𝕗{I} V1. T1 [d, e] ≫* U2 → ∃∃V2,T2. L ⊢ V1 [d, e] ≫* V2 & L ⊢ T1 [d, e] ≫* T2 & U2 = 𝕗{I} V2. T2. -#d #e #L #I #V1 #T1 #U2 #H @(tpss_ind … H) -H U2 +#d #e #L #I #V1 #T1 #U2 #H @(tpss_ind … H) -U2 [ /2 width=5/ -| #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct -U; +| #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct elim (tps_inv_flat1 … HU2) -HU2 /3 width=5/ ] qed-. lemma tpss_inv_refl_O2: ∀L,T1,T2,d. L ⊢ T1 [d, 0] ≫* T2 → T1 = T2. -#L #T1 #T2 #d #H @(tpss_ind … H) -H T2 +#L #T1 #T2 #d #H @(tpss_ind … H) -T2 [ // | #T #T2 #_ #HT2 #IHT <(tps_inv_refl_O2 … HT2) -HT2 // ] diff --git a/matita/matita/contribs/lambda_delta/Basic_2/unfold/tpss_lift.ma b/matita/matita/contribs/lambda_delta/Basic_2/unfold/tpss_lift.ma index 2ba57a9c5..53c4f0c68 100644 --- a/matita/matita/contribs/lambda_delta/Basic_2/unfold/tpss_lift.ma +++ b/matita/matita/contribs/lambda_delta/Basic_2/unfold/tpss_lift.ma @@ -23,14 +23,14 @@ lemma tpss_subst: ∀L,K,V,U1,i,d,e. d ≤ i → i < d + e → ↓[0, i] L ≡ K. 𝕓{Abbr} V → K ⊢ V [0, d + e - i - 1] ≫* U1 → ∀U2. ↑[0, i + 1] U1 ≡ U2 → L ⊢ #i [d, e] ≫* U2. -#L #K #V #U1 #i #d #e #Hdi #Hide #HLK #H @(tpss_ind … H) -H U1 -[ /3/ +#L #K #V #U1 #i #d #e #Hdi #Hide #HLK #H @(tpss_ind … H) -U1 +[ /3 width=4/ | #U #U1 #_ #HU1 #IHU #U2 #HU12 elim (lift_total U 0 (i+1)) #U0 #HU0 lapply (IHU … HU0) -IHU #H lapply (ldrop_fwd_ldrop2 … HLK) -HLK #HLK - lapply (tps_lift_ge … HU1 … HLK HU0 HU12 ?) -HU1 HLK HU0 HU12 // normalize #HU02 - lapply (tps_weak … HU02 d e ? ?) -HU02 [ >arith_i2 // | /2/ | /2/ ] + lapply (tps_lift_ge … HU1 … HLK HU0 HU12 ?) -HU1 -HLK -HU0 -HU12 // normalize #HU02 + lapply (tps_weak … HU02 d e ? ?) -HU02 [ >arith_i2 // | /2 width=1/ | /2 width=3/ ] ] qed. @@ -43,15 +43,15 @@ lemma tpss_inv_atom1: ∀L,T2,I,d,e. L ⊢ 𝕒{I} [d, e] ≫* T2 → K ⊢ V1 [0, d + e - i - 1] ≫* V2 & ↑[O, i + 1] V2 ≡ T2 & I = LRef i. -#L #T2 #I #d #e #H @(tpss_ind … H) -H T2 -[ /2/ +#L #T2 #I #d #e #H @(tpss_ind … H) -T2 +[ /2 width=1/ | #T #T2 #_ #HT2 * - [ #H destruct -T; - elim (tps_inv_atom1 … HT2) -HT2 [ /2/ | * /3 width=10/ ] + [ #H destruct + elim (tps_inv_atom1 … HT2) -HT2 [ /2 width=1/ | * /3 width=10/ ] | * #K #V1 #V #i #Hdi #Hide #HLK #HV1 #HVT #HI lapply (ldrop_fwd_ldrop2 … HLK) #H - elim (tps_inv_lift1_up … HT2 … H … HVT ? ? ?) normalize -HT2 H HVT [2,3,4: /2/ ] #V2